

# Block 4 Report

# Sydney Metro C&SW - Traffic and Interchange Monitoring

21-Feb-2025 Sydney Metro City and Southwest - Traffic and Interchange Monitoring Doc No. 60705686-ACM-B4-RPT-TR-001-R00

📀 aecom.com

Delivering a better world

# **Block 4 Report**

Sydney Metro C&SW - Traffic and Interchange Monitoring

**Client: Sydney Metro** 

ABN: 12 354 063 515

Prepared by

#### AECOM Australia Pty Ltd Gadigal Country, Level 21, 420 George Street, Sydney NSW 2000, PO Box Q410, QVB Post Office NSW 1230, Australia T +61 1800 868 654 www.aecom.com ABN 20 093 846 925

21-Feb-2025

Job No.: 60705686

AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 and ISO45001.

© AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

# **Quality Information**

| Document   | Block 4 Report                                                                                                          |
|------------|-------------------------------------------------------------------------------------------------------------------------|
| Ref        | 60705686                                                                                                                |
|            | c:\users\wanj2\documents\sydney metro c&sw\block 4\report\60705686-acm-b4-rpt-tr-001-r01-traffic monitoring report.docx |
| Date       | 21-Feb-2025                                                                                                             |
| Originator | Jimmy Wan                                                                                                               |
| Checker/s  | Sara Hu                                                                                                                 |
| Verifier/s | Anoop Sridhar                                                                                                           |

# **Revision History**

| Rev | Revision Date | Details      | Approved                              |           |  |
|-----|---------------|--------------|---------------------------------------|-----------|--|
|     |               |              | Name/Position                         | Signature |  |
| 00  | 07-Feb-2025   | Draft report | Anoop Sridhar<br>Associate Director   | Aju       |  |
| 01  | 21-Feb-2025   | Final Report | Sara Hu<br>Senior Traffic<br>Engineer | SA)       |  |

# **Table of Contents**

| Terms a | nd abbrev | iations                                  | i   |
|---------|-----------|------------------------------------------|-----|
| 1.0     | Introduct | ion                                      | 1   |
|         | 1.1       | Project overview                         | 1   |
|         | 1.2       | Purpose of this report                   | 2   |
|         | 1.3       | Scope of this study                      | 2   |
|         | 1.4       | Structure of this report                 | 3   |
| 2.0     | Context a | and background                           | 4   |
|         | 2.1       | Context                                  | 4   |
|         | 2.2       | Background                               | 5   |
| 3.0     | Study are | ea                                       | 6   |
|         | 3.1       | Overview                                 | 6   |
|         | 3.2       | Traffic monitoring                       | 7   |
|         | 3.3       | Transport interchange monitoring         | 19  |
| 4.0     | Assessm   | nent methodology                         | 27  |
|         | 4.1       | Traffic monitoring                       | 27  |
|         | 4.2       | Transport interchange monitoring         | 29  |
| 5.0     | Traffic m | onitoring and intersection performance   | 31  |
|         | 5.1       | Chatswood Dive Site                      | 31  |
|         | 5.2       | Crows Nest Station                       | 37  |
|         | 5.3       | Victoria Cross Station                   | 61  |
|         | 5.4       | Barangaroo Station                       | 70  |
|         | 5.5       | Martin Place Station                     | 97  |
|         | 5.6       | Gadigal Station                          | 109 |
|         | 5.7       | Central Station                          | 118 |
|         | 5.8       | Waterloo Station                         | 126 |
|         | 5.9       | Sydenham Station                         | 137 |
| 6.0     | Transpor  | rt interchange monitoring                | 147 |
|         | 6.1       | Chatswood Station                        | 147 |
|         | 6.2       | Crows Nest Station                       | 154 |
|         | 6.3       | Victoria Cross Station                   | 160 |
|         | 6.4       | Barangaroo Station                       | 167 |
|         | 6.5       | Waterloo Station                         | 173 |
|         | 6.6       | Sydenham Station                         | 179 |
| 7.0     | Summar    | у                                        | 187 |
| Appendi | ĸА        | Stakeholder meeting minutes              | A-1 |
| Appendi | κВ        | SIDRA Intersection modelling assumptions | B-1 |
| Appendi | кC        | Network flow diagrams                    | C-1 |
| Appendi | кD        | Movement summary outputs                 | D-1 |

i

# Terms and abbreviations

| Term                                   | Definition                                                                                                                                                                                                                                 |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AECOM                                  | AECOM Australia Pty Ltd                                                                                                                                                                                                                    |
| Block 4                                | The fourth study block of the traffic and interchange monitoring program                                                                                                                                                                   |
| BOAM                                   | Bus Opal Assignment Model                                                                                                                                                                                                                  |
| CBD                                    | Central Business District                                                                                                                                                                                                                  |
| СоА                                    | Conditions of Approval                                                                                                                                                                                                                     |
| Condition D12                          | Refers to Item D12 of the Sydney Metro City & Southwest Chatswood to<br>Sydenham conditions of approval, which specifies requirements for traffic<br>operational monitoring of the Sydney Metro City & Southwest Chatswood to<br>Sydenham. |
| CSSI                                   | Critical State Significant Infrastructure                                                                                                                                                                                                  |
| IAP                                    | Interchange Access Plan                                                                                                                                                                                                                    |
| LOS                                    | Level of Service                                                                                                                                                                                                                           |
| post-opening                           | denotes post-opening scenarios of the Sydney Metro City & Southwest line operating between Chatswood to Sydenham                                                                                                                           |
| pre-opening                            | denotes pre-opening scenarios of the Sydney Metro City & Southwest line<br>operating between Chatswood to Sydenham                                                                                                                         |
| PTIPS                                  | Public Transport Information and Priority Systems                                                                                                                                                                                          |
| SCATS                                  | Sydney Coordinated Adaptive Traffic System                                                                                                                                                                                                 |
| SIDRA Intersection                     | SIDRA Intersection modelling software, the modelling software used to assess the traffic performance.                                                                                                                                      |
| SHB                                    | Sydney Harbour Bridge                                                                                                                                                                                                                      |
| Sydney Metro                           | A New South Wales Government Agency constituted under the <i>Transport Administration Act 1988 (NSW)</i> ).                                                                                                                                |
| Sydney Metro City & Southwest          | The metro railway between Chatswood and Bankstown, including 15.5 kilometres of twin metro railway tunnels from Chatswood to Marrickville under Sydney Harbour.                                                                            |
| Sydney Metro<br>Northwest              | The former Northwest Rail Link, i.e. operating metro railway between Tallawong Station at Rouse Hill and Chatswood.                                                                                                                        |
| Sydney Metro West                      | The metro railway that will connect the Sydney CBD and Parramatta, linking communities along the way with a new underground railway.                                                                                                       |
| Sydney Metro Western<br>Sydney Airport | The metro railway that will link St Marys to the Western Sydney International (Nancy Bird Walton) airport and the Aerotropolis.                                                                                                            |
| TfNSW                                  | Transport for NSW (A New South Wales Government Agency constituted under the <i>Transport Administration Act 1988 (NSW)</i> ).                                                                                                             |
| the Project                            | Traffic and interchange monitoring assessments for the Sydney Metro City & Southwest Chatswood to Sydenham                                                                                                                                 |
| TCS                                    | Traffic Control Signal                                                                                                                                                                                                                     |
| TSN                                    | Transit Stop Number                                                                                                                                                                                                                        |

# 1.0 Introduction

This section provides an introduction of the traffic and interchange monitoring for the Sydney Metro City & Southwest between Chatswood Station and Sydenham Station (the Project), including the project overview, project objectives and overall scope of works covered under this Project.

# 1.1 **Project overview**

Sydney Metro is the largest public transport project in Australia, designed to address congestion, enhance connectivity, and meet the evolving needs of Sydney's population and economy. It encompasses four major metro lines: Sydney Metro Northwest, Sydney Metro West, Sydney Metro Western Sydney Airport, and Sydney Metro City & Southwest.

AECOM Australia Pty Ltd (AECOM) has been appointed by Sydney Metro to conduct traffic and interchange monitoring assessments for the Sydney Metro City & Southwest between Chatswood Station and Sydenham Station (the Project).

The purpose of this assessment is to evaluate the impact of the Sydney Metro City & Southwest (Chatswood to Sydenham) operations on the nine stations and their surrounding intersections and interchange facilities. The study involves evaluating the performance of these intersections and interchange both before and after the introduction of the metro line. This assessment is crucial for fulfilling the requirements of the Critical State Significant Infrastructure (CSSI) application Conditions of Approval (CoA) overseen by the NSW Department of Planning and Environment.

Traffic and interchange monitoring will be conducted in six study blocks, spanning a period of over 12months before the commencement of the CSSI operations (pre-opening) and 12-months after the commencement (post-opening). This comprehensive monitoring approach will provide insights into the traffic and interchange dynamics during different stages of the Sydney Metro City & Southwest Line (Chatswood to Sydenham), allowing for a thorough and robust impact assessment.

Figure 1-1 presents a timeline overview of the study blocks, highlighting the specific periods under observation. Sydney Metro City & Southwest (Chatswood to Sydenham) commenced operations on 19 August 2024.



Figure 1-1 Traffic and interchange monitoring program

1

The Sydney Metro City & Southwest Chatswood to Sydenham – Traffic and Interchange Operation Monitoring report (this report) has been prepared to meet the requirements of Condition D12 of the CoA (outlined in Section 2.2).

This report provides traffic and interchange operation assessments of the nine stations along the Sydney Metro City & Southwest Line (Chatswood to Sydenham) during the monitoring timeframe of September 2024 (Block 4). Block 4 represents for first study block following the commencement of operations of the Sydney Metro City & Southwest Line (Chatswood to Sydenham).

# 1.3 Scope of this study

The overall scope of works for the Block 4 study covers the following:

- **Traffic monitoring**: Intersection surveys (including re-surveys) were conducted in August/September 2024, including:
  - classified intersection count surveys conducted continuously for a one-week period, including light vehicles, heavy vehicles, buses, cyclist and pedestrian counts
  - vehicular queue length surveys (at the signal change to green for signalised intersections and aggregated every two minutes for priority intersections) conducted for two hour periods around the identified weekday AM, PM and weekend peak hours.
- **Transport interchange monitoring:** Chatswood Station, Crows Nest Station, Victoria Cross Station, Barangaroo Station, Waterloo Station and Sydenham Station were considered for the Block 4 study. Interchange operation surveys were conducted at these six stations continuously for the same one-week period as the intersection surveys in August/September 2024. Interchange operation surveys collected the following information for taxi, bus stop, accessible parking and kiss and ride facilities at each station:
  - vehicle counts
  - vehicle occupancy (boarding and alighting passengers only)
  - vehicle dwell time
  - vehicle queue length outside the bay on a lane-by-lane basis.
- **Site observations**: Site visits were undertaken in conjunction with the traffic and interchange operation monitoring for at least one weekday AM peak period, one weekday PM peak period, and one weekend peak period at each station.
- Intersection assessment: To assess the intersection operation performance during Block 4, a combination of isolated and network traffic modelling assessments were undertaken using SIDRA Intersection modelling software (SIDRA Intersection). The following data was obtained from Sydney Metro for developing the SIDRA Intersection models:
  - Sydney Coordinated Adaptive Traffic System (SCATS) traffic detector count data
  - SCATS traffic signal data and sub-systems information.
- **Stakeholder consultation:** Key findings of the Block 4 study were provided to Sydney Metro and the following key stakeholders in January 2025 for review and feedback:
  - Transport for NSW (TfNSW)
  - Willoughby City Council
  - North Sydney City Council
  - City of Sydney
  - Inner West Council.

Additionally, Block 4 study findings were presented to TfNSW, North Sydney Council and Inner West Council. Appendix A provides the minutes from these stakeholder meetings.

2

# 1.4 Structure of this report

This report is structured as follows:

- Section 1.0 provides an introduction to the Project
- Section 2.0 provides the context and background of the Project
- Section 3.0 outlines the study area of the Project
- Section 4.0 describes the methodology adopted for the traffic and interchange operation assessments
- Section 5.0 details the traffic monitoring and intersection performance
- Section 6.0 details the interchange monitoring performance
- Section 7.0 provides a summary of the traffic and interchange monitoring.

# 2.0 Context and background

This section provides an overview of the strategic context of the Project within the overall Sydney Metro program and the background of the CSSI CoA for the Sydney Metro City & Southwest Line (Chatswood to Sydenham).

## 2.1 Context

Sydney Metro is Australia's largest public transport project, aiming to alleviate congestion, improve connectivity, and support the growing population and economic needs of Sydney. The main objectives of Sydney Metro are to enhance the overall transport experience, establish a robust and sustainable transport system, increase public transport usage and enhance the resilience of the transport network.

By 2032, Sydney Metro is expected to create a network of four metro lines (Northwest, City & Southwest, West, and Western Sydney Airport), spanning 113 kilometres, and encompassing 46 stations.

## 2.1.1 Sydney Metro Northwest

Sydney Metro Northwest marked the initial phase of the Sydney Metro project, commencing operations in May 2019. Spanning approximately 36 kilometres from Tallawong to Chatswood, this line consists of 13 stations.

## 2.1.2 Sydney Metro City & Southwest

Sydney Metro City & Southwest further extends the constructed Sydney Metro Northwest from Chatswood to Bankstown via the Sydney Central Business District (CBD) with 30 kilometres of metro rail. Sydney Metro City & Southwest between Chatswood and Sydenham commenced operations on 19 August 2024, with seven new metro stations and 11 upgraded stations as shown in Figure 2-1. This will establish connectivity between metro stations in the city and southwest with those further west, including future metro stations on the Sydney Metro West and Sydney Metro Western Sydney Airport.

Sydney Metro City & Southwest project consists of two phases: Chatswood to Sydenham; and Sydenham to Bankstown. This study focuses on the assessments for the Chatswood to Sydenham phase of the Sydney Metro City & Southwest project.



Figure 2-1 Sydney Metro City & Southwest overview

#### 2.1.3 Sydney Metro West

Sydney Metro West is an upcoming 24-kilometre metro line that will establish a vital connection between Greater Parramatta and the Sydney CBD, linking the communities along its route. This line will incorporate nine new metro stations, located at key destinations including Westmead, Parramatta, Sydney Olympic Park, The Bays Precinct, and the Sydney CBD.

Construction for the Sydney Metro West project commenced in 2020 and is currently in progress.

#### 2.1.4 Sydney Metro Western Sydney Airport

Sydney Metro Western Sydney Airport line is an upcoming 23-kilometre line and will link the new Western Sydney International (Nancy-Bird Walton) Airport with the Western Sydney Aerotropolis, and St Marys. The Sydney Metro Western Sydney Airport project includes the construction of six new metro stations and will provide connectivity to the existing Sydney Trains suburban T1 Western Line.

Construction for the Sydney Metro Western Sydney Airport project commenced in 2020 and is currently in progress.

## 2.2 Background

On 10 January 2017, the NSW Minister for Planning granted approval to the CSSI application for the Sydney Metro City & Southwest Chatswood to Sydenham. The infrastructure approval, which is regulated under Section 115ZB of the *Environmental Planning and Assessment Act 1979*, is subject to the Minister's conditions of approval for the CSSI.

The Conditions of Approval are administered by the NSW Department of Planning and Environment (previously the NSW Department of Planning, Industry and Environment) and delivered by the Proponent – Sydney Metro.

Part D of the Conditions of Approval outlines conditions for environmental management during operations of the project. Condition D12 specifies the requirement for traffic operational monitoring of the Project as per the following requirement:

"Traffic on local roads around each station must be monitored 12 months before the CSSI commences operation and for a period of no less than 12 months after commencement of operation. If monitoring indicates unacceptable traffic intrusion on local roads/streets as a result of operation of the CSSI beyond those that could reasonably be predicted in the EIS and/or Interchange Access Plan(s) in Condition E92, appropriate traffic management measures to mitigate the monitored impacts must be implemented following consultation with the Sydney Coordination Office and Relevant Road Authorities."

# 3.0 Study area

This section provides an overview of the study area for both traffic and interchange monitoring, which was identified by Sydney Metro in consultation with key stakeholders (as listed in Section 1.3) during late 2022.

## 3.1 Overview

The Sydney Metro City & Southwest Line (Chatswood to Sydenham) includes a total of nine stations. For ease of referencing, each station has been assigned a three-character identifier based on the TfNSW Asset Reference Codes Register<sup>1</sup>. Table 3-1 displays the list of these stations along with their corresponding identifiers.

#### Table 3-1 Station three-character identifiers

| Station                          | Station ID <sup>1</sup> |
|----------------------------------|-------------------------|
| Chatswood                        | CIMD3                   |
| Chatswood Dive Site <sup>2</sup> |                         |
| Crows Nest                       | CST                     |
| Victoria Cross                   | VIC                     |
| Barangaroo                       | BGU                     |
| Martin Place                     | MPL                     |
| Gadigal (formerly Pitt Street)   | PIT                     |
| Central                          | CEN                     |
| Waterloo                         | WLO                     |
| Sydenham                         | SYD                     |

Notes:

1. <u>TfNSW Asset Codes Register</u> TS 01499:2.00 Version 2 has been used as a reference.

2. Chatswood Dive Site is not a station

3. CWD refers to Chatswood Dive Site in the context of the traffic assessment and Chatswood Station in the context of the interchange operation monitoring assessment.

The Crows Nest Station, Victoria Cross Station, Barangaroo Station, Waterloo Station and Sydenham Station had both intersection and interchange monitoring for Block 4, while the other stations had either traffic monitoring or interchange monitoring.

Table 3-2 outlines the type of assessment undertaken for each station in the Block 4 study.

|--|

| Station             | Traffic<br>monitoring | Interchange<br>monitoring | Remarks                               |  |
|---------------------|-----------------------|---------------------------|---------------------------------------|--|
| Chatswood           | ×                     | $\checkmark$              | No changes to road network            |  |
| Chatswood Dive Site | ~                     | ×                         | No new kerbside usage proposed        |  |
| Crows Nest          | ~                     | ~                         | Interchanges operational from Block 4 |  |
| Victoria Cross      | ~                     | $\checkmark$              | Interchanges operational from Block 4 |  |
| Barangaroo          | ~                     | ~                         | Interchanges operational from Block 4 |  |
| Martin Place        | $\checkmark$          | ×                         | No new kerbside usage proposed        |  |

| Station  | Traffic<br>monitoring | Interchange<br>monitoring | Remarks                               |  |
|----------|-----------------------|---------------------------|---------------------------------------|--|
| Gadigal  | ~                     | ×                         | No new kerbside usage proposed        |  |
| Central  | ~                     | ×                         | No new kerbside usage proposed        |  |
| Waterloo | ~                     | <                         | Interchanges operational from Block 4 |  |
| Sydenham | ~                     | ~                         | Nil                                   |  |

# 3.2 Traffic monitoring

The study area for traffic monitoring comprises a total of 65 intersections spread across the nine stations. To facilitate ease of reference, each intersection is assigned two unique identifiers:

- Intersection ID: A five-character code formed by combining the three-character identifier of the corresponding station (as listed in Table 3-1) with the index of the intersection within the study area surrounding that station. For example, CEN03 represents the third intersection in the Central Station study area.
- S.ID: A two-character identifier used to index all intersections within the Project study area.

Table 3-3 outlines each intersection's S.ID, Intersection ID, traffic control signal (TCS) ID designated by TfNSW, name, and control type. Of the 65 intersections within the study area, 63 intersections were assessed using SIDRA Intersection modelling during Block 4. The following intersections were excluded from the Block 4 analysis:

- CWD02 Pedestrian Bridge Crossing along Mowbray Road: This location was solely included in traffic surveys for data collection and was not modelled
- CEN04 New Pedestrian Mid-block Crossing at Randle Lane: This location was not operational during Block 4 and was therefore excluded from the analysis.

Figure 3-1 to Figure 3-9 depict the location of each intersection within each station's study area based on their Intersection ID.

| S.ID | Intersection<br>ID | TCS ID | Intersection name                                | Intersection control type            |
|------|--------------------|--------|--------------------------------------------------|--------------------------------------|
| 01   | CWD01              | 3037   | Mowbray Road/Hampden Road                        | Signal                               |
| 02   | CWD02              | -      | Pedestrian Bridge Crossing along<br>Mowbray Road | Pedestrian only -<br>Bridge Crossing |
| 03   | CST01              | 768    | Pacific Highway/Albany Street                    | Signal                               |
| 04   | CST02              | 767    | Pacific Highway/Oxley Street                     | Signal                               |
| 05   | CST03              | 766    | Pacific Highway/Hume Street                      | Signal                               |
| 06   | CST04              | 765    | Pacific Highway/Falcon Street/<br>Shirley Road   | Signal                               |
| 07   | CST05              | -      | Clarke Street/Oxley Street                       | Priority - Give Way                  |
| 08   | CST06              | -      | Clarke Street/Hume Street                        | Priority - Give Way                  |
| 09   | CST07              | -      | Clarke Street/Willoughby Road                    | Priority - Give Way                  |
| 10   | CST08              | 516    | Albany Street/Willoughby Road                    | Signal                               |
| 11   | CST09              | -      | Albany Street/Oxley Street                       | Roundabout                           |
| 12   | CST10              | -      | Albany Street/Clarke Lane                        | Priority - Give Way                  |

#### Table 3-3 Traffic assessment intersections

| S.ID | Intersection<br>ID | TCS ID | Intersection name                                                                | Intersection control type |
|------|--------------------|--------|----------------------------------------------------------------------------------|---------------------------|
| 13   | CST11              | -      | Oxley Street/Clarke Lane                                                         | Priority - Stop           |
| 14   | CST12              | -      | Hume Street/Clarke Lane                                                          | Priority - Stop           |
| 15   | CST13              | 763    | Pacific Highway/Alexander Street                                                 | Signal                    |
| 16   | CST14              | 764    | Falcon Street/Alexander Street                                                   | Signal                    |
| 17   | VIC01              | 1206   | Pacific Highway/Berry Street                                                     | Signal                    |
| 18   | VIC02              | 874    | Miller Street/Berry Street                                                       | Signal                    |
| 19   | VIC03              | 1156   | Miller Street/McLaren Street                                                     | Signal                    |
| 20   | VIC04              | 630    | Pacific Highway/Miller Street                                                    | Signal                    |
| 21   | BGU01              | -      | Hickson Road/Towns Place                                                         | Priority - Give Way       |
| 22   | BGU02              | -      | Dalgety Road/Towns Place                                                         | Roundabout                |
| 23   | BGU03              | -      | Kent Street/Argyle Street                                                        | Priority - Give Way       |
| 24   | BGU04              | 4272   | Pedestrian Mid-block Crossing at<br>Kent Street near Gas Lane                    | Pedestrian only - Signal  |
| 25   | BGU05              | 4272   | Kent Street/Sydney Harbour Bridge<br>(SHB) On-ramp                               | Signal                    |
| 26   | BGU06              | 4625   | Hickson Road/Napoleon Street/<br>Sussex Street                                   | Signal                    |
| 27   | BGU07              | 308    | Margaret Street/Kent Street/<br>Napoleon Street                                  | Signal                    |
| 28   | BGU08              | 319    | Margaret Street/Clarence Street                                                  | Signal                    |
| 29   | BGU09              | 3042   | Margaret Street/York Street                                                      | Signal                    |
| 30   | BGU10              | 3939   | Pedestrian Mid-block Crossing at<br>Sussex Street under Exchange<br>Place        | Pedestrian only - Signal  |
| 31   | BGU11              | 4109   | Pedestrian Mid-block Crossing at<br>Kent Street near Margaret Street             | Pedestrian only - Signal  |
| 32   | BGU12              | 310    | Sussex Street/Erskine Street                                                     | Signal                    |
| 33   | BGU13              | 307    | Kent Street/Erskine Street                                                       | Signal                    |
| 34   | BGU14              | 284    | Sussex Street/King Street                                                        | Signal                    |
| 35   | BGU15              | 283    | Kent Street/King Street                                                          | Signal                    |
| 36   | BGU16              | -      | New Pedestrian Mid-block Crossing<br>at Hickson Road (north of Metro<br>Station) | Pedestrian only - Zebra   |
| 37   | BGU17              | -      | New Pedestrian Mid-block Crossing<br>at Hickson Road (south of Metro<br>Station) | Pedestrian only - Zebra   |
| 38   | BGU18              | 305    | Shelley Street/Erskine Street                                                    | Signal                    |
| 39   | MPL01              | 244    | Hunter Street/Castlereagh Street/<br>Bligh Street                                | Signal                    |
| 40   | MPL02              | 302    | Hunter Street/Elizabeth Street/<br>Chifley Square                                | Signal                    |
| 41   | MPL03              | 1412   | Bent Street/Bligh Street                                                         | Signal                    |

Signal

Bent Street/Phillip Street

MPL04

42

242

9

| S.ID | Intersection<br>ID | TCS ID | Intersection name                                      | Intersection control type |  |
|------|--------------------|--------|--------------------------------------------------------|---------------------------|--|
| 43   | MPL05              | 245    | Pedestrian Mid-block Crossing at<br>Castlereagh Street | Pedestrian only - Signal  |  |
| 44   | MPL06              | 287    | Pedestrian Mid-block Crossing at<br>Elizabeth Street   | Pedestrian only - Signal  |  |
| 45   | PIT01              | 2312   | Pitt Street/Bathurst Street                            | Signal                    |  |
| 46   | PIT02              | 2281   | Castlereagh Street/Bathurst Street                     | Signal                    |  |
| 47   | PIT03              | 250    | Park Street/Castlereagh Street                         | Signal                    |  |
| 48   | PIT04              | 235    | Park Street/Pitt Street                                | Signal                    |  |
| 49   | CEN01              | 293    | Elizabeth Street/Eddy Avenue                           | Signal                    |  |
| 50   | CEN02              | 293    | Elizabeth Street/Foveaux Street                        | Signal                    |  |
| 51   | CEN03              | -      | Elizabeth Street/Cooper Street                         | Priority - Give Way       |  |
| 52   | CEN04              | -      | New Pedestrian Mid-block Crossing at Randle Lane       | Pedestrian only - Zebra   |  |
| 53   | CEN05              | 2916   | Elizabeth Street/Randle Street                         | Signal                    |  |
| 54   | WLO01              | 47     | Botany Road/Raglan Street/<br>Henderson Road           | Signal                    |  |
| 55   | WLO02              | 5057   | Raglan Street/Cope Street                              | Signal                    |  |
| 56   | WLO03              | 137    | Botany Road/Wellington Street/<br>Buckland Street      | Signal                    |  |
| 57   | WLO04              | -      | Cope Street/Wellington Street                          | Priority - Stop           |  |
| 58   | WLO05              | 55     | Wyndham Street/Henderson Road                          | Signal                    |  |
| 59   | WLO06              | -      | New Pedestrian Mid-block Crossing<br>at Cope Street    | Pedestrian only - Zebra   |  |
| 60   | SYD01              | 3320   | Railway Parade/Gleeson Avenue                          | Signal                    |  |
| 61   | SYD02              | 1152   | Burrows Avenue/Gleeson Avenue                          | Signal                    |  |
| 62   | SYD03              | -      | Burrows Avenue/George Street                           | Priority - Give Way       |  |
| 63   | SYD04              | 4946   | Railway Parade/Sydenham Road                           | Signal                    |  |
| 64   | SYD05              | -      | Marrickville Road/Buckley Street                       | Priority - Give Way       |  |
| 65   | SYD06              | -      | Sydenham Road/Buckley Street                           | Priority - Give Way       |  |



Figure 3-1 Chatswood Dive Site traffic study area



Figure 3-2 Crows Nest Station traffic study area



Figure 3-3 Victoria Cross Station traffic study area



Figure 3-4 Barangaroo Station traffic study area



Figure 3-5 Martin Place Station traffic study area



Figure 3-6 Gadigal Station traffic study area



Figure 3-7 Central Station traffic study area



Figure 3-8 Waterloo Station traffic study area



Figure 3-9 Sydenham Station traffic study area

The transport interchange monitoring study area includes taxi, bus stop, accessible parking and kiss and ride facilities located near the stations along the City & Southwest Line (Chatswood to Sydenham). In Block 4, surveys were conducted for interchange facilities that were operational, namely Chatswood Station, Crows Nest Station, Victoria Cross Station, Barangaroo Station, Waterloo Station and Sydenham Station.

Similar to the intersections in the traffic study area, a five-character identifier was assigned to each taxi, bus stop, kiss and ride and accessible parking facility for ease of referencing, with the first three-characters matching the station identifiers in Table 3-1. The fourth character identifies the type of interchange facility and the fifth character indexes it.

Table 3-4 outlines the interchange facilities assessed in the Block 4 study, including the associated type, identifier, station, street and side of road location, and number of bays.

| Туре               | ID    | Station        | Street           | Side of<br>road | Number<br>of bays |
|--------------------|-------|----------------|------------------|-----------------|-------------------|
| Kiss and ride      | CWDK1 | Chatswood      | Railway Street   | West            | 1                 |
| Kiss and ride      | CWDK2 | Chatswood      | Albert Avenue    | North           | 2                 |
| Kiss and ride      | CWDK3 | Chatswood      | Endeavour Street | North           | 2                 |
| Taxi               | CWDT1 | Chatswood      | Victoria Avenue  | North           | 11                |
| Taxi               | CWDT2 | Chatswood      | Endeavour Street | North           | 2                 |
| Kiss and ride      | CSTK1 | Crows Nest     | Oxley Street     | East            | 3                 |
| Kiss and ride      | CSTK2 | Crows Nest     | Oxley Street     | West            | 3                 |
| Kiss and ride      | CSTK3 | Crows Nest     | Clarke Street    | South           | 1                 |
| Taxi               | CSTT1 | Crows Nest     | Clarke Street    | South           | 2                 |
| Bus                | VICB1 | Victoria Cross | Miller Street    | East            | 2                 |
| Bus                | VICB2 | Victoria Cross | Miller Street    | West            | 2                 |
| Kiss and ride      | VICK1 | Victoria Cross | McLaren Street   | North           | 5                 |
| Taxi               | VICT1 | Victoria Cross | McLaren Street   | North           | 2                 |
| Accessible parking | VICA1 | Victoria Cross | McLaren Street   | North           | 1                 |
| Bus                | BGUB1 | Barangaroo     | Hickson Road     | East            | 1                 |
| Bus                | BGUB2 | Barangaroo     | Hickson Road     | West            | 1                 |
| Kiss and ride      | BGUK1 | Barangaroo     | Hickson Road     | West            | 1                 |
| Тахі               | BGUT1 | Barangaroo     | Hickson Road     | West            | 1                 |
| Bus                | WLOB1 | Waterloo       | Raglan Street    | South           | 2                 |
| Kiss and ride      | WLOK1 | Waterloo       | Cope Street      | West            | 4                 |
| Тахі               | WLOT1 | Waterloo       | Cope Street      | West            | 2                 |
| Accessible parking | WLOA1 | Waterloo       | Cope Street      | West            | 1                 |
| Bus <sup>1</sup>   | SYDB1 | Sydenham       | Railway Parade   | South           | 3                 |
| Kiss and ride      | SYDK1 | Sydenham       | Burrows Avenue   | North           | 4                 |
| Kiss and ride      | SYDK2 | Sydenham       | Sydenham Road    | East            | 2                 |
| Taxi               | SYDT1 | Sydenham       | Burrows Avenue   | North           | 2                 |

Table 3-4 Block 4 – interchange facilities

| Туре               | ID    | Station  | Street        | Side of<br>road | Number<br>of bays |
|--------------------|-------|----------|---------------|-----------------|-------------------|
| Accessible parking | SYDA1 | Sydenham | Bolton Street | North           | 2                 |
| Notes:             |       |          |               |                 |                   |

1. SYDB1 encompasses transit stop number (TSN) 220421, TSN 2204125 and TSN 220450.

Figure 3-10 to Figure 3-15 depict the location of each taxi, bus stop, accessible parking and kiss and ride facility assessed surrounding the six interchanges.



Figure 3-10 Chatswood Station interchange study area



Figure 3-11 Crows Nest Station interchange study area



Figure 3-12 Victoria Cross Station interchange study area



Figure 3-13 Barangaroo Station interchange study area



Figure 3-14 Waterloo Station interchange study area



Figure 3-15 Sydenham Station interchange assessment study area

# 4.0 Assessment methodology

This section details the traffic and transport interchange monitoring assessment methodology undertaken for the intersections within study area and the park and ride facilities surrounding the stations identified in Section 3.2 and Section 3.3, respectively.

# 4.1 Traffic monitoring

Figure 4-1 provides an overview of the adopted methodology for the traffic monitoring, with further clarifications and details provided in the subsequent sections.



## Figure 4-1 Traffic assessment methodology overview

## 4.1.1 Traffic surveys

Classified intersection counts were undertaken for 64 of the 65 study area intersections (as outlined in **Section 3.2**). The traffic surveys were carried out over a one-week period, and the data was aggregated in 15-minute intervals. In cases where data was corrupted or unavailable due to vandalism, re-surveys were conducted. The survey dates were as follows:

- Traffic surveys: Saturday 31 August 2024 to Friday 6 September 2024
- Re-surveys: Monday 16 September 2024 to Sunday 22 September 2024.

During the traffic surveys, data was gathered for various vehicle types including light vehicles, heavy vehicles, and buses, as well as for cyclists and pedestrians. In addition, queue lengths were also documented during the traffic surveys to aid in validating the SIDRA Intersection models.

AECOM conducted site observations in conjunction with the traffic surveys, ensuring at least one observation was carried out for each intersection during each peak period specified in Section 4.1.2 (excluding the Monday and Friday). The site observations were conducted to observe various aspects, including vehicle behaviours, any changes in lane geometry or capacity, and the condition of the traffic survey cameras to ensure that they were properly set up and not vandalised.

SCATS traffic detector count data was provided by Sydney Metro, for the same dates the traffic surveys were undertaken. The traffic survey data was reviewed against the SCATS traffic detector count data to identify any potential outliers. Intersections with traffic survey volumes greater than or less than 10 per cent of the SCATS volumes underwent additional investigation and/or recounting of the traffic surveys. Once the traffic survey data were reviewed and finalised, additional data analysis was conducted as detailed in the subsequent sections.

## 4.1.2 Peak hour identification

Each intersection was modelled as either an isolated site or as part of a network, as described in Appendix B. In the case of intersections modelled as an isolated site, the peak hour was determined by

considering the total hourly volume (light vehicles, heavy vehicles and buses) at the intersection. For intersections modelled as part of a network, the peak hour was determined by considering the total hourly volume across the network at approaches connecting to the external network.

In consultation with Sydney Metro, the time periods used to determine the intersection or network peak hour were updated for Block 3 onwards to consider the 24-hour traffic monitoring period during the survey period listed in Section 4.1.1. The revised time periods are listed below:

- weekday AM peak: 3am to 12pm
- weekday PM peak: 12pm to 3am
- weekend peak: 3am Saturday to 3am Monday.

It is important to note that the identified peak hours vary between different locations. However, the peak hours fall within the time periods listed above.

#### 4.1.3 Network flow diagrams

A review was undertaken to identify any variations in peak hour traffic volumes between mid-blocks connecting adjacent intersections within the same network. These variations were primarily due to minor counting discrepancies or due to side streets, property and parking access. Survey volumes were used for the intersection modelling. Additionally, considering the fixed schedule of bus routes, adjustments were made to bus volumes whenever large discrepancies were observed.

The resulting peak hour volumes were utilised as the turning volume inputs for the SIDRA Intersection models. The network flow diagrams used to inform the traffic and pedestrian volume inputs for SIDRA Intersection modelling are included in Appendix C.

#### 4.1.4 SCATS signal and sub-systems data

In addition to the SCATS detector count data, SCATS traffic signal data was also provided for each intersection during their respective peak hours, which aligned with the traffic survey dates.

The SCATS traffic signal data included historical information on the signal phase sequence and signal phase time frequency, as well as sub-system information for signalised intersections modelled as a part of a network. Furthermore, the signal phase sequence was reviewed against traffic survey footage to determine if any signal phases were not executed or ran in a different order. Moreover, the traffic survey footage was also examined to ascertain whether the early cut-off or late-start movements observed during site visits also occurred during the peak hours modelled.

## 4.1.5 SIDRA Intersection modelling

The performance of the intersections was assessed using either the site or network function (refer to Appendix B) of the SIDRA Intersection software, adopting the peak hour volumes and SCATS traffic signal data. Detailed SIDRA Intersection modelling was conducted for the intersections within the study area. The geometry of the intersections was established using desktop aerial imagery from sources such as Nearmap and Google Streetview, which was then validated through on-site observations. The models were specifically developed for the identified peak hours within the peak periods (Section 4.1.2), incorporating the peak volume inputs derived from the network flow diagrams (Section 4.1.3), as well as the SCATS signal data and sub-systems information (Section 4.1.4).

The modelled queues were validated against the queue length surveys and traffic survey footage.

## 4.1.6 Intersection performance assessment

The standard measure of intersection performance is vehicle delay, which is used to assess the efficiency of an intersection. SIDRA Intersection adopts the TfNSW Traffic Modelling Guidelines which categorises average intersection delay into six bands of average delay per vehicle (seconds per vehicle). These bands are determined based on the criteria outlined in Table 4-1. By analysing the average delay, SIDRA Intersection determines the level of service (LOS) for the intersection, a measure of the intersection performance.

| LOS | Average delay<br>(seconds per<br>vehicle) | Criteria for traffic signals                                      | Criteria for give way and stop signs                           |
|-----|-------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|
| А   | < 14                                      | Good operation                                                    | Good operation                                                 |
| В   | 15 to 28                                  | Good operation with<br>acceptable delays and<br>spare capacity    | Good operation with<br>acceptable delays and<br>spare capacity |
| С   | 29 to 42                                  | Satisfactory                                                      | Satisfactory, but accident study required                      |
| D   | 42 to 56                                  | Near capacity                                                     | Near capacity and accident study required                      |
| E   | 57 to 70                                  | At capacity; at signals,<br>incidents will cause excess<br>delays | At capacity, requires other control mode                       |
| F   | > 70                                      | Extra capacity required                                           | At capacity, requires other control mode                       |

#### Table 4-1 Intersection LOS criteria

Source: TfNSW Traffic Modelling Guidelines, LOS definitions for vehicles (NSW method) based on delay only

It is noted that the critical movement for LOS at a roundabout or priority-controlled intersection is the movement with the worst delay, whereas for a signalised intersection, the average delay over all movements is adopted.

## 4.2 Transport interchange monitoring

Figure 4-2 provides an overview of the adopted methodology for the interchange monitoring, with further clarifications and details are provided in the subsequent sections.



Figure 4-2 Interchange assessment methodology overview

#### 4.2.1 Interchange surveys

Interchange surveys were undertaken at taxi, bus stop, kiss and ride and/or accessible parking facilities located at Chatswood Station, Crows Nest Station, Victoria Cross Station, Barangaroo Station, Waterloo Station and Sydenham Station (as outlined in Section 3.3).

The interchange surveys were carried out over a one-week period, similar to the intersection surveys. In cases where data was corrupted or unavailable due to vandalism, resurveys were conducted. The survey dates were as follows:

- Interchange Surveys: Saturday 31 August 2024 to Friday 6 September 2024
- Re-surveys: Monday 16 September 2024 to Sunday 22 September 2024.

The key data captured as part of the interchange surveys includes:

- vehicle counts
- vehicle occupancy (boarding and alighting passengers only)
- vehicle dwell time
- vehicle queue length outside the bay.

In consultation with Sydney Metro, the time periods used to determine the interchange peak demand have been updated for Block 3 onwards to consider the 24-hour traffic monitoring period during the survey period listed in Section 4.1.1. The revised time periods are listed below:

- weekday AM peak: 3am to 12pm
- weekday PM peak: 12pm to 3am
- weekend peak: 3am Saturday to 3am Monday.

Site observations were completed in conjunction with the interchange surveys, ensuring at least one observation was carried out for each interchange facility during the above time periods. These observations aimed to monitor several aspects, such as kerbside lane usage, queuing outside the bays and the condition of the interchange survey cameras, ensuring they were correctly set up and not subject to vandalism.

#### 4.2.2 Aggregation and analysis

The interchange survey data was consolidated and analysed, categorising the data based on facility type (taxi, bus stop, kiss and ride or accessible parking) to understand usage patterns at the interchange facilities near the stations. A high-level exploratory analysis of the combined data was conducted to identify the daily vehicle trends for the key data types outlined in Section 4.2.1.

To ensure the accuracy and reliability of the findings, the identified trends were compared with the survey footage. In cases where discrepancies were detected, the survey data was recounted and/or rechecked to provide reliable results. The findings from this analysis are reported in Section 6.0.

# 5.0 Traffic monitoring and intersection performance

This section summarises the traffic monitoring and intersection performance outputs from traffic survey data and SIDRA Intersection modelling undertaken across the Block 4 study area.

The SIDRA Intersection movement summary outputs for all modelled intersections during each peak hour are shown in Appendix D.

## 5.1 Chatswood Dive Site

The Chatswood Dive Site was used as a temporary underground site facilitating excavation and construction works for the City & Southwest Line tunnel portal from Chatswood Station. Although not accessible to the general public, the Chatswood Dive Site facilitates the movement of workers and equipment to access the underground areas where crucial tunnelling and other metro construction operations take place. Following the opening of Sydney Metro City & Southwest Line (Chatswood to Sydenham), the Chatswood Dive Site will be used as a service facility for the operation of the Sydney Metro rail line between Chatswood and the Sydney CBD (and beyond).

The Chatswood Dive Site is located south of Chatswood Station and north of Artarmon Station, bound by the Pacific Highway (A1), Mowbray Road and Nelson Street in Chatswood. Bus services are available within approximately 200 metres west of the Chatswood Dive Site on the Pacific Highway (A1) and Mowbray Road. Artarmon Station, approximately 600 metres south of the Chatswood Dive Site, offers the nearest rail service. The bridge crossing along Mowbray Road over the rail line connects residents to the east with the Pacific Highway (A1), facilitating walking and cycling in addition to general traffic.

The Chatswood Dive Site study area consists of two study sites; however, the pedestrian bridge crossing along Mowbray Road (CWD02) was not modelled given it does not function as an intersection or mid-block crossing. Table 5-1 presents the peak hours utilised for modelling the intersections.

Table 5-2 provides a summary of the intersection LOS, while Figure 5-1 visualises a geospatial summary of the intersection LOS within the Chatswood Dive Site study area.

| Network | Intersection<br>ID | Weekday AM peak<br>hour     |               | Weekday PM peak<br>hour |               | Weekend peak hour |               |
|---------|--------------------|-----------------------------|---------------|-------------------------|---------------|-------------------|---------------|
| ID      |                    | Day                         | Start<br>time | Day                     | Start<br>time | Day               | Start<br>time |
| -       | CWD01              | Tuesday                     | 8:00am        | Friday                  | 4:45pm        | Saturday          | 11:30am       |
| -       | CWD02              | No modelling was undertaken |               |                         |               |                   |               |

#### Table 5-1 Block 4 – Chatswood Dive Site peak hours modelled

#### Table 5-2 Block 4 – Chatswood Dive Site intersection performance summary

| Intersection |                                                              | LOS                          |                    |                 |  |
|--------------|--------------------------------------------------------------|------------------------------|--------------------|-----------------|--|
| ID           | Intersection                                                 | Weekday<br>AM Peak           | Weekday<br>PM Peak | Weekend<br>Peak |  |
| CWD01        | Mowbray Road/Hampden Road<br>(Signal)                        | LOS B                        | LOS B              | LOS B           |  |
| CWD02        | Pedestrian Bridge Crossing along<br>Mowbray Road<br>(Bridge) | No modelling was undertaken. |                    |                 |  |

Overall, the intersection performance in the Chatswood Dive Site study area during the peak hours is satisfactory, operating at LOS B.


Figure 5-1 Block 4 – Chatswood Dive Site intersection performance summary

# 5.1.1 CWD01 – Mowbray Road/Hampden Road

The signalised intersection, composed of Mowbray Road, Hampden Road and the Chatswood Dive Site egress, is located directly south of the Chatswood Dive Site. This intersection serves as a connection point for the local road of Hampden Road, linking Chatswood and Artarmon, and the regional road of Mowbray Road, linking Willoughby to Lane Cove. Furthermore, the Chatswood Dive Site exits on to Mowbray Road at this intersection. The pedestrian bridge crossing along Mowbray Road (CWD02) connects with the eastern approach of this intersection.

Figure 5-2 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-2 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of CWD01

Table 5-3 presents a performance summary of this intersection.

| Table 5-3 Block 4 – Intersection performance summary of CWD0 | 1 |
|--------------------------------------------------------------|---|
|--------------------------------------------------------------|---|

| Intersection    | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|-----------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                 |               | South    | 0.516                | 58.6                          | 99.3                                                | LOS E |
|                 |               | East     | 0.459                | 17.8                          | 147.5                                               | LOS B |
|                 | Weekday<br>AM | North    | 0.009                | 39.0                          | 0.5                                                 | LOS C |
| Mowbray         |               | West     | 0.478                | 9.4                           | 133.1                                               | LOS A |
| Road/           |               | Total    | 0.516                | 16.9                          | 147.5                                               | LOS B |
| Hampden<br>Road | Weekday       | South    | 0.419                | 54.0                          | 85.5                                                | LOS D |
| Road            |               | East     | 0.506                | 20.3                          | 170.1                                               | LOS B |
| (Signal)        |               | North    | 0.009                | 38.9                          | 0.5                                                 | LOS C |
|                 | 1 101         | West     | 0.447                | 10.0                          | 116.8                                               | LOS A |
|                 |               | Total    | 0.506                | 18.3                          | 170.1                                               | LOS B |
|                 | Weekend       | South    | 0.532                | 50.2                          | 120.3                                               | LOS D |

| Intersection | Peak | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |      | East     | 0.548                | 22.7                          | 182.7                                               | LOS B |
|              |      | North    | 0.010                | 38.4                          | 0.5                                                 | LOS C |
|              |      | West     | 0.501                | 10.6                          | 129.6                                               | LOS A |
|              |      | Total    | 0.548                | 19.3                          | 182.7                                               | LOS B |

Overall, the intersection of Mowbray Road and Hampden Road performs satisfactorily at LOS B during all peak hours. The 95<sup>th</sup> percentile queue on Mowbray Road extends from the east approach to the intersection of Elizabeth Street/Orchard Road and from the west approach to the intersection of the Pacific Highway/Mowbray Road during all peak hours.

# 5.1.2 CWD02 – Pedestrian Bridge Crossing along Mowbray Road

The pedestrian bridge, located east of the intersection of Mowbray Road and Hampden Road and south of the Chatswood Dive Site, provides passage along Mowbray Road for pedestrians, cyclists, and general traffic over the T1 North Shore & Western and T9 Northern rail lines. Mowbray Road is an east-west thoroughfare that connects Willoughby in the east to Lane Cove in the west, intersecting with key roads including the Pacific Highway (A1).

The pedestrian bridge was not modelled in SIDRA Intersection as it does not function as an intersection or mid-block crossing. Rather it forms an extension of the eastern approach of the intersection of Mowbray Road and Hampden Road (CWD01, refer to Section 5.1.1).

# 5.1.3 Comparison with previous study blocks

Figure 5-3 provides a comparison of the total peak hourly traffic volumes recorded at CWD01 for Block 4 against previous study blocks. As shown, Block 4 traffic volumes are relatively lower during the AM and PM peak hours, and generally similar in the weekend peak hours compared to pre-opening conditions.



Figure 5-3 Study block comparison – Chatswood Dive Site peak hourly traffic volumes at CWD01



Figure 5-4 Study block comparison – Chatswood Dive Site intersection performance summary

36

0S

BLOCK

BLOCK

C

# 5.2 Crows Nest Station

Crows Nest Station is a new underground station and the second stop along the City & Southwest Line (towards Sydenham). It is located in the south-east area of the St Leonards strategic centre, bounded by the Pacific Highway (A1), Oxley Street and Clarke Street in Crows Nest.

Crows Nest Station has accesses from both the Pacific Highway and Clarke Street. The two entrances are listed below:

- Clarke Street Entry; along Clarke Street, west of Hume Street
- Pacific Highway Entry; along Pacific Highway, south of Oxley Street.

Bus services are available within approximately 150 metres of Crows Nest Station. Bus stops located on the Pacific Highway (A1) facilitate connections to the external Sydney network, while bus stops on Willoughby Road connect to the internal Crows Nest centre. St Leonards Station, approximately 500 metres north-west from Crows Nest Station, offers the nearest rail service. Within a 50-metre distance of Crows Nest Station, a cycleway runs along Oxley Street, Hume Street and Clarke Street and pedestrian footpaths are available throughout Crows Nest.

The Crows Nest Station study area consists of 14 intersections, although the intersection of Hume Street and Clarke Lane was still under construction for a part of Block 4. Table 5-4 presents the peak hours utilised for modelling the intersections. Table 5-5 provides a summary of the intersection LOS, while Figure 5-5 visualises a geospatial summary of the intersection LOS within the Crows Nest Station study area.

| Table 5-4 Block 4 – Crows | Nest Station | peak hours | modelled |
|---------------------------|--------------|------------|----------|
|---------------------------|--------------|------------|----------|

| Network | Intersection | Weekday /<br>hou | Weekday AM peak Weekday PM<br>hour hour |            | PM peak<br>ır | M peak<br>r Weekend |               |
|---------|--------------|------------------|-----------------------------------------|------------|---------------|---------------------|---------------|
| ID      | ID           | Day              | Start<br>time                           | Day        | Start<br>time | Day                 | Start<br>time |
|         | CST01        |                  |                                         |            |               |                     |               |
|         | CST02        |                  |                                         |            |               |                     |               |
|         | CST03        |                  |                                         |            |               |                     | 12:00pm       |
|         | CST04        |                  |                                         | n Thursday | 5:00pm        | Saturday            |               |
|         | CST05        |                  | 8:00am                                  |            |               |                     |               |
|         | CST06        | Tuesday          |                                         |            |               |                     |               |
| C31-N1  | CST09        | Tuesday          |                                         |            |               |                     |               |
|         | CST10        |                  |                                         |            |               |                     |               |
|         | CST11        |                  |                                         |            |               |                     |               |
|         | CST12        |                  |                                         |            |               |                     |               |
|         | CST13        |                  |                                         |            |               |                     |               |
|         | CST14        |                  |                                         |            |               |                     |               |
| -       | CST07        | Tuesday          | 8:15am                                  | Wednesday  | 6:00pm        | Saturday            | 6:30pm        |
| -       | CST08        | Friday           | 8:00am                                  | Wednesday  | 5:00pm        | Saturday            | 11:30am       |

| Intersection |                                                        | LOS                   |                    |                    |  |
|--------------|--------------------------------------------------------|-----------------------|--------------------|--------------------|--|
| ID           | Intersection                                           | Weekday<br>AM Peak    | Weekday<br>PM Peak | Weekend<br>Peak    |  |
| CST01        | Pacific Highway/Albany Street<br>(Signal)              | LOS B                 | LOS B              | LOS B              |  |
| CST02        | Pacific Highway/Oxley Street<br>(Signal)               | LOS A                 | LOS B              | LOS B              |  |
| CST03        | Pacific Highway/Hume Street<br>(Signal)                | LOS A                 | LOS A              | LOS A              |  |
| CST04        | Pacific Highway/Falcon Street/Shirley<br>Road (Signal) | LOS C                 | LOS C              | LOS C              |  |
| CST05        | Clarke Street/Oxley Street<br>(Priority – Give Way)    | LOS A                 | LOS A              | LOS A              |  |
| CST06        | Clarke Street/Hume Street<br>(Priority – Give Way)     | LOS A                 | LOS B              | LOS A              |  |
| CST07        | Clarke Street/Willoughby Road<br>(Priority – Give Way) | LOS A                 | LOS A              | LOS A              |  |
| CST08        | Albany Street/Willoughby Road<br>(Signal)              | LOS B                 | LOS B              | LOS B              |  |
| CST09        | Albany Street/Oxley Street<br>(Roundabout)             | LOS A                 | LOS B              | LOS A              |  |
| CST10        | Albany Street/Clarke Lane<br>(Priority – Give Way)     | LOS A                 | LOS A              | LOS A              |  |
| CST11        | Oxley Street/Clarke Lane<br>(Priority – Stop)          | LOS A                 | LOS A              | LOS A              |  |
| CST12        | Hume Street/Clarke Lane<br>(Priority – Stop)           | Under<br>construction | LOS A              | Under construction |  |
| CST13        | Pacific Highway/Alexander Street<br>(Signal)           | LOS B                 | LOS A              | LOS A              |  |
| CST14        | Falcon Street/Alexander Street                         | LOS B                 | LOS B              | LOS B              |  |

### Table 5-5 Block 4 – Crows Nest Station intersection performance summary

Overall, the intersection performance in the Crows Nest Station study area during the peak hours is satisfactory, operating at LOS C or better.



Figure 5-5 Block 4 – Crows Nest Station intersection performance summary

#### 5.2.1 CST01 – Pacific Highway/Albany Street

The signalised intersection, composed of the Pacific Highway and Albany Street, is located north-west of Crows Nest Station. It connects the State road of the Pacific Highway (A1), linking Wahroonga and North Sydney, with the local road of Albany Street, linking Crows Nest and St Leonards.

Figure 5-6 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-6 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of CST01

| able 5-6 Block 4 – Intersection performance summary of CST01 |               |            |                      |                               |                                                     |       |  |
|--------------------------------------------------------------|---------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|--|
| Intersection                                                 | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |  |
|                                                              |               | South-east | 0.892                | 10.6                          | 81.2                                                | LOS A |  |
|                                                              | Weekday       | East       | 0.678                | 56.6                          | 49.0                                                | LOS E |  |
|                                                              | AM            | North-west | 0.557                | 15.8                          | 128.7                                               | LOS B |  |
|                                                              |               | Total      | 0.892                | 19.4                          | 128.7                                               | LOS B |  |
| Pacific                                                      | Weekday<br>PM | South-east | 0.864                | 19.1                          | 140.3                                               | LOS B |  |
| Highway/<br>Albanv                                           |               | East       | 0.738                | 56.4                          | 49.0                                                | LOS D |  |
| Street                                                       |               | North-west | 0.419                | 10.7                          | 72.2                                                | LOS A |  |
| (Signal)                                                     |               | Total      | 0.864                | 21.6                          | 140.3                                               | LOS B |  |
| (                                                            |               | South-east | 0.856                | 12.1                          | 71.9                                                | LOS A |  |
|                                                              | Weekend       | East       | 0.726                | 56.8                          | 49.0                                                | LOS E |  |
|                                                              |               | North-west | 0.394                | 9.7                           | 67.3                                                | LOS A |  |
|                                                              |               | Total      | 0.856                | 19.1                          | 71.9                                                | LOS B |  |
|                                                              |               |            |                      |                               |                                                     |       |  |

Table 5-6 presents a performance summary of this intersection.

| Table 5-6 Block / - Intersection | norformanco | cummary | 1 of CSTO |
|----------------------------------|-------------|---------|-----------|
| Table 5-0 block 4 - Intersection | periormance | Summary | 01 0010   |

Overall, the intersection of the Pacific Highway (A1) and Albany Street performs satisfactorily at LOS B during all peak hours. The 95<sup>th</sup> percentile queue on Albany Street (east approach) extends back to Clarke Lane during all peak hours, and extends back on the Pacific Highway (south-east approach) to Oxley Street during the PM peak hour.

It was also noted that Block 4 pedestrian volumes at Pacific Highway (A1) and Albany Street significantly increased during the weekday AM and PM peak hour compared to pre-opening conditions. Given that CST01 is located along the frontage of Crows Nest station, the rise in pedestrian activity is likely associated to commuters accessing Sydney Metro during Block 4.

# 5.2.2 CST02 – Pacific Highway/Oxley Street

The signalised intersection, composed of the Pacific Highway and Oxley Street, is located directly north-west of Crows Nest Station. It connects the local road of Oxley Street, linking St Leonards and Naremburn through Crows Nest, with the State road of the Pacific Highway (A1), linking Wahroonga and North Sydney.

During Block 4, the kerbside approach lane on Pacific Highway (A1) (south-east approach) was closed during the weekday AM peak hour due to construction works. Additionally, the pedestrian crossing on Pacific Highway (A1) (south-east approach) was closed during all peak hours.

Figure 5-7 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-7 Block 4 – PM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of CST02

Table 5-7 presents a performance summary of this intersection.

| Intersection                        | Peak                    | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|-------------------------------------|-------------------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
| Pacific<br>Highway/<br>Oxley Street | v/<br>eet Weekday<br>AM | South-east | 0.579                | 7.9                           | 91.7                                                | LOS A |
|                                     |                         | North-east | 0.246                | 47.6                          | 38.2                                                | LOS D |
|                                     |                         | North-west | 0.345                | 1.4                           | 23.4                                                | LOS A |
| (Signal)                            |                         | South-west | 0.505                | 58.2                          | 66.8                                                | LOS E |

Table 5-7 Block 4 – Intersection performance summary of CST02

| Intersection | Peak    | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|---------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |         | Total      | 0.579                | 13.3                          | 91.7                                                | LOS A |
|              |         | South-east | 0.447                | 3.8                           | 53.4                                                | LOS A |
|              |         | North-east | 0.239                | 45.5                          | 34.5                                                | LOS D |
|              | Weekday | North-west | 0.252                | 12.0                          | 69.0                                                | LOS A |
|              | I IVI   | South-west | 0.754                | 62.2                          | 79.7                                                | LOS E |
|              |         | Total      | 0.754                | 19.1                          | 79.7                                                | LOS B |
|              |         | South-east | 0.349                | 3.6                           | 36.6                                                | LOS A |
|              | Weekend | North-east | 0.318                | 47.3                          | 40.8                                                | LOS D |
| Week         |         | North-west | 0.237                | 11.6                          | 63.8                                                | LOS A |
|              |         | South-west | 0.529                | 54.8                          | 62.5                                                | LOS D |
|              |         | Total      | 0.529                | 17.4                          | 63.8                                                | LOS B |

Overall, the intersection of the Pacific Highway (A1) and Oxley Street performs satisfactorily at LOS B or better during all peak hours. The 95<sup>th</sup> percentile queue on Oxley Street extends from the north-east approach to Clarke Lane during all peak hours and from the south-west approach back to Nicholson Street during the weekday PM peak hour.

It was also noted that Block 4 pedestrian volumes at Pacific Highway (A1) and Oxley Street significantly increased during all peak hours compared to pre-opening conditions. Given that CST02 is located along the frontage of Crows Nest station, the rise in pedestrian activity is likely associated to commuters accessing Sydney Metro during Block 4.

# 5.2.3 CST03 – Pacific Highway/Hume Street

The signalised intersection, composed of the Pacific Highway and Hume Street, is located directly south-west of Crows Nest Station. It connects the State road of the Pacific Highway (A1), linking Wahroonga and North Sydney, with the local road of Hume Street, linking Crows Nest and Wollstonecraft. A dedicated cycleway runs along both sides of Hume Street; however, it was not considered for this assessment.

Hume Street (north-east leg) was previously closed during Block 1 to 3 as part of the Sydney Metro construction works. During Block 4, access to Hume Street (north-eastern approach) was closed during the identified AM and weekend peak hours due to Sydney Metro construction; however, it was reopened to traffic during the identified PM peak hour. Additionally, the pedestrian crossing on Pacific Highway (south-east approach) was closed during all peak hours.

Figure 5-8 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-8 Block 4 – PM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of CST03

| Intersection        | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|---------------------|---------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                     |               | South-east | 0.433                | 0.7                           | 10.2                                                | LOS A |
|                     |               | North-east |                      | Closed due to                 | o construction                                      |       |
|                     | Weekday<br>AM | North-west | 0.334                | 3.2                           | 73.7                                                | LOS A |
|                     | 7 (17)        | South-west | 0.501                | 64.9                          | 46.0                                                | LOS E |
|                     |               | Total      | 0.501                | 5.0                           | 73.7                                                | LOS A |
|                     | Weekday<br>PM | South-east | 0.294                | 6.4                           | 59.8                                                | LOS A |
| Pacific<br>Highway/ |               | North-east | 0.139                | 54.5                          | 13.9                                                | LOS D |
| Hume Street         |               | North-west | 0.359                | 6.5                           | 77.8                                                | LOS A |
| (Signal)            |               | South-west | 0.328                | 58.9                          | 31.0                                                | LOS E |
| (Olghai)            |               | Total      | 0.359                | 9.7                           | 77.8                                                | LOS A |
|                     |               | South-east | 0.331                | 7.0                           | 66.4                                                | LOS A |
|                     |               | North-east |                      | Closed due to                 | o construction                                      |       |
|                     | Weekend       | North-west | 0.321                | 5.3                           | 63.9                                                | LOS A |
|                     |               | South-west | 0.349                | 61.0                          | 27.6                                                | LOS E |
|                     |               | Total      | 0.349                | 8.4                           | 66.4                                                | LOS A |

Table 5-8 presents a performance summary of this intersection.

Table 5-8 Block 4 – Intersection performance summary of CST03

Overall, the intersection of the Pacific Highway (A1) and Hume Street performs satisfactorily at LOS A during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

It was also noted that Block 4 pedestrian volumes at Pacific Highway (A1) and Hume Street significantly increased during all peak hours compared to pre-opening conditions. Given that CST03 is located along the frontage of Crows Nest station, the rise in pedestrian activity is likely associated to commuters accessing Sydney Metro during Block 4.

# 5.2.4 CST04 – Pacific Highway/Falcon Street/Shirley Road

The signalised intersection, composed of the Pacific Highway, Falcon Street and Shirley Road, is located south-east of Crows Nest Station. It connects the State road of the Pacific Highway (A1), linking Wahroonga to North Sydney, with the State road of Falcon Street, linking Crows Nest and Neutral Bay, and Shirley Road, linking Crows Nest and Wollstonecraft. Willoughby Road is an unsignalised approach, serving as an exit only route onto Falcon Street from the Crows Nest centre.

Figure 5-9 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-9 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of CST04

Table 5-9 presents a performance summary of this intersection.

| Table 5-9 Bloc | k 4 – Intersection | performance summ | ary of CST04 |
|----------------|--------------------|------------------|--------------|
|                |                    | •                |              |

| Intersection        | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|---------------------|---------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                     |               | South-east | 0.638                | 29.9                          | 173.9                                               | LOS C |
|                     |               | East       | 0.921                | 61.6                          | 130.6                                               | LOS E |
| Pacific<br>Highway/ | Weekday<br>AM | North      | 0.035                | 3.8                           | 1.6                                                 | LOS A |
| Falcon              |               | North-west | 0.730                | 22.1                          | 173.8                                               | LOS B |
| Street/             |               | South-west | 0.928                | 77.5                          | 211.7                                               | LOS F |
| Road                |               | Total      | 0.928                | 41.0                          | 211.7                                               | LOS C |
| (Signal) Weekd      |               | South-east | 0.779                | 33.4                          | 161.3                                               | LOS C |
|                     | Weekday<br>PM | East       | 0.878                | 38.1                          | 130.6                                               | LOS C |
|                     | PIVI          | North      | 0.050                | 3.8                           | 2.6                                                 | LOS A |

| Intersection | Peak    | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|---------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |         | North-west | 0.668                | 43.2                          | 149.2                                               | LOS D |
|              |         | South-west | 0.534                | 46.8                          | 131.2                                               | LOS D |
|              |         | Total      | 0.878                | 39.1                          | 161.3                                               | LOS C |
|              |         | South-east | 0.557                | 31.1                          | 105.3                                               | LOS C |
|              |         | East       | 0.915                | 43.1                          | 130.6                                               | LOS D |
|              | Weekend | North      | 0.060                | 3.8                           | 2.9                                                 | LOS A |
|              |         | North-west | 0.665                | 39.4                          | 144.4                                               | LOS C |
|              |         | South-west | 0.647                | 47.9                          | 131.8                                               | LOS D |
|              |         | Total      | 0.915                | 38.7                          | 144.4                                               | LOS C |

Overall, the intersection of the Pacific Highway (A1), Falcon Street, and Shirley Road performs at LOS C or better during all peak hours. The 95<sup>th</sup> percentile queue on the Pacific Highway (A1) (south-east approach) extends back to Alexander Street during the weekday AM and PM peak hours. Similarly, the 95<sup>th</sup> percentile queue on Falcon Street (east approach) extends back to Alexander Street during all peak hours.

# 5.2.5 CST05 – Clarke Street/Oxley Street

The priority intersection, composed of Oxley Street and Clarke Street, is located directly north of Crows Nest Station. It connects the local roads of Clarke Street in Crows Nest and Oxley Street, linking Wollstonecraft and Naremburn through Crows Nest. A dedicated cycleway runs along the eastern side of Oxley Street (north approach) and the northern side of Clarke Street; however, it was not considered for this assessment.

Figure 5-10 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-10 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of CST05

Table 5-10 presents a performance summary of this intersection.

| Intersection             | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------------------|---------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                          |               | South-east | 0.085                | 5.9                           | 2.1                                                 | LOS A |
|                          | Weekday       | North      | 0.147                | 4.4                           | 0.0                                                 | LOS A |
|                          | AM            | South-west | 0.107                | 4.8                           | 3.0                                                 | LOS A |
|                          |               | Total      | 0.085                | 5.9                           | 2.1                                                 | LOS A |
| Clarke                   | Weekday<br>PM | South-east | 0.068                | 5.9                           | 1.7                                                 | LOS A |
| Street/<br>Oxley Street  |               | North      | 0.136                | 4.4                           | 0.0                                                 | LOS A |
| (Drienity)               |               | South-west | 0.139                | 4.9                           | 3.3                                                 | LOS A |
| (Priority –<br>Give Way) |               | Total      | 0.068                | 5.9                           | 1.7                                                 | LOS A |
| Week                     |               | South-east | 0.076                | 5.7                           | 1.8                                                 | LOS A |
|                          |               | North      | 0.154                | 4.4                           | 0.0                                                 | LOS A |
|                          | Weekend       | South-west | 0.106                | 4.9                           | 2.7                                                 | LOS A |
|                          |               | Total      | 0.076                | 5.7                           | 1.8                                                 | LOS A |

### Table 5-10 Block 4 – Intersection performance summary of CST05

Overall, the intersection of Clarke Street and Oxley Street performs satisfactorily at LOS A during all peak hours. The 95th percentile queue lengths are accommodated within the approach distances for all approaches.

# 5.2.6 CST06 – Clarke Street/Hume Street

The priority intersection, composed of Clarke Street and Hume Street, is located directly north-east of Crows Nest Station. It connects the local roads of Clarke Street in Crows Nest and Hume Street, linking Crows Nest and Wollstonecraft. A dedicated cycleway runs along the northern side of Clarke Street and both sides of Hume Street (south-west approach); however, it was not considered for this assessment.

During Block 4, access to Hume Street (south-west approach) was limited to local area access and construction access only in the AM and weekend peak hours; however, it was open to general traffic during the PM peak hour.

Figure 5-11 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)



| Table 5-11 presents a performance summary of this intersection | • |
|----------------------------------------------------------------|---|
| Table 5-11 Block 4 – Intersection performance summary of CST06 |   |

| Intersection                    | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|---------------------------------|---------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                                 |               | South-east | 0.054                | 3.7                           | 0.8                                                 | LOS A |
|                                 | Weekday<br>AM | North-west | 0.090                | 4.1                           | 0.2                                                 | LOS A |
| Clarke                          | 7 (17)        | Total      | 0.090                | 4.1                           | 0.2                                                 | LOS A |
| Street/                         |               | South-east | 0.201                | 6.5                           | 6.3                                                 | LOS A |
| Hume Street                     | Weekday<br>PM | North-west | 0.413                | 21.1                          | 16.7                                                | LOS B |
| (Priority –<br>Give Way)<br>Wee | I IVI         | Total      | 0.413                | 21.1                          | 16.7                                                | LOS B |
|                                 |               | South-east | 0.053                | 3.8                           | 0.8                                                 | LOS A |
|                                 | Weekend       | North-west | 0.095                | 4.1                           | 0.1                                                 | LOS A |
|                                 |               | Total      | 0.095                | 4.1                           | 0.1                                                 | LOS A |

Overall, the intersection of Clarke Street and Hume Street performs satisfactorily at LOS B or better during all peak hours. The 95th percentile queue lengths are accommodated within the approach distances for all approaches.

It was also noted that Block 4 pedestrian volumes at Clarke Street and Hume Street significantly increased during the weekday AM and weekend peak hours compared to pre-opening conditions. Given that CST06 is located along the frontage of Crows Nest station, the rise in pedestrian activity is likely associated to commuters accessing Sydney Metro during Block 4.

# 5.2.7 CST07 – Clarke Street/Willoughby Road

The priority intersection, composed of Clarke Street and Willoughby Road, is located east of Crows Nest Station. It connects the local roads of Clarke Street in Crows Nest and Willoughby Road, linking

Crows Nest and Willoughby. A dedicated cycleway runs along the northern side of Clarke Street; however, it was not considered for this assessment.

Figure 5-12 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-12 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of CST07

### Table 5-12 presents a performance summary of this intersection.

| Intersection      | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|-------------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                   |               | South    | 0.177                | 5.2                           | 6.1                                                 | LOS A |
|                   | Weekday       | North    | 0.065                | 8.1                           | 2.1                                                 | LOS A |
|                   | AM            | West     | 0.154                | 6.3                           | 3.8                                                 | LOS A |
|                   |               | Total    | 0.065                | 8.1                           | 2.1                                                 | LOS A |
| Clarke<br>Street/ | Weekday<br>PM | South    | 0.192                | 5.6                           | 6.7                                                 | LOS A |
| Willoughby        |               | North    | 0.176                | 8.5                           | 5.4                                                 | LOS A |
| Road              |               | West     | 0.233                | 7.7                           | 6.1                                                 | LOS A |
| (Priority –       |               | Total    | 0.176                | 8.5                           | 5.4                                                 | LOS A |
| Give way)         |               | South    | 0.218                | 5.8                           | 7.7                                                 | LOS A |
|                   |               | North    | 0.214                | 9.1                           | 6.7                                                 | LOS A |
|                   | vveekend      | West     | 0.212                | 8.4                           | 5.3                                                 | LOS A |
|                   |               | Total    | 0.214                | 9.1                           | 6.7                                                 | LOS A |

# Table 5-12 Block 4 – Intersection performance summary of CST07

Overall, the intersection of Clarke Street and Willoughby Road performs satisfactorily at LOS A during all peak hours. The 95th percentile queue lengths are accommodated within the approach distances for all approaches.

# 5.2.8 CST08 – Albany Street/Willoughby Road

The signalised intersection, composed of Albany Street and Willoughby Road, is located north-east of Crows Nest Station. It connects the local roads of Albany Street, linking Crows Nest and St Leonards, and Willoughby Road, linking Crows Nest and Willoughby.

During Block 4, the southern departure lane of Willoughby Road was closed during the AM peak hour due to construction works.

Figure 5-13 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-13 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of CST08

Table 5-13 presents a performance summary of this intersection.

| Table 5-13 Block 4 - Intersection pe | erformance summary of CST08 |
|--------------------------------------|-----------------------------|
|--------------------------------------|-----------------------------|

| Intersection       | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                    |               | South    | 0.038                | 23.3                          | 2.8                                                 | LOS B |
|                    |               | East     | 0.521                | 13.5                          | 46.9                                                | LOS A |
| Albany             | Weekday<br>AM | North    | 0.270                | 19.4                          | 28.0                                                | LOS B |
| Street/            |               | West     | 0.462                | 19.3                          | 55.5                                                | LOS B |
| Willoughby<br>Road |               | Total    | 0.521                | 16.9                          | 55.5                                                | LOS B |
| (Signal)           | Weekday<br>PM | South    | 0.207                | 24.4                          | 19.3                                                | LOS B |
|                    |               | East     | 0.447                | 15.0                          | 39.6                                                | LOS B |
|                    |               | North    | 0.437                | 22.6                          | 38.3                                                | LOS B |
|                    |               | West     | 0.493                | 20.3                          | 64.9                                                | LOS B |

| Intersection | Peak    | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|---------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |         | Total    | 0.493                | 19.5                          | 64.9                                                | LOS B |
|              |         | South    | 0.166                | 21.1                          | 15.4                                                | LOS B |
|              |         | East     | 0.567                | 14.7                          | 60.8                                                | LOS B |
|              | Weekend | North    | 0.391                | 19.9                          | 34.1                                                | LOS B |
|              |         | West     | 0.397                | 19.6                          | 45.2                                                | LOS B |
|              |         | Total    | 0.567                | 18.0                          | 60.8                                                | LOS B |

Overall, the intersection of Albany Street and Willoughby Road performs satisfactorily at LOS B during all peak hours. The 95th percentile queue lengths are accommodated within the approach distances for all approaches.

# 5.2.9 CST09 – Albany Street/Oxley Street

The roundabout, composed of Albany Street and Oxley Street, is located north of Crows Nest Station. It connects the local roads of Albany Street, linking Crows Nest and St Leonards, and Oxley Street, linking Wollstonecraft and Naremburn through Crows Nest.

Figure 5-14 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-14 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of CST09

Table 5-14 presents a performance summary of this intersection.

### Table 5-14 Block 4 – Intersection performance summary of CST09

| Intersection | Peak | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |      | South    | 0.236                | 11.8                          | 11.2                                                | LOS A |

| Intersection | Peak    | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|---------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |         | East     | 0.528                | 11.9                          | 26.4                                                | LOS A |
|              | Weekday | North    | 0.356                | 12.1                          | 17.2                                                | LOS A |
|              | AM      | West     | 0.479                | 9.7                           | 27.6                                                | LOS A |
|              |         | Total    | 0.356                | 12.1                          | 17.2                                                | LOS A |
|              | Weekday | South    | 0.443                | 12.7                          | 21.5                                                | LOS A |
| Albany       |         | East     | 0.824                | 16.4                          | 48.6                                                | LOS B |
| Street/Oxley |         | North    | 0.369                | 12.4                          | 18.4                                                | LOS A |
| Street       | I IVI   | West     | 0.579                | 11.4                          | 37.6                                                | LOS A |
| (Roundabout) |         | Total    | 0.824                | 16.4                          | 48.6                                                | LOS B |
|              |         | South    | 0.267                | 11.4                          | 12.2                                                | LOS A |
|              |         | East     | 0.445                | 10.6                          | 19.9                                                | LOS A |
|              | Weekend | North    | 0.275                | 11.2                          | 12.1                                                | LOS A |
|              |         | West     | 0.402                | 9.7                           | 22.3                                                | LOS A |
|              |         | Total    | 0.267                | 11.4                          | 12.2                                                | LOS A |

Overall, the intersection of Albany Street and Oxley Street performs satisfactorily at LOS B or better during all peak hours. The 95th percentile queue lengths are accommodated within the approach distances for all approaches.

# 5.2.10 CST10 – Albany Street/Clarke Lane

The priority intersection, composed of Albany Street and Clarke Lane, is located north-west of Crows Nest Station. It connects the local roads of Clarke Lane in Crows Nest with Albany Street, linking Crows Nest and St Leonards.

Figure 5-15 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

### Figure 5-15 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of CST10

Table 5-15 presents a performance summary of this intersection.

Table 5-15 Block 4 – Intersection performance summary of CST10

| Intersection             | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------------------|---------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                          |               | South-east | 0.062                | 13.6                          | 27.5                                                | LOS A |
|                          | Weekday       | East       | 0.226                | 0.0                           | 65.9                                                | LOS A |
|                          | AM            | West       | 0.250                | 0.0                           | 0.0                                                 | LOS A |
|                          |               | Total      | 0.062                | 13.6                          | 27.5                                                | LOS A |
| Albany                   | Weekday<br>PM | South-east | 0.049                | 14.4                          | 6.0                                                 | LOS A |
| Street/<br>Clarke Lane   |               | East       | 0.125                | 0.0                           | 63.6                                                | LOS A |
| (Dei seite)              |               | West       | 0.270                | 0.0                           | 0.0                                                 | LOS A |
| (Priority –<br>Give Way) |               | Total      | 0.049                | 14.4                          | 6                                                   | LOS A |
|                          |               | South-east | 0.043                | 12.8                          | 20.3                                                | LOS A |
|                          |               | East       | 0.212                | 0.0                           | 61.1                                                | LOS A |
|                          | vveekend      | West       | 0.226                | 0.0                           | 0.0                                                 | LOS A |
|                          |               | Total      | 0.043                | 12.8                          | 20.3                                                | LOS A |

Overall, the intersection of Albany Street and Clarke Lane performs satisfactorily at LOS A during all peak hours. The 95th percentile queue lengths are accommodated within the approach distances for all approaches.

# 5.2.11 CST11 – Oxley Street/Clarke Lane

The priority intersection, composed of Oxley Street and Clarke Lane, is located directly north-west of Crows Nest Station. It connects the local roads of Clarke Lane in Crows Nest and Oxley Street, linking Wollstonecraft and Naremburn through Crows Nest.

Clarke Street (south-east approach) was previously closed during Block 1 to 3 as part of the Sydney Metro construction works. During Block 4, this road was reopened to traffic.

Figure 5-16 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.

1<sup>N</sup>



Source: Nearmap (September 2024)

Figure 5-16 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of CST11

Carke LIT (SE)

| Intersection | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |  |
|--------------|---------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|--|
|              |               | South-east | 0.007                | 12.1                          | 0.2                                                 | LOS A |  |
|              |               | North-east | 0.170                | 3.5                           | 0.3                                                 | LOS A |  |
|              | Weekday<br>AM | North-west | 0.023                | 6.3                           | 0.5                                                 | LOS A |  |
|              |               | South-west | 0.088                | 2.8                           | 0.0                                                 | LOS A |  |
|              |               | Total      | 0.007                | 12.1                          | 0.2                                                 | LOS A |  |
| Ovlov        |               | South-east | 0.010                | 9.2                           | 0.2                                                 | LOS A |  |
| Street/      |               | North-east | 0.120                | 4.9                           | 0.5                                                 | LOS A |  |
| Clarke Lane  | Weekday<br>DM | North-west | 0.020                | 6.4                           | 0.5                                                 | LOS A |  |
| (Priority –  | FIVI          | South-west | 0.121                | 2.8                           | 0.0                                                 | LOS A |  |
| Stop)        |               | Total      | 0.010                | 9.2                           | 0.2                                                 | LOS A |  |
|              |               | South-east | 0.005                | 9.0                           | 0.1                                                 | LOS A |  |
|              |               | North-east | 0.109                | 3.6                           | 3.7                                                 | LOS A |  |
|              | Weekend       | North-west | 0.016                | 6.7                           | 0.5                                                 | LOS A |  |
|              |               | South-west | 0.086                | 2.8                           | 0.0                                                 | LOS A |  |
|              |               | Total      | 0.005                | 9.0                           | 0.1                                                 | LOS A |  |

Table 5-16 presents a performance summary of this intersection.

Table 5-16 Block 4 – Intersection performance summary of CST11

Overall, the intersection of Oxley Street and Clarke Lane performs satisfactorily at LOS A during all peak hours. The 95th percentile queue lengths are accommodated within the approach distances for all approaches.

It was also noted that Block 4 pedestrian volumes at Oxley Street and Clarke Lane significantly increased during all peak hours compared to pre-opening conditions. Given that CST11 is located along the frontage of Crows Nest station, the rise in pedestrian activity is likely associated to commuters accessing Sydney Metro during Block 4.

### 5.2.12 CST12 – Hume Street/Clarke Lane

The priority intersection, composed of Hume Street and Clarke Lane, is located directly south-east of Crows Nest Station. It connects the local roads of Clarke Lane in Crows Nest and Hume Street, linking Crows Nest and Wollstonecraft. A dedicated cycleway runs along both sides of Hume Street; however, it was not considered for this assessment.

During Block 4, the intersection was closed due to construction works during the AM and weekend peak hours and, as such, was only modelled for the PM peak hour assessment as part of the Block 4 study.

Figure 5-17 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-17 Block 4 – PM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of CST12

Table 5-17 presents a performance summary of this intersection.

| Fable 5-17 Block 4 – Intersection | n performance summar | y of CST12 |
|-----------------------------------|----------------------|------------|
|-----------------------------------|----------------------|------------|

| Intersection           | Peak          | Approach   | Degree of saturation       | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |  |
|------------------------|---------------|------------|----------------------------|-------------------------------|-----------------------------------------------------|-------|--|
| Hume                   |               | South-east |                            |                               |                                                     |       |  |
|                        | Weekday<br>AM | North-east | Closed due to construction |                               |                                                     |       |  |
|                        |               | Total      |                            |                               |                                                     |       |  |
| Street/<br>Clarke Lane | Weekday<br>PM | South-east | 0.006                      | 6.7                           | 0.0                                                 | LOS A |  |
|                        |               | North-east | 0.013                      | 3.4                           | 0.0                                                 | LOS A |  |
| (Priority -<br>Stop)   |               | Total      | 0.006                      | 6.7                           | 0.0                                                 | LOS A |  |
|                        |               | South-east |                            |                               |                                                     |       |  |
|                        | vveekend      | North-east | Closed due to construction |                               |                                                     |       |  |

| Intersection | Peak | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS |
|--------------|------|----------|----------------------|-------------------------------|-----------------------------------------------------|-----|
|              |      | Total    |                      |                               |                                                     |     |

Overall, the intersection of Hume Street and Clarke Lane performs satisfactorily at LOS A during the PM peak hour. The 95th percentile queue lengths are accommodated within the approach distances for all approaches.

# 5.2.13 CST13 – Pacific Highway/Alexander Street

The signalised intersection, composed of the Pacific Highway, Alexander Street and Hayberry Street, is located south-east of Crows Nest Station. It connects the State road of the Pacific Highway (A1), linking Wahroonga to North Sydney, with the local roads of Alexander Street and Hayberry Street in Crows Nest. Hayberry Street was not modelled.

Figure 5-18 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-18 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of CST13

Table 5-18 presents a performance summary of this intersection.

| Intersection                    | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|---------------------------------|---------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
| Decifie                         | Weekday<br>AM | South-east | 0.545                | 9.7                           | 74.9                                                | LOS A |
| Highway/                        |               | North      | 0.707                | 45.7                          | 88.1                                                | LOS D |
| Alexander<br>Street<br>(Signal) |               | North-west | 0.679                | 12.0                          | 126.1                                               | LOS A |
|                                 |               | Total      | 0.707                | 15.0                          | 126.1                                               | LOS B |
|                                 |               | South-east | 0.464                | 8.8                           | 72.1                                                | LOS A |

Table 5-18 Block 4 – Intersection performance summary of CST13

6.1

43.1

3.4

10.6

| Intersection | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|---------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              | Weekday<br>PM | North      | 0.979                | 39.1                          | 57.1                                                | LOS C |
|              |               | North-west | 0.454                | 5.2                           | 53.0                                                | LOS A |
|              |               | Total      | 0.979                | 11.3                          | 72.1                                                | LOS A |

Overall, the intersection of the Pacific Highway (A1) and Alexander Street performs satisfactorily at LOS B or better during all peak hours. The 95th percentile queue on the Pacific Highway (A1) (north-west approach) extends back to Shirley Road and Falcon Street during the weekday AM peak hour. Similarly, the 95<sup>th</sup> percentile queue on Alexander Street (north approach) extends back to Falcon Street during the AM peak hour.

0.311

0.883

0.359

0.883

South-east

North

North-west

Total

# 5.2.14 CST14 – Falcon Street/Alexander Street

Weekend

The signalised intersection, comprised of Falcon Street and Alexander Street, is located south-east of Crows Nest Station. It connects the local road of Alexander Street in Crows Nest with the State road of Falcon Street, linking Crows Nest and Neutral Bay.

Figure 5-19 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-19 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of CST14

Table 5-19 presents a performance summary of this intersection.

LOS A

LOS D

LOS A

LOS A

41.7

55.5

26.9

55.5

56

| Intersection | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |               | South    | 0.478                | 59.5                          | 71.0                                                | LOS E |
|              |               | East     | 0.672                | 12.1                          | 127.1                                               | LOS A |
|              | Weekday<br>AM | North    | 0.767                | 80.2                          | 121.7                                               | LOS F |
|              | 7.111         | West     | 0.558                | 5.9                           | 58.4                                                | LOS A |
|              |               | Total    | 0.767                | 23.8                          | 127.1                                               | LOS B |
| Falcon       | Weekday<br>PM | South    | 0.468                | 61.1                          | 64.5                                                | LOS E |
| Street/      |               | East     | 0.515                | 22.9                          | 111.2                                               | LOS B |
| Alexander    |               | North    | 0.439                | 48.6                          | 64.3                                                | LOS D |
| Olicci       |               | West     | 0.355                | 2.0                           | 19.4                                                | LOS A |
| (Signal)     |               | Total    | 0.515                | 21.5                          | 111.2                                               | LOS B |
|              |               | South    | 0.478                | 59.5                          | 71.0                                                | LOS E |
|              |               | East     | 0.670                | 20.2                          | 167.5                                               | LOS B |
|              | Weekend       | North    | 0.767                | 79.8                          | 121.7                                               | LOS F |
|              |               | West     | 0.558                | 5.7                           | 58.4                                                | LOS A |
|              |               | Total    | 0.767                | 26.7                          | 167.5                                               | LOS B |

### Table 5-19 Block 4 – Intersection performance summary of CST14

Overall, the intersection of Falcon Street and Alexander Street performs satisfactorily at LOS B during all peak hours. The 95<sup>th</sup> percentile queue on Alexander Street (south approach) extends back to the Pacific Highway (A1) during the weekday AM peak hour.

# 5.2.15 Comparison with previous study blocks

Figure 5-20 provides a comparison of the total peak hourly traffic volumes recorded across all intersections for Block 4 against previous study blocks. As shown, Block 4 traffic volumes are slightly lower during all peak hours compared to pre-opening conditions.



Figure 5-20 Study block comparison - Crows Nest Station peak hourly traffic volume across all intersections

A comparison of the intersection LOS for Block 4 against previous study blocks is shown in Figure 5-21 and Figure 5-22. All intersections in the Crows Nest Station study area perform at LOS C or better during Block 4, which is generally similar to previous study blocks.

Pacific Highway/Falcon Street/Shirley Road (CST04) had a notable change in LOS, whereby the intersection improved from a LOS D to a LOS C in the AM peak hour compared to Block 3. This change in LOS for CST04 was due to lower traffic volumes at this intersection in Block 4 during the AM peak hour.

#### Sydney Metro City and Southwest - Traffic and Interchange Monitoring Block 4 Report – Sydney Metro C&SW - Traffic and Interchange Monitoring

| and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C\$T01 - PACIFIC HWY / ALBANY \$T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CST02 - PACIFIC HWY / OXLEY ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Atchison Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AM PEAK PM PEAK WE PEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AM PEAK PM PEAK WE PEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Albany Lane<br>CST01<br>CST01<br>CST01<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST08<br>CST | Los B<br>Los B | LOS A<br>LOS A<br>LOS A<br>LOS A<br>LOS B<br>LOS B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Pole Lane Chaper L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BLOCK 1<br>BLOCK 3<br>BLOCK 4<br>BLOCK 4<br>BLOCK 4<br>BLOCK 4<br>BLOCK 4<br>BLOCK 3<br>BLOCK 3<br>BLOCK 3<br>BLOCK 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BLOCK 1<br>BLOCK 2<br>BLOCK 3<br>BLOCK 4<br>BLOCK 4<br>BLOCK 4<br>BLOCK 2<br>BLOCK 2<br>BLOCK 3<br>BLOCK 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CST00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CST03 - PACIFIC HWY / HUME ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CST04 - PACIFIC HWY / FALCON ST / SHIRLEY RD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AM PEAK PM PEAK WE PEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AM PEAK PM PEAK WE PEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CST02<br>CLarke Charles And Homos Additional Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LOSA<br>LOSA<br>LOSA<br>LOSA<br>LOSA<br>LOSA<br>LOSA<br>LOSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LOS C<br>LOS C<br>LOS C<br>LOS C<br>LOS C<br>LOS C<br>LOS C<br>LOS C<br>LOS C<br>LOS C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CST03 CST06 CST07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BLOCK 1<br>BLOCK 2<br>BLOCK 3<br>BLOCK 1<br>BLOCK 3<br>BLOCK 3<br>BLOCK 1<br>BLOCK 3<br>BLOCK 3<br>BLOCK 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BLOCK 1<br>BLOCK 2<br>BLOCK 3<br>BLOCK 4<br>BLOCK 2<br>BLOCK 4<br>BLOCK 4<br>BLOCK 2<br>BLOCK 3<br>BLOCK 4<br>BLOCK 3<br>BLOCK 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C \$T05 - CLARKE \$T / OXLEY \$T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CST06 - CLARKE ST / HUME ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Hume Street N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AM PEAK PM PEAK WE PEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AM PEAK PM PEAK WE PEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Christie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Losa<br>Losa<br>Losa<br>Losa<br>Losa<br>Losa<br>Losa<br>Losa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LOSA<br>LOSA<br>LOSA<br>LOSA<br>LOSA<br>LOSA<br>LOSA<br>LOSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| River Lane of The CST04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BLOCK 1<br>BLOCK 2<br>BLOCK 4<br>BLOCK 4<br>BLOCK 2<br>BLOCK 2<br>BLOCK 1<br>BLOCK 2<br>BLOCK 2<br>BLOCK 2<br>BLOCK 2<br>BLOCK 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BLOCK 1<br>BLOCK 2<br>BLOCK 4<br>BLOCK 4<br>BLOCK 1<br>BLOCK 4<br>BLOCK 1<br>BLOCK 3<br>BLOCK 3<br>BLOCK 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| z <sup>Sue</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CST07 - CLARKE ST / WILLOUGHBY RD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CST06 - ALDANT ST / WILLOUGHDT KD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Stre.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CST07 - CLARKE ST / WILLOUGHBY RD<br>AM PEAK PM PEAK WE PEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AM PEAK PM PEAK WE PEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| River Roal<br>Priority - Give Way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CST07 - CLARKE ST / WILLOUGHBY RD           AM PEAK         PM PEAK         WE PEAK           V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AM PEAK         PM PEAK         WE PEAK           0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 |

Figure 5-21 Study block comparison – Crows Nest Station intersection performance summary (CST01-CST08)

#### Sydney Metro City and Southwest - Traffic and Interchange Monitoring Block 4 Report – Sydney Metro C&SW - Traffic and Interchange Monitoring



Figure 5-22 Study block comparison – Crows Nest Station intersection performance summary (CST09-CST14)

# 5.3 Victoria Cross Station

Victoria Cross Station is a new underground station and the third stop on the City & Southwest Line (towards Sydenham). It is located in the centre of the North Sydney commercial centre and north of the existing North Sydney Station.

Victoria Cross Station has multiple accesses on Miller Street and Denison Street. The accesses are separated into Victoria Cross North and Victoria Cross South. The three station entrances are listed below:

- Victoria Cross North Entry; at the north-east corner of the intersection of Miller Street and McLaren Street
- Victoria Cross South Entry (Miller Street); along Miller Street, south of Berry Street
- Victoria Cross South Entry (Denison Street); along Denison Street, south of Berry Street.

Bus services are available within approximately 150 metres of Victoria Cross Station, located along Miller Street and Pacific Highway. Pedestrian footpaths are provided on both sides of Miller Street and Pacific Highway in the vicinity of Victoria Cross Station.

The Victoria Cross Station study area consists of four intersections. Note that during Block 4, traffic volumes across the Victoria Cross Station study area may have been impacted due to the ongoing construction works associated with the nearby Warringah Freeway Upgrade project.

Table 5-20 presents the peak hours utilised for modelling the intersections. Table 5-21 provides a summary of the intersection LOS while Figure 5-23 visualises a geospatial summary of the intersection LOS within the Victoria Cross Station study area.

| Network | Intersection | Weekday AM peak<br>hour |               | Weekday<br>hou | PM peak<br>ur | Weekend peak hour |               |
|---------|--------------|-------------------------|---------------|----------------|---------------|-------------------|---------------|
| ID      | ID           | Day                     | Start<br>time | Day            | Start<br>time | Day               | Start<br>time |
|         | VIC01        | Tuesday                 | 7:45am        | Friday         | 2:45pm        | Saturday          | 12:00pm       |
|         | VIC02        |                         |               |                |               |                   |               |
| VIC-N1  | VIC03        |                         |               |                |               |                   |               |
|         | VIC04        |                         |               |                |               |                   |               |

### Table 5-20 Block 4 – Victoria Cross Station peak hours modelled

Table 5-21 Block 4 – Victoria Cross Station intersection performance summary

| Intersection |                                           | LOS                |                    |                 |  |
|--------------|-------------------------------------------|--------------------|--------------------|-----------------|--|
| ID           | Intersection                              | Weekday<br>AM Peak | Weekday<br>PM Peak | Weekend<br>Peak |  |
| VIC01        | Pacific Highway/Berry Street<br>(Signal)  | LOS A              | LOS A              | LOS A           |  |
| VIC02        | Miller Street/Berry Street<br>(Signal)    | LOS D              | LOS C              | LOS C           |  |
| VIC03        | Miller Street/McLaren Street<br>(Signal)  | LOS B              | LOS B              | LOS B           |  |
| VIC04        | Pacific Highway/Miller Street<br>(Signal) | LOS C              | LOS C              | LOS C           |  |

Overall, the intersection performance in the Victoria Cross Station study area during the peak hours is satisfactory, operating at LOS D or better.



Figure 5-23 Block 4 – Victoria Cross Station intersection performance summary

# 5.3.1 VIC01 – Pacific Highway/Berry Street

The signalised intersection, composed of the Pacific Highway and Berry Street, is located west of southern access to Victoria Cross Station. It connects the State road of the Pacific Highway (A1), linking Wahroonga and North Sydney, with the local road of Berry Street, linking North Sydney to the Warringah Freeway (M1). Berry Street (south-west approach) is not signalised; however, for modelling purposes, it has been simulated as a signalised approach operating in every phase.

Figure 5-24 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-24 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of VIC01

| Table 5-22 presents a performance summary of this intersectio |
|---------------------------------------------------------------|
|---------------------------------------------------------------|

| Intersection | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|---------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |               | South-east | 0.852                | 9.9                           | 60.8                                                | LOS A |
|              | Weekday       | North-west | 0.668                | 14.1                          | 108.7                                               | LOS A |
|              | AM            | South-west | 0.114                | 5.9                           | 4.4                                                 | LOS A |
|              |               | Total      | 0.852                | 11.9                          | 108.7                                               | LOS A |
| Pacific      | Weekday<br>PM | South-east | 0.855                | 12.9                          | 55                                                  | LOS A |
| Highway/     |               | North-west | 0.461                | 12.2                          | 79.5                                                | LOS A |
| Berry Street |               | South-west | 0.066                | 4.0                           | 1.4                                                 | LOS A |
| (Signal)     |               | Total      | 0.855                | 12.4                          | 79.5                                                | LOS A |
|              |               | South-east | 0.649                | 7.5                           | 30.5                                                | LOS A |
|              |               | North-west | 0.325                | 9.5                           | 57.9                                                | LOS A |
|              | VVeekend      | South-west | 0.024                | 4.4                           | 0.7                                                 | LOS A |
|              |               | Total      | 0.649                | 8.4                           | 57.9                                                | LOS A |

| Table 5-22 Block 4 – Intersection | n performance summary | of VIC01 |
|-----------------------------------|-----------------------|----------|
|-----------------------------------|-----------------------|----------|

Overall, the intersection of the Pacific Highway (A1) and Berry Street performs satisfactorily at LOS A during all peak hours. The 95th percentile queue lengths are accommodated within the approach distances for all approaches.

It was also noted that Block 4 vehicle volumes at Pacific Highway (A1) and Berry Street significantly decreased during the weekend peak hour compared to pre-opening conditions. Traffic diversions in place for the Warringah Freeway construction works may have caused the drop in vehicle volumes at VIC01.

# 5.3.2 VIC02 – Miller Street/Berry Street

The signalised intersection, composed of Miller Street and Berry Street, is located directly adjacent to the southern access to Victoria Cross Station. It connects the regional road of Miller Street, linking Cammeray and North Sydney, with the local road of Berry Street, linking North Sydney to the Warringah Freeway (M1).

During Block 4, the southern departure kerbside lane of Miller Street was partially closed off during the PM peak hour, due to Sydney Metro construction.

Figure 5-25 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-25 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of VIC02

 Table 5-23 presents a performance summary of this intersection.

 Table 5-23 Block 4 – Intersection performance summary of VIC02

| Intersection                                | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|---------------------------------------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
| Miller Weekday<br>Street/Berry AM<br>Street | Weekday       | South    | 0.974                | 56.6                          | 186.2                                               | LOS E |
|                                             |               | North    | 0.793                | 52.7                          | 135.2                                               | LOS D |
|                                             | AM            | West     | 0.695                | 34.1                          | 155.6                                               | LOS C |
|                                             | Total         | 0.974    | 44.0                 | 186.2                         | LOS D                                               |       |
| (Signal)                                    | Weekday<br>PM | South    | 0.639                | 19.1                          | 75.3                                                | LOS B |
|                                             |               | North    | 0.826                | 46.1                          | 73.8                                                | LOS D |

| Intersection | Peak    | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|---------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |         | West     | 0.481                | 40.9                          | 91.6                                                | LOS C |
|              |         | Total    | 0.826                | 34.2                          | 91.6                                                | LOS C |
|              | Weekend | South    | 0.682                | 24.1                          | 69.1                                                | LOS B |
|              |         | North    | 0.839                | 48.0                          | 63.4                                                | LOS D |
|              |         | West     | 0.431                | 31.9                          | 74.6                                                | LOS C |
|              |         | Total    | 0.839                | 32.9                          | 74.6                                                | LOS C |

Overall, the intersection of Miller Street and Berry Street performs satisfactorily at LOS D or better during all peak hours; noting however, it is close to capacity as indicated by the degree of saturation being close to 1.00. The 95th percentile queue on Miller Street (south approach) extends back to the Pacific Highway (A1) during the weekday AM peak hour. Similarly, the 95<sup>th</sup> percentile queue on Berry Street (west approach) extends back to the Pacific Highway (A1) during the AM peak hour.

It was also noted that Block 4 pedestrian volumes at Miller Street and Berry Street significantly increased during the weekend peak hour compared to pre-opening conditions. Given that VIC02 is located in close proximity of Victoria Cross station, the rise in pedestrian activity is likely associated to commuters accessing Sydney Metro during Block 4.

# 5.3.3 VIC03 – Miller Street/McLaren Street

The signalised intersection, composed of Miller Street and McLaren Street, is located directly adjacent to the northern access to Victoria Cross Station. It connects the regional road of Miller Street, linking North Sydney and Cammeray, with the local road of McLaren Street in North Sydney.

Figure 5-26 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-26 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of VIC03

Table 5-24 presents a performance summary of this intersection.

| Intersection | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              | Weekday<br>AM | South    | 0.437                | 13.6                          | 88.6                                                | LOS A |
|              |               | East     | 0.752                | 76.3                          | 47.7                                                | LOS F |
|              |               | North    | 0.388                | 15.2                          | 84.4                                                | LOS B |
|              |               | West     | 0.783                | 52.1                          | 55.6                                                | LOS D |
| Miller       |               | Total    | 0.783                | 27.1                          | 88.6                                                | LOS B |
|              | Weekday<br>PM | South    | 0.290                | 12.1                          | 40.5                                                | LOS A |
|              |               | East     | 0.269                | 32.7                          | 22.1                                                | LOS C |
| Street       |               | North    | 0.476                | 16.1                          | 59.1                                                | LOS B |
| (Signal)     |               | West     | 0.440                | 34.3                          | 25.4                                                | LOS C |
|              |               | Total    | 0.476                | 19.0                          | 59.1                                                | LOS B |
|              | Weekend       | South    | 0.317                | 10.7                          | 49.3                                                | LOS A |
|              |               | East     | 0.485                | 45.3                          | 23.1                                                | LOS D |
|              |               | North    | 0.402                | 14.4                          | 62.5                                                | LOS A |
|              |               | West     | 0.330                | 34.9                          | 23.8                                                | LOS C |
|              |               | Total    | 0.485                | 19.2                          | 62.5                                                | LOS B |

### Table 5-24 Block 4 – Intersection performance summary of VIC03

Overall, the intersection of Miller Street and McLaren Street performs satisfactorily at LOS B during all peak hours. The 95th percentile queue lengths are accommodated within the approach distances for all approaches.

It was also noted that Block 4 pedestrian volumes at Miller Street and McLaren Street significantly increased during the weekday PM peak hour compared to pre-opening conditions. Given that VIC03 is located in close proximity of Victoria Cross station, the rise in pedestrian activity is likely associated to commuters accessing Sydney Metro during Block 4.

# 5.3.4 VIC04 – Pacific Highway/Miller Street

The signalised intersection, composed of the Pacific Highway, Miller Street and Mount Street, is located south of the southern access to Victoria Cross Station. It connects the State road of the Pacific Highway (A1), linking Wahroonga and North Sydney, with the regional road of Miller Street, linking North Sydney and Cammeray. Additionally, it provides travel to the west of North Sydney via the Mount Street unsignalised egress-only approach.

Figure 5-27 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-27 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of VIC04

| Intersection  | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|---------------|---------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|               | Weekday<br>AM | South      | 0.663                | 45.0                          | 77.3                                                | LOS D |
|               |               | South-east | 0.882                | 43.5                          | 171.8                                               | LOS D |
|               |               | North      | 0.405                | 14.8                          | 33.5                                                | LOS B |
| Pacific       |               | North-west | 0.488                | 33.0                          | 71.5                                                | LOS C |
|               |               | Total      | 0.882                | 37.9                          | 171.8                                               | LOS C |
|               |               | South      | 0.778                | 44.4                          | 89.8                                                | LOS D |
|               |               | South-east | 0.799                | 28.1                          | 93.0                                                | LOS B |
| Miller Street | Weekday<br>PM | North      | 0.294                | 11.8                          | 13.4                                                | LOS A |
| (Signal)      | 1 171         | North-west | 0.505                | 35.9                          | 63.2                                                | LOS C |
|               |               | Total      | 0.799                | 30.7                          | 93.0                                                | LOS C |
|               | Weekend       | South      | 0.573                | 35.8                          | 55.8                                                | LOS C |
|               |               | South-east | 0.676                | 31.1                          | 86.6                                                | LOS C |
|               |               | North      | 0.478                | 26.4                          | 36.5                                                | LOS B |
|               |               | North-west | 0.413                | 29.7                          | 56.9                                                | LOS C |
|               |               | Total      | 0.676                | 31.0                          | 86.6                                                | LOS C |

mmon of this intersection

Overall, the intersection of the Pacific Highway (A1), Miller Street and Mount Street performs satisfactorily at LOS C during all peak hours. The 95th percentile queue lengths are accommodated within the approach distances for all approaches.
It was also noted that Block 4 pedestrian volumes at Pacific Highway (A1) and Miller Street significantly increased during the weekday PM peak hour compared to pre-opening conditions. Given that VIC04 is located in close proximity of Victoria Cross station, the rise in pedestrian activity is likely associated to commuters accessing Sydney Metro during Block 4.

#### 5.3.5 Comparison with previous study blocks

Figure 5-28 provides a comparison of the total peak hourly traffic volumes recorded across all intersections for Block 4 against previous study blocks. As shown, Block 4 traffic volumes are slightly higher during the AM peak hour and slightly lower in the PM and weekend peak hours compared to preopening conditions. The variability in traffic volumes in the area between study blocks may be due to the ongoing construction works associated with the nearby Warringah Freeway Upgrade project.



#### Figure 5-28 Study block comparison – Victoria Cross Station peak hourly traffic volume across all intersections

A comparison of the intersection LOS for Block 4 against previous study blocks is shown in Figure 5-29. All intersections in the Victoria Cross Station precinct perform at LOS D or better during Block 4, which is generally similar to previous study blocks.

Miller Street/Berry Street (VIC02) had a notable change in LOS, whereby the intersection reduced from a LOS C to a LOS D in the AM peak hour compared to Block 3. However, it should be noted that this intersection was on the border of LOS C and D during Block 3. This change in LOS for VIC02 was due to higher traffic volumes at this intersection in Block 4 during the AM peak hour.



Figure 5-29 Study block comparison – Victoria Cross Station intersection performance summary

# 5.4 Barangaroo Station

Barangaroo Station is a new underground station and the fourth stop on the City & Southwest Line (towards Sydenham). It is located at the northern area of Barangaroo, south of Munn Street, bounded by Hickson Road.

Barangaroo Station is accessed from Hickson Road via the two station entrances listed below:

- Escalator access only; along Hickson Road, south of Munn Street
- Lift access only; along Hickson Road, south of Munn Street.

Bus services are available within approximately 400 metres of Barangaroo Station, located along Hickson Road and Kent Street. Dedicated cycle lanes are provided along the Sydney Harbour Bridge on-ramp and Kent Street, south of the intersection of Kent Street, Clarence Street and the Sydney Harbour Bridge on-ramp. Around the station precinct, there will be two new bus stops on Hickson Road (one northbound travel and one southbound travel). Kiss and ride bays and taxi zones will be provided at the proposed Hickson Road interchange, and coach bays underneath Munn Street bridge.

The Barangaroo Station study area consists of 18 intersections. Table 5-26 presents the peak hours utilised for modelling the intersections. Table 5-27 provides a summary of the intersection LOS while Figure 5-30 visualises a geospatial summary of the intersection LOS within the Barangaroo Station study area.

| Network    | Intersection | Weekday AM peak<br>hour |               | Weekday PM | peak hour     | Weekend peak hour |            |
|------------|--------------|-------------------------|---------------|------------|---------------|-------------------|------------|
| ID         | ID           | Day                     | Start<br>time | Day        | Start<br>time | Day               | Start time |
|            | BGU01        |                         |               |            |               |                   |            |
| BGU-<br>N1 | BGU02        | Tuesday                 | 0:45 om       |            | E 4E          | Soturdov          | 6:00nm     |
|            | BGU16        |                         | 0.40411       | weunesuay  | 5.45pm        | Saturuay          | 0.00pm     |
|            | BGU17        |                         |               |            |               |                   |            |
| BGU-<br>N2 | BGU04        |                         |               |            | 5:30pm        |                   | 6:00pm     |
|            | BGU05        | Wednesday               | 8:15am        | Wednesday  |               | Saturday          |            |
|            | BGU07        |                         |               |            |               |                   |            |
|            | BGU08        |                         |               |            |               |                   |            |
|            | BGU09        |                         |               |            |               |                   |            |
|            | BGU06        |                         |               | Wednesday  | 5:30pm        | Saturday          | 5:30pm     |
|            | BGU10        |                         |               |            |               |                   |            |
| BGU-       | BGU11        | Thursday                |               |            |               |                   |            |
| N3         | BGU12        | Thursday                | 8:30am        |            |               |                   |            |
|            | BGU13        |                         |               |            |               |                   |            |
|            | BGU18        |                         |               |            |               |                   |            |
| BGU-       | BGU14        | Thursday                | 0.20 arr      | Thursday   |               |                   | C:00mm     |
| N4         | BGU15        | inursday                | 8:30am        |            | 5:00pm        | Saturday          | 6:00pm     |
| -          | BGU03        | Tuesday                 | 8:30am        | Wednesday  | 5:15pm        | Saturday          | 5:30pm     |

#### Table 5-26 Block 4 – Barangaroo Station peak hours modelled

| Intersection |                                                                                                            | LOS                |                    |                 |  |
|--------------|------------------------------------------------------------------------------------------------------------|--------------------|--------------------|-----------------|--|
| ID           | Intersection                                                                                               | Weekday<br>AM Peak | Weekday<br>PM Peak | Weekend<br>Peak |  |
| BGU01        | Hickson Road/Towns Place<br>(Priority – Give Way)                                                          | LOS A              | LOS A              | LOS A           |  |
| BGU02        | Dalgety Road/Towns Place<br>(Roundabout)                                                                   | LOS A              | LOS A              | LOS A           |  |
| BGU03        | Kent Street/Argyle Street<br>(Priority – Give Way)                                                         | LOS B              | LOS A              | LOS B           |  |
| BGU04        | Pedestrian Mid-block Crossing at<br>Kent Street near Gas Lane<br>(Pedestrian only - Signal)                | LOS B              | LOS B              | LOS B           |  |
| BGU05        | Kent Street/Sydney Harbour Bridge<br>(SHB) On-ramp (Signal)                                                | LOS B              | LOS B              | LOS B           |  |
| BGU06        | Hickson Road/Napoleon Street/<br>Sussex Street (Signal)                                                    | LOS B              | LOS B              | LOS B           |  |
| BGU07        | Margaret Street/Kent Street/<br>Napoleon Street (Signal)                                                   | LOS B              | LOS B              | LOS B           |  |
| BGU08        | Margaret Street/Clarence Street<br>(Signal)                                                                | LOS B              | LOS B              | LOS B           |  |
| BGU09        | Margaret Street/York Street<br>(Signal)                                                                    | LOS B              | LOS B              | LOS B           |  |
| BGU10        | Pedestrian Mid-block Crossing at<br>Sussex Street under Exchange Place<br>(Pedestrian only - Signal)       | LOS A              | LOS A              | LOS A           |  |
| BGU11        | Pedestrian Mid-block Crossing at Kent<br>Street near Margaret Street<br>(Pedestrian only - Signal)         | LOS A              | LOS A              | LOS A           |  |
| BGU12        | Sussex Street/Erskine Street<br>(Signal)                                                                   | LOS B              | LOS B              | LOS B           |  |
| BGU13        | Kent Street/Erskine Street<br>(Signal)                                                                     | LOS B              | LOS B              | LOS C           |  |
| BGU14        | Sussex Street/King Street<br>(Signal)                                                                      | LOS B              | LOS B              | LOS B           |  |
| BGU15        | Kent Street/King Street<br>(Signal)                                                                        | LOS B              | LOS B              | LOS B           |  |
| BGU16        | New Pedestrian Mid-block Crossing at<br>Hickson Road (north of Metro Station)<br>(Pedestrian only - Zebra) | LOS A              | LOS A              | LOS A           |  |
| BGU17        | New Pedestrian Mid-block Crossing at<br>Hickson Road (south of Metro Station)<br>(Pedestrian only - Zebra) | LOS A              | LOS A              | LOS A           |  |
| BGU18        | Shelley Street/Erskine Street<br>(Signal)                                                                  | LOS B              | LOS B              | LOS B           |  |

#### Table 5-27 Block 4 – Barangaroo Station intersection performance summary

Overall, the intersection performance in the Barangaroo Station study area during the peak hours is satisfactory, operating at LOS C or better.



Figure 5-30 Block 4 – Barangaroo Station intersection performance summary

## 5.4.1 BGU01 – Hickson Road/Towns Place

The priority intersection, composed of Hickson Road and Towns Place, is located north of Barangaroo Station. It connects the local road of Towns Place with the regional road of Hickson Road which runs along the western waterfront of Barangaroo.

Figure 5-31 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-31 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of BGU01

| Table 5-28 presents a | performance summary | of this | intersection |
|-----------------------|---------------------|---------|--------------|
|-----------------------|---------------------|---------|--------------|

| Table 5-28 Block 4 – Intersection perfo | ormance summary of BGU01 |
|-----------------------------------------|--------------------------|
|-----------------------------------------|--------------------------|

| Intersection             | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------------------|---------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                          |               | East       | 0.147                | 6.3                           | 4.9                                                 | LOS A |
|                          | Weekday       | North-west | 0.246                | 8.5                           | 7.0                                                 | LOS A |
|                          | AM            | South-west | 0.205                | 5.3                           | 7.6                                                 | LOS A |
|                          |               | Total      | 0.246                | 8.5                           | 7.0                                                 | LOS A |
| Hickson                  | Weekday<br>PM | East       | 0.289                | 8.4                           | 9.7                                                 | LOS A |
| Road/Towns<br>Place      |               | North-west | 0.351                | 13.3                          | 10.9                                                | LOS A |
| (Dei seite)              |               | South-west | 0.319                | 5.7                           | 12.2                                                | LOS A |
| (Priority –<br>Give Way) |               | Total      | 0.351                | 13.3                          | 10.9                                                | LOS A |
|                          |               | East       | 0.305                | 8.2                           | 10.8                                                | LOS A |
|                          |               | North-west | 0.413                | 14.2                          | 13.8                                                | LOS A |
|                          | Weekend       | South-west | 0.351                | 4.7                           | 14.7                                                | LOS A |
|                          |               | Total      | 0.413                | 14.2                          | 13.8                                                | LOS A |

Overall, the intersection of Hickson Road and Towns Place performs satisfactorily at LOS A during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

## 5.4.2 BGU02 – Dalgety Road/Towns Place

The roundabout intersection, composed of Dalgety Road and Towns Place, is located north of Barangaroo Station. It connects the local roads of Dalgety Road and Towns Place in Barangaroo with the Barangaroo Reserve car park.

Figure 5-32 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-32 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of BGU02

Table 5-29 presents a performance summary of this intersection.

| Table 5-29 Block 4 – Intersection | performance summary of BGU02 |
|-----------------------------------|------------------------------|
|-----------------------------------|------------------------------|

| Intersection | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|---------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |               | South      | 0.138                | 7.0                           | 6.0                                                 | LOS A |
|              | Weekday       | South-east | 0.092                | 8.2                           | 4.2                                                 | LOS A |
|              | AM            | West       | 0.004                | 1.5                           | 0.2                                                 | LOS A |
|              |               | Total      | 0.092                | 8.2                           | 4.2                                                 | LOS A |
| Dalgety      | Weekday<br>PM | South      | 0.130                | 7.0                           | 5.6                                                 | LOS A |
| Road/Towns   |               | South-east | 0.165                | 8.3                           | 7.6                                                 | LOS A |
| Place        |               | West       | 0.025                | 1.2                           | 0.9                                                 | LOS A |
| (Roundabout) |               | Total      | 0.165                | 8.3                           | 7.6                                                 | LOS A |
|              |               | South      | 0.156                | 6.9                           | 6.6                                                 | LOS A |
|              |               | South-east | 0.119                | 8.2                           | 5.4                                                 | LOS A |
|              | vveekend      | West       | 0.010                | 1.4                           | 0.4                                                 | LOS A |
|              |               | Total      | 0.119                | 8.2                           | 5.4                                                 | LOS A |

Overall, the intersection of Dalgety Road and Towns Place performs satisfactorily at LOS A during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

# 5.4.3 BGU03 – Kent Street/Argyle Street

The priority intersection, composed of Kent Street, Argyle Street and Argyle Place, is located north-east of Barangaroo Station. It connects the local roads of Argyle Street and Argyle Place in Barangaroo with Kent Street, a major local road that runs through the Sydney CBD.

Figure 5-33 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-33 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of BGU03

Table 5-30 presents a performance summary of this intersection.

| Table 5-30 Block 4 – Intersection p | performance summary of BGU03 |
|-------------------------------------|------------------------------|
|-------------------------------------|------------------------------|

| Intersection | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |               | South    | 0.750                | 18.3                          | 55.6                                                | LOS B |
|              |               | East     | 0.349                | 5.0                           | 13.6                                                | LOS A |
|              | Weekday<br>AM | North    | 0.034                | 11.9                          | 0.8                                                 | LOS A |
|              |               | West     | 0.143                | 6.0                           | 5.1                                                 | LOS A |
|              |               | Total    | 0.750                | 18.3                          | 55.6                                                | LOS B |
| Kont Street/ | Weekday<br>PM | South    | 0.454                | 12.6                          | 17.5                                                | LOS A |
| Argyle       |               | East     | 0.280                | 5.4                           | 9.8                                                 | LOS A |
| Street       |               | North    | 0.039                | 11.6                          | 1.0                                                 | LOS A |
| (Priority –  |               | West     | 0.186                | 5.9                           | 6.5                                                 | LOS A |
| Give Way)    |               | Total    | 0.454                | 12.6                          | 17.5                                                | LOS A |
|              |               | South    | 0.586                | 16.7                          | 24.9                                                | LOS B |
|              |               | East     | 0.304                | 6.3                           | 10.9                                                | LOS A |
|              | Weekend       | North    | 0.060                | 13.0                          | 1.4                                                 | LOS A |
|              |               | West     | 0.153                | 6.8                           | 5.2                                                 | LOS A |
|              |               | Total    | 0.586                | 16.7                          | 24.9                                                | LOS B |

Overall, the intersection of Kent Street, Argyle Street and Argyle Place performs satisfactorily at LOS B or better during all peak hours. The 95th percentile queue lengths are accommodated within the approach distances for all approaches.

#### 5.4.4 BGU04 – Pedestrian Mid-block Crossing at Kent Street near Gas Lane

The signalised pedestrian mid-block crossing at Kent Street, near Gas Lane, is located south-east of Barangaroo Station. It offers a signalised pedestrian crossing over Kent Street near Gas Lane, a major local road that runs through the Sydney CBD. A dedicated cycleway runs along the east side of Kent Street; however, it was not considered for this assessment. The traffic signals at this intersection are coordinated with the intersection of Kent Street, Clarence Street and the Sydney Harbour Bridge on-ramp (BGU05).

Figure 5-34 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-34 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of BGU04

Table 5-31 presents a performance summary of this intersection.

Table 5-31 Block 4 – Intersection performance summary of BGU04

| Intersection                     | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|----------------------------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                                  |               | South    | 0.486                | 4.8                           | 52.6                                                | LOS A |
| Pedestrian                       | Weekday<br>AM | North    | 0.555                | 34.7                          | 45.5                                                | LOS C |
| Mid-block                        |               | Total    | 0.555                | 16.1                          | 52.6                                                | LOS B |
| Kent Street                      | Weekday<br>PM | South    | 0.275                | 1.6                           | 14.1                                                | LOS A |
| near Gas                         |               | North    | 0.413                | 32.0                          | 49.7                                                | LOS C |
| (Pedestrian<br>only –<br>Signal) |               | Total    | 0.413                | 17.2                          | 49.7                                                | LOS B |
|                                  | Weekend       | South    | 0.342                | 4.9                           | 30.5                                                | LOS A |
|                                  |               | North    | 0.482                | 29.5                          | 36.1                                                | LOS C |
|                                  |               | Total    | 0.482                | 16.2                          | 36.1                                                | LOS B |

Overall, the pedestrian mid-block crossing at Kent Street, near Gas Lane, performs satisfactorily at LOS B during all peak hours. The 95<sup>th</sup> percentile queue on Kent Street (south approach) extends back to the Kent Street/Clarence Street intersection during the weekday AM peak hour.

# 5.4.5 BGU05 – Kent Street/Sydney Harbour Bridge (SHB) On-ramp

The signalised intersection, composed of Kent Street, Clarence Street and the Sydney Harbour Bridge (SHB) on-ramp, is located south-east of Barangaroo Station. It connects the major local roads running through the Sydney CBD of Kent Street and Clarence Street with the Sydney Harbour Bridge on-ramp, providing northbound access to the M1 Motorway. A dedicated cycleway runs along the east side of Kent Street and the north side of the SHB on-ramp. Kent St (NE) cycleway was not assessed. The traffic signals at this intersection are co-ordinated with the pedestrian mid-block crossing at Kent Street, near Gas Lane (BGU04).

Figure 5-35 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-35 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of BGU05

| Table 5-32 presents a performance summary of this intersection | on. |
|----------------------------------------------------------------|-----|
|----------------------------------------------------------------|-----|

Table 5-32 Block 4 – Intersection performance summary of BGU05

| Intersection      | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|-------------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                   |               | South    | 0.563                | 15.1                          | 82.7                                                | LOS B |
|                   | Weekday       | East     | 0.491                | 32.1                          | 47.0                                                | LOS C |
| Kent Street/      | AM            | North    | 0.509                | 35.0                          | 40.4                                                | LOS C |
| Sydney            |               | Total    | 0.563                | 22.4                          | 82.7                                                | LOS B |
| Harbour<br>Bridge | Weekday<br>PM | South    | 0.441                | 9.6                           | 63.4                                                | LOS A |
| (SHB) On-         |               | East     | 0.633                | 42.7                          | 57.8                                                | LOS D |
| ramp<br>(Signal)  |               | North    | 0.540                | 36.0                          | 46.2                                                | LOS C |
|                   |               | Total    | 0.633                | 21.6                          | 63.4                                                | LOS B |
|                   |               | South    | 0.376                | 16.7                          | 43.4                                                | LOS B |
|                   | Weekend       | East     | 0.323                | 27.2                          | 29.2                                                | LOS B |

| Intersection | Peak | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |      | North    | 0.666                | 30.5                          | 33.1                                                | LOS C |
|              |      | Total    | 0.666                | 22.5                          | 43.5                                                | LOS B |

Overall, the intersection of Kent Street, Clarence Street and the SHB on-ramp performs satisfactorily at LOS B during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

### 5.4.6 BGU06 – Hickson Road/Napoleon Street/Sussex Street

The signalised intersection, composed of Hickson Road, Napoleon Street, Sussex Street and a private parking facility is located south of Barangaroo Station. It connects the parking facility exit and local road of Napoleon Street with the regional roads of Hickson Road, which runs along the western waterfront of Barangaroo, and Sussex Street running through the Sydney CBD.

Figure 5-36 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-36 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of BGU06

Table 5-33 presents a performance summary of this intersection.

| Intersection     | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|------------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                  |               | South    | 0.347                | 12.7                          | 50.4                                                | LOS A |
|                  |               | East     | 0.420                | 26.5                          | 43.5                                                | LOS B |
|                  | Weekday<br>AM | North    | 0.360                | 19.2                          | 49.4                                                | LOS B |
|                  |               | West     | 0.243                | 47.8                          | 1.9                                                 | LOS D |
|                  |               | Total    | 0.420                | 18.9                          | 50.4                                                | LOS B |
| Hickson<br>Road/ |               | South    | 0.492                | 17.7                          | 67.7                                                | LOS B |
| Napoleon         |               | East     | 0.464                | 31.8                          | 40.3                                                | LOS C |
| Sussex           | Weekday<br>PM | North    | 0.597                | 28.4                          | 86.8                                                | LOS B |
| Street           |               | West     | 0.583                | 42.9                          | 20.3                                                | LOS D |
| (Signal)         |               | Total    | 0.597                | 26.0                          | 86.8                                                | LOS B |
| Week             |               | South    | 0.320                | 11.0                          | 44.7                                                | LOS A |
|                  |               | East     | 0.471                | 26.4                          | 46.4                                                | LOS B |
|                  | Weekend       | North    | 0.423                | 16.5                          | 58.3                                                | LOS B |
|                  |               | West     | 0.195                | 44.3                          | 1.5                                                 | LOS D |
|                  |               | Total    | 0.471                | 17.1                          | 58.3                                                | LOS B |

#### Table 5-33 Block 4 – Intersection performance summary of BGU06

Overall, the intersection of Hickson Road, Napoleon Street and Sussex Street performs satisfactorily at LOS B during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

#### 5.4.7 BGU07 – Margaret Street/Kent Street/Napoleon Street

The signalised intersection, composed of Margaret Street, Kent Street and Napoleon Street, is located south-east of Barangaroo Station. It connects the local roads of Napoleon Street and Margaret Street in the Sydney CBD with Kent Street, a major local road that runs through the Sydney CBD. A dedicated cycleway runs along the east side of Kent Street.

Figure 5-37 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-37 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of BGU07

| Fable 5-34 presents a | performance summary | of this intersection. |
|-----------------------|---------------------|-----------------------|
|-----------------------|---------------------|-----------------------|

Table 5-34 Block 4 – Intersection performance summary of BGU07

| Intersection | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|---------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |               | South      | 0.674                | 25.0                          | 124.2                                               | LOS B |
|              |               | East       | 0.744                | 31.8                          | 65.3                                                | LOS C |
|              | Weekday<br>AM | North      | 0.432                | 27.4                          | 43.8                                                | LOS B |
|              | 7 (17)        | North-west | 0.665                | 24.3                          | 52.7                                                | LOS B |
|              |               | Total      | 0.744                | 26.8                          | 124.2                                               | LOS B |
| Margaret     | Weekday       | South      | 0.400                | 22.7                          | 72.1                                                | LOS B |
| Street/ Kent |               | East       | 0.435                | 17.7                          | 37.0                                                | LOS B |
| Napoleon     |               | North      | 0.313                | 25.0                          | 42.0                                                | LOS B |
| Street       |               | North-west | 0.455                | 13.0                          | 38.6                                                | LOS A |
| (Signal)     |               | Total      | 0.455                | 20.4                          | 72.1                                                | LOS B |
|              |               | South      | 0.329                | 16.7                          | 44.5                                                | LOS B |
| Weel         | Weekend       | East       | 0.416                | 17.8                          | 38.4                                                | LOS B |
|              |               | North      | 0.347                | 22.7                          | 34.9                                                | LOS B |
|              |               | North-west | 0.415                | 14.5                          | 32.7                                                | LOS A |
|              |               | Total      | 0.416                | 17.8                          | 44.5                                                | LOS B |

Overall, the intersection of Margaret Street, Kent Street and Napoleon Street performs satisfactorily at LOS B during all peak hours. The 95<sup>th</sup> percentile queue on Margaret Street (east approach) extends back to Clarence Street during the AM peak hour. Similarly, the 95<sup>th</sup> percentile queue on Kent Street (south approach) extends back to the pedestrian mid-block crossing near Margaret Street during the AM and PM peak hours.

# 5.4.8 BGU08 – Margaret Street/Clarence Street

The signalised intersection, composed of Margaret Street and Clarence Street, is located south-east of Barangaroo Station. It connects the local road of Margaret Street with Clarence Street, a major local road that runs through the Sydney CBD.

Figure 5-38 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-38 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of BGU08

Table 5-35 presents a performance summary of this intersection.

| Intersection        | Peak     | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|---------------------|----------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                     |          | South    | 0.706                | 22.7                          | 83.5                                                | LOS B |
|                     | Weekday  | East     | 0.505                | 21.4                          | 55.4                                                | LOS B |
|                     | AM       | West     | 0.862                | 48.5                          | 63.1                                                | LOS D |
|                     |          | Total    | 0.862                | 25.8                          | 83.5                                                | LOS B |
| Margaret            | Weekdav  | South    | 0.532                | 22.5                          | 95.0                                                | LOS B |
| Street/<br>Clarence |          | East     | 0.278                | 12.6                          | 29.6                                                | LOS A |
| Street              | PM       | West     | 0.627                | 40.9                          | 55.3                                                | LOS C |
| (Signal)            |          | Total    | 0.627                | 22.3                          | 95.0                                                | LOS B |
|                     |          | South    | 0.226                | 16.5                          | 27.5                                                | LOS B |
|                     |          | East     | 0.191                | 9.5                           | 15.0                                                | LOS A |
|                     | vveekend | West     | 0.572                | 29.5                          | 44.0                                                | LOS C |
|                     |          | Total    | 0.572                | 17.3                          | 44.0                                                | LOS B |

Table 5-35 Block 4 – Intersection performance summary of BGU08

Overall, the intersection of Margaret Street and Clarence Street performs satisfactorily at LOS B during all peak hours. The 95<sup>th</sup> percentile queue on Margaret Street (west approach) extends back to Kent

Street during all peak hours. Similarly, the 95<sup>th</sup> percentile queue on Margaret Street (east approach) extends back to York Street during the AM peak hour.

It was also noted that Block 4 pedestrian volumes at Margaret Street and Clarence Street significantly decreased during the weekday AM peak hour compared to pre-opening conditions. The drop in pedestrian volume may have been caused by pedestrians utilising Sydney Metro to travel to/from Barangaroo Station instead of connecting to Wynyard Station.

## 5.4.9 BGU09 – Margaret Street/York Street

The signalised intersection, composed of Margaret Street and York Street, is located south-east of Barangaroo Station. It connects the local road of Margaret Street with York Street, a major local road that runs through the Sydney CBD.

Figure 5-39 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-39 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of BGU09

Table 5-36 presents a performance summary of this intersection.

| Intersection | Peak     | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|----------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |          | East     | 0.194                | 22.8                          | 22.3                                                | LOS B |
|              | Weekday  | North    | 0.407                | 13.7                          | 56.4                                                | LOS A |
|              | AM       | West     | 0.170                | 35.6                          | 18.9                                                | LOS C |
| Margaret     |          | Total    | 0.407                | 15.8                          | 56.4                                                | LOS B |
| Street/York  |          | East     | 0.186                | 18.3                          | 28.7                                                | LOS B |
| Street       | Weekday  | North    | 0.375                | 20.7                          | 63.0                                                | LOS B |
| (Signal)     | PM       | West     | 0.268                | 31.8                          | 37.0                                                | LOS C |
|              |          | Total    | 0.375                | 21.3                          | 63.0                                                | LOS B |
|              |          | East     | 0.092                | 18.0                          | 9.7                                                 | LOS B |
|              | vveekend | North    | 0.293                | 13.7                          | 38.9                                                | LOS A |

Table 5-36 Block 4 – Intersection performance summary of BGU09

| Intersection | Peak | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |      | West     | 0.289                | 29.4                          | 32.7                                                | LOS C |
|              |      | Total    | 0.293                | 15.9                          | 38.9                                                | LOS B |

Overall, the intersection of Margaret Street and York Street performs satisfactorily at LOS B during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

It was also noted that Block 4 pedestrian volumes at Margaret Street and York Street significantly decreased during the weekday AM peak hour compared to pre-opening conditions. The drop in pedestrian volume may have been caused by pedestrians utilising Sydney Metro to travel to/from Barangaroo Station instead of connecting to Wynyard Station.

# 5.4.10 BGU10 – Pedestrian Mid-block Crossing at Sussex Street under Exchange Place

The signalised pedestrian mid-block crossing at Sussex Street, under Exchange Place, is located south of Barangaroo Station. It offers a signalised pedestrian crossing over Sussex Street, a regional road that runs through the Sydney CBD.

Figure 5-40 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-40 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of BGU10

Table 5-37 presents a performance summary of this intersection.

#### Table 5-37 Block 4 – Intersection performance summary of BGU10

| Intersection                    | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|---------------------------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
| Pedestrian<br>Mid-block Weekday | South         | 0.191    | 6.8                  | 23.9                          | LOS A                                               |       |
|                                 | Weekday<br>AM | North    | 0.202                | 6.8                           | 25.1                                                | LOS A |
| Sussex                          |               | Total    | 0.202                | 6.8                           | 25.1                                                | LOS A |

| Intersection                             | Peak             | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|------------------------------------------|------------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
| Street under                             |                  | South    | 0.249                | 8.1                           | 30.8                                                | LOS A |
| Exchange<br>Place                        | Exchange Weekday | North    | 0.254                | 8.1                           | 31.4                                                | LOS A |
| (= ) ) )                                 | I IVI            | Total    | 0.254                | 8.1                           | 31.4                                                | LOS A |
| (Pedestrian<br>only –<br>Signal) Weekend |                  | South    | 0.217                | 7.9                           | 28.1                                                | LOS A |
|                                          | Weekend          | North    | 0.206                | 7.8                           | 26.3                                                | LOS A |
|                                          |                  | Total    | 0.217                | 7.8                           | 28.1                                                | LOS A |

Overall, the pedestrian mid-block crossing at Sussex Street under Exchange Place performs satisfactorily at LOS A during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

# 5.4.11 BGU11 – Pedestrian Mid-block Crossing at Kent Street near Margaret Street

The signalised pedestrian mid-block crossing at Kent Street, near Margaret Street, is located south of Barangaroo Station. It offers a signalised pedestrian crossing over Kent Street near Margaret Street, a major local road that runs through the Sydney CBD. A dedicated cycleway runs along the east side of Kent Street.

Figure 5-41 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-41 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of BGU11

Table 5-38 presents a performance summary of this intersection.

| Intersection                     | Peak                     | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|----------------------------------|--------------------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                                  |                          | South    | 0.445                | 10.7                          | 39.7                                                | LOS A |
| Pedestrian<br>Mid-block          | Weekday<br>AM            | North    | 0.255                | 9.6                           | 20.7                                                | LOS A |
| Crossing at                      | Zivi                     | Total    | 0.445                | 10.4                          | 39.7                                                | LOS A |
| Kent Street                      | Weekday<br>PM<br>Weekend | South    | 0.352                | 10.2                          | 30.0                                                | LOS A |
| Margaret                         |                          | North    | 0.229                | 9.4                           | 18.6                                                | LOS A |
| Street                           |                          | Total    | 0.352                | 9.9                           | 30.0                                                | LOS A |
| (Pedestrian<br>only –<br>Signal) |                          | South    | 0.265                | 10.0                          | 21.8                                                | LOS A |
|                                  |                          | North    | 0.192                | 9.5                           | 15.2                                                | LOS A |
| Cignal                           |                          | Total    | 0.265                | 9.8                           | 21.8                                                | LOS A |

#### Table 5-38 Block 4 – Intersection performance summary of BGU11

Overall, the pedestrian mid-block crossing at Kent Street, near Margaret Street, performs satisfactorily at LOS A during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

It was also noted that Block 4 pedestrian volumes at the Mid-block crossing at Kent Street near Margaret Street significantly increased during the weekday PM peak hour compared to pre-opening conditions. Exact reasons for the increase in pedestrian volume are unknown, however it may be unrelated to the Sydney Metro opening given the intersection is located well away from Barangaroo Station.

## 5.4.12 BGU12 – Sussex Street/Erskine Street

The signalised intersection, composed of Sussex Street and Erskine Street, is located south of Barangaroo Station. It connects the regional road of Sussex Street running through the Sydney CBD with the local road of Erskine Street.

Figure 5-42 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-42 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of BGU12

| Table 5-39 pres | ents a perform | ance summary | of this intersed     | ction.                        |                                                     |       |
|-----------------|----------------|--------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
| Intersection    | Peak           | Approach     | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|                 |                | South        | 0.360                | 29.7                          | 48.4                                                | LOS C |
|                 |                | East         | 0.528                | 8.8                           | 60.1                                                | LOS A |
|                 | Weekday<br>AM  | North        | 0.294                | 22.7                          | 45.4                                                | LOS B |
|                 | AIVI           | West         | 0.563                | 17.6                          | 70.7                                                | LOS B |
|                 |                | Total        | 0.563                | 18.1                          | 70.7                                                | LOS B |
| Succov          |                | South        | 0.424                | 31.4                          | 55.0                                                | LOS C |
| Street/         |                | East         | 0.457                | 10.2                          | 59.8                                                | LOS A |
| Erskine         | Weekday<br>DM  | North        | 0.383                | 24.5                          | 59.7                                                | LOS B |
| Sileet          | L IAI          | West         | 0.493                | 15.5                          | 59.3                                                | LOS B |
| (Signal)        |                | Total        | 0.493                | 19.6                          | 59.8                                                | LOS B |
|                 |                | South        | 0.494                | 31.2                          | 69.6                                                | LOS C |
|                 | Weekend        | East         | 0.481                | 9.4                           | 42.3                                                | LOS A |
|                 |                | North        | 0.242                | 22.5                          | 36.8                                                | LOS B |
|                 |                | West         | 0.531                | 17.1                          | 73.4                                                | LOS B |

Overall, the intersection of Sussex Street and Erskine Street performs satisfactorily at LOS B during all peak hours. The 95<sup>th</sup> percentile queue on Erskine Street (west approach) extends back to Shelley Street during all peak hours.

0.531

19.3

73.4

LOS B

Total

#### 5.4.13 BGU13 – Kent Street/Erskine Street

The signalised intersection, composed of Kent Street and Erskine Street, is located south of Barangaroo Station. It connects the local road of Erskine Street with Kent Street, a major local road that runs through the Sydney CBD. A dedicated cycleway runs along the east side of Kent Street.

Figure 5-43 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-43 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of BGU13

| Table 5-40 presents a | performance summary | of this intersection. |
|-----------------------|---------------------|-----------------------|
|-----------------------|---------------------|-----------------------|

Table 5-40 Block 4 – Intersection performance summary of BGU13

| Intersection            | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|-------------------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                         |               | South    | 0.278                | 13.6                          | 47.2                                                | LOS A |
|                         |               | East     | 0.452                | 36.0                          | 46.3                                                | LOS C |
|                         | Weekday<br>AM | North    | 0.940                | 45.1                          | 76.7                                                | LOS D |
|                         | 7 (1)1        | West     | 0.422                | 32.7                          | 40.3                                                | LOS C |
|                         |               | Total    | 0.940                | 26.7                          | 76.7                                                | LOS B |
|                         | Weekday<br>PM | South    | 0.362                | 25.1                          | 49.7                                                | LOS B |
| Kent Street/<br>Erskine |               | East     | 0.220                | 24.1                          | 31.0                                                | LOS B |
| Street                  |               | North    | 0.601                | 28.2                          | 52.0                                                | LOS B |
| (Signal)                |               | West     | 0.253                | 26.7                          | 38.8                                                | LOS B |
| (eignai)                |               | Total    | 0.601                | 25.9                          | 52.0                                                | LOS B |
|                         |               | South    | 0.184                | 16.4                          | 29.3                                                | LOS B |
|                         |               | East     | 0.479                | 48.4                          | 40.5                                                | LOS D |
|                         | Weekend       | North    | 0.762                | 42.9                          | 48.9                                                | LOS D |
|                         |               | West     | 0.556                | 43.1                          | 55.3                                                | LOS D |
|                         |               | Total    | 0.762                | 33.8                          | 55.3                                                | LOS C |

Overall, the intersection of Kent Street and Erskine Street performs satisfactorily at LOS C or better during all peak hours. The 95<sup>th</sup> percentile queue on Erskine Street (east approach) extends to Clarence Street during the AM and weekend peak hours.

# 5.4.14 BGU14 – Sussex Street/King Street

The signalised intersection, composed of Sussex Street and King Street, is located south of Barangaroo Station. It connects the King Street Western Distributor (A1) off-ramp with the regional road of Sussex Street, running through the Sydney CBD. A dedicated cycleway runs along the north side of King Street.

Figure 5-44 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-44 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of BGU14

Table 5-41 presents a performance summary of this intersection.

| Intersection          | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|-----------------------|---------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                       |               | North      | 0.658                | 26.1                          | 120.7                                               | LOS B |
|                       | Weekday<br>AM | South-west | 0.802                | 27.3                          | 193.4                                               | LOS B |
|                       |               | Total      | 0.802                | 27.2                          | 193.4                                               | LOS B |
| Sussex<br>Street/King | Weekday<br>PM | North      | 0.653                | 18.6                          | 144.4                                               | LOS B |
| Street                |               | South-west | 0.621                | 25.8                          | 110.0                                               | LOS B |
| (Signal)              |               | Total      | 0.653                | 24.1                          | 144.4                                               | LOS B |
|                       | Weekend       | North      | 0.442                | 18.3                          | 81.9                                                | LOS B |
|                       |               | South-west | 0.761                | 25.5                          | 162.1                                               | LOS B |
|                       |               | Total      | 0.761                | 23.8                          | 162.1                                               | LOS B |

Table 5-41 Block 4 – Intersection performance summary of BGU14

Overall, the intersection of Sussex Street and King Street performs satisfactorily at LOS B during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

# 5.4.15 BGU15 – Kent Street/King Street

The signalised intersection, composed of Kent Street and King Street, is located south of Barangaroo Station. It connects the local road of King Street with Kent Street, a major local road that runs through

the Sydney CBD. A dedicated cycleway runs along the east side of Kent Street and north side of King Street.

Figure 5-45 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-45 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of BGU15

| Intersection | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |               | South    | 0.623                | 40.2                          | 66.1                                                | LOS C |
|              | Weekday<br>AM | West     | 0.553                | 6.0                           | 37.8                                                | LOS A |
|              |               | Total    | 0.623                | 17.5                          | 66.1                                                | LOS B |
| Kent Street/ | Weekday       | South    | 0.442                | 32.4                          | 64.2                                                | LOS C |
| King Street  |               | West     | 0.427                | 5.6                           | 32.8                                                | LOS A |
| (Signal)     | 1 111         | Total    | 0.442                | 20.2                          | 64.2                                                | LOS B |
|              | Weekend       | South    | 0.424                | 38.2                          | 45.3                                                | LOS C |
|              |               | West     | 0.418                | 8.2                           | 62.6                                                | LOS A |
|              |               | Total    | 0.424                | 17.8                          | 62.6                                                | LOS B |

Table 5-42 presents a performance summary of this intersection.

 Table 5-42 Block 4 – Intersection performance summary of BGU15

Overall, the intersection of Kent Street and King Street performs satisfactorily at LOS B during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

### 5.4.16 BGU16 – New Pedestrian Mid-block Crossing at Hickson Road (north of metro station)

The unsignalised pedestrian mid-block crossing at Hickson Road (north of the metro station) is located directly east of Barangaroo Station.

Figure 5-46 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-46 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of BGU16

| Table 5-43 presents a | performance summary | of this intersection. |
|-----------------------|---------------------|-----------------------|
|-----------------------|---------------------|-----------------------|

| Intersection                             | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|------------------------------------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                                          |               | South    | 0.178                | 2.1                           | 5.7                                                 | LOS A |
| New<br>Pedestrian                        | Weekday<br>AM | North    | 0.102                | 2.1                           | 3                                                   | LOS A |
|                                          |               | Total    | 0.178                | 2.1                           | 5.7                                                 | LOS A |
| Crossing at                              | Weekday<br>PM | South    | 0.241                | 2.1                           | 7.9                                                 | LOS A |
| Hickson<br>Road (porth                   |               | North    | 0.162                | 2.1                           | 4.9                                                 | LOS A |
| of metro                                 |               | Total    | 0.241                | 2.1                           | 7.9                                                 | LOS A |
| station)<br>(Pedestrian<br>only - Zebra) | Weekend       | South    | 0.328                | 2.1                           | 12.1                                                | LOS A |
|                                          |               | North    | 0.181                | 2.1                           | 5.5                                                 | LOS A |
|                                          |               | Total    | 0.328                | 2.1                           | 12.1                                                | LOS A |

 Table 5-43 Block 4 – Intersection performance summary of BGU16

Overall, the new pedestrian mid-block crossing at Hickson Road (north of metro station) performs satisfactorily at LOS A during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

#### 5.4.17 BGU17 – New Pedestrian Mid-block Crossing at Hickson Road (south of metro station)

The unsignalised pedestrian mid-block crossing at Hickson Road (south of the metro station) is located directly east of Barangaroo Station.

Figure 5-47 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-47 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of BGU17

#### Table 5-44 presents a performance summary of this intersection.

| Table 5-44 Block 4 – Intersection | performance summary of BGU17 |
|-----------------------------------|------------------------------|
|-----------------------------------|------------------------------|

| Intersection                                         | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|------------------------------------------------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                                                      |               | South    | 0.183                | 2.2                           | 5.9                                                 | LOS A |
| New                                                  | Weekday<br>AM | North    | 0.105                | 2.2                           | 3.1                                                 | LOS A |
| Pedestrian                                           |               | Total    | 0.183                | 2.2                           | 5.9                                                 | LOS A |
| Crossing at                                          | Weekday<br>PM | South    | 0.249                | 2.2                           | 8.2                                                 | LOS A |
| Hickson<br>Road (south                               |               | North    | 0.168                | 2.2                           | 5.1                                                 | LOS A |
| of metro<br>station)<br>(Pedestrian<br>only - Zebra) |               | Total    | 0.249                | 2.2                           | 8.2                                                 | LOS A |
|                                                      | Weekend       | South    | 0.343                | 2.3                           | 12.6                                                | LOS A |
|                                                      |               | North    | 0.189                | 2.3                           | 5.8                                                 | LOS A |
|                                                      |               | Total    | 0.343                | 2.3                           | 12.6                                                | LOS A |

Overall, the new pedestrian mid-block crossing at Hickson Road (south of metro station) performs satisfactorily at LOS A during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

### 5.4.18 BGU18 – Shelley Street/Erskine Street

The signalised intersection, composed of Shelley Street and Erskine Street, is located south of Barangaroo Station. It connects the local roads of Erskine Street and Shelley Street in the Sydney CBD near the King Street Wharf.

Figure 5-48 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-48 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of BGU18

| Fable 5-45 presents a | performance summary | of this intersection. |
|-----------------------|---------------------|-----------------------|
|-----------------------|---------------------|-----------------------|

Table 5-45 Block 4 – Intersection performance summary of BGU18

| Intersection      | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|-------------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                   |               | South    | 0.554                | 12.2                          | 67.0                                                | LOS A |
|                   |               | East     | 0.547                | 39.8                          | 47.3                                                | LOS C |
|                   | Weekday<br>AM | North    | 0.091                | 10.1                          | 6.8                                                 | LOS A |
|                   | 7 (17)        | West     | 0.457                | 36.7                          | 37.1                                                | LOS C |
|                   |               | Total    | 0.554                | 22.9                          | 67.0                                                | LOS B |
| Shallov           | Weekday<br>PM | South    | 0.382                | 12.6                          | 39.0                                                | LOS A |
| Street/           |               | East     | 0.316                | 36.3                          | 28.0                                                | LOS C |
| Erskine<br>Street |               | North    | 0.231                | 11.3                          | 24.9                                                | LOS A |
| Olicer            |               | West     | 0.316                | 33.7                          | 28.3                                                | LOS C |
| (Signal)          |               | Total    | 0.382                | 20.5                          | 39.0                                                | LOS B |
|                   |               | South    | 0.437                | 12.6                          | 29.9                                                | LOS A |
|                   | Weekend       | East     | 0.637                | 45.2                          | 70.3                                                | LOS D |
|                   |               | North    | 0.106                | 11.7                          | 15.3                                                | LOS A |
|                   |               | West     | 0.300                | 31.1                          | 35.3                                                | LOS C |
|                   |               | Total    | 0.637                | 27.9                          | 70.3                                                | LOS B |

Overall, the intersection of Shelley Street and Erskine Street performs satisfactorily at LOS B during all peak hours. The 95<sup>th</sup> percentile queue on Erskine Street (east approach) extends back to Sussex Street during the weekday AM and weekend peak hours.

# 5.4.19 Comparison with previous study blocks

Figure 5-49 provides a comparison of the total peak hourly traffic volumes recorded across all intersections for Block 4 against previous study blocks. As shown, Block 4 traffic volumes are slightly higher during all peak hours compared to the pre-opening conditions.



Figure 5-49 Study block comparison – Barangaroo Station peak hourly traffic volume across all intersections

A comparison of the intersection LOS for Block 4 against previous study blocks is shown in Figure 5-50 and Figure 5-51. All intersections in the Barangaroo Station study area perform at LOS C or better during Block 4, which is generally similar to previous study blocks.



Figure 5-50 Study block comparison – Barangaroo Station intersection performance summary (BGU01-BGU06 & BGU16-BGU17)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BGU07 - MARGARET ST / KENT ST / NAPOLEON ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BGU08 - MARGARET ST / CLARENCE ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Towns Ala Hickson polymer Structure at 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AM PEAK PM PEAK WE PEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AM PEAK PM PEAK WE PEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Windmill Street over 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | asol<br>asol<br>asol<br>asol<br>asol<br>asol<br>asol<br>asol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a sou<br>a sou |
| Argyle Place                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Argyle Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BLOCK 1<br>BLOCK 2<br>BLOCK 4<br>BLOCK 1<br>BLOCK 2<br>BLOCK 2<br>BLOCK 2<br>BLOCK 2<br>BLOCK 2<br>BLOCK 3<br>BLOCK 3<br>BLOCK 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BLOCK 1<br>BLOCK 2<br>BLOCK 3<br>BLOCK 4<br>BLOCK 2<br>BLOCK 4<br>BLOCK 2<br>BLOCK 2<br>BLOCK 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Tano I and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BGU09 - MARGARET ST / YORK ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BGU10 - PEDESTRIAN MID-BLOCK CROSSING AT SUSSEX ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| High High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AM PEAK PM PEAK WE PEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AM PEAK PM PEAK WE PEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <sup>1a</sup> a <sub>1</sub> 5 <sup>4</sup> 06<br><sup>1a</sup> a <sub>1</sub> 5 <sup>4</sup> 06<br><sup>1a</sup> a <sub>1</sub> 5 <sup>4</sup> 06<br><sup>1a</sup> a <sub>1</sub> 5 <sup>1a</sup> a <sub>1</sub><br><sup>1a</sup> a <sub>1</sub> 5 <sup>1a</sup> a <sub>1</sub> 5 | B SOJ<br>B SOJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOSA<br>LOSA<br>LOSA<br>LOSA<br>LOSA<br>LOSA<br>LOSA<br>LOSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| nkins Stree<br>Goucester S<br>Han<br>Beorge Stree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BLOCK 1<br>BLOCK 2<br>BLOCK 3<br>BLOCK 4<br>BLOCK 1<br>BLOCK 3<br>BLOCK 1<br>BLOCK 4<br>BLOCK 4<br>BLOCK 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BLOCK 1<br>BLOCK 2<br>BLOCK 3<br>BLOCK 4<br>BLOCK 1<br>BLOCK 4<br>BLOCK 1<br>BLOCK 1<br>BLOCK 1<br>BLOCK 2<br>BLOCK 3<br>BLOCK 3<br>BLOCK 3<br>BLOCK 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| P Ken gi nalley Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BGU11 - PEDESTRIAN MID-BLOCK CROSSING AT KENT ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BGU12 - SUSSEX ST / ERSKINE ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Grosvenor Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AM PEAK PM PEAK WE PEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AM PEAK PM PEAK WE PEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ange drove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| anger oo Avenue BGU07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOSA<br>LOSA<br>LOSA<br>LOSA<br>LOSA<br>LOSA<br>LOSA<br>LOSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a sol<br>a sol |
| angaroo Avenue<br>BGU10<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU11<br>BGU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BLOCK1 LOSA<br>BLOCK2 LOSA<br>BLOCK3 LOSA<br>BLOCK3 LOSA<br>BLOCK3 LOSA<br>BLOCK3 LOSA<br>BLOCK4 LOSA<br>BLOCK4 LOSA<br>BLOCK4 LOSA<br>BLOCK4 LOSA<br>BLOCK4 LOSA<br>BLOCK4 LOSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BLOCK1     LOSB       BLOCK2     LOSB       BLOCK3     LOSB       BLOCK4     LOSB       BLOCK3     LOSB       BLOCK4     LOSB       BLOCK4     LOSB       BLOCK3     LOSB       BLOCK4     LOSB       BLOCK3     LOSB       BLOCK4     LOSB       BLOCK3     LOSB       BLOCK4     LOSB       BLOCK4     LOSB       BLOCK4     LOSB       BLOCK4     LOSB       BLOCK4     LOSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| angaroo Avenue<br>BGU10<br>BGU11<br>BGU11<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU13<br>BGU12<br>BGU13<br>BGU12<br>BGU14<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BLOCK 1         LOS A           BLOCK 2         LOS A           BLOCK 2         LOS A           BLOCK 2         LOS A           BLOCK 3         LOS A           BLOCK 4         LOS A           BLOCK 2         LOS A           BLOCK 3         LOS A           BLOCK 4         LOS A           BLOCK 2         LOS A           BLOCK 4         LOS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BIO 000 K - 1000 K - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| angaroo Avenue<br>BGU10<br>BGU10<br>BGU11<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU12<br>BGU13<br>BGU12<br>BGU13<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU14<br>BGU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Noola         Noola         Noola           Read         100 K         100 K           Read <t< th=""><th>BB0118 - SHELLEY ST / ERSKINE ST           BB0118 - SHELLEY ST / ERSKINE ST           BB018 - SHELLEY ST / ERSKINE ST</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BB0118 - SHELLEY ST / ERSKINE ST           BB0118 - SHELLEY ST / ERSKINE ST           BB018 - SHELLEY ST / ERSKINE ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Andge Street<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU09<br>BGU11<br>BGU11<br>BGU11<br>BGU12<br>BGU12<br>BGU13<br>BGU13<br>BGU13<br>BGU13<br>BGU13<br>BGU14<br>BGU14<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BGU15<br>BG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Iose     Iose       Iose     Iose <t< th=""><th>B     COMPARENT     B     COMPARENT     COMPARENT       B     COMPARENT     COMPARENT     COMPARENT     C</th></t<> | B     COMPARENT     B     COMPARENT     COMPARENT       B     COMPARENT     COMPARENT     COMPARENT     C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Legend<br>Pedestrian only -<br>Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I <th>B       B       B       B       B       B       B       B       B       B       B       B       B       B       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C</th>                                                                                                                      | B       B       B       B       B       B       B       B       B       B       B       B       B       B       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Legend<br>Pedestrian only -<br>Signal<br>Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0K1     008     008     008       0K2     008     008     008       0K3     008     008     008       0K4     008     008     008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CK1 <ul> <li>IOSB</li> <li>ICK2</li> <li>IOSB</li> <li>IOSB</li> <li>IOSB</li> <li>IOSB</li> <li>IOSB</li> <li>IOSB</li> <li>IOSB</li> <li>IOSB</li> <li>IOSC</li> <li>IOSB</li> <li>IOSB</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

95

Figure 5-51 Study block comparison – Barangaroo Station intersection performance summary (BGU07-BGU13, BGU18)

#### Sydney Metro City and Southwest - Traffic and Interchange Monitoring Block 4 Report – Sydney Metro C&SW - Traffic and Interchange Monitoring



Figure 5-52 Study block comparison – Barangaroo Station intersection performance summary (BGU14-BGU15)

# 5.5 Martin Place Station

Martin Place Station is a new underground station and the fifth stop on the City & Southwest Line (towards Sydenham). It is located to west of the existing Martin Place Station (Sydney Trains) in Martin Place.

Martin Place Station has various accesses from Hunter Street, Castlereagh Street, Elizabeth Street and Martin Place. The accesses are separated into Martin Place North and Martin Place South. The four entrances are listed below:

- Martin Place North Entry (Hunter Street/Castlereagh Street); at the south-east corner of the intersection of Hunter Street, Castlereagh Street and Bligh Street
- Martin Place North Entry (Hunter Street/Elizabeth Street); at the south-west corner of the intersection of Hunter Street, Elizabeth Street and Chifley Square
- Martin Place South Entry (Castlereagh Street); along the eastern side of Castlereagh Street, north
  of King Street
- Martin Place South Entry (Elizabeth Street); along the western side of Elizabeth Street, north of King Street.

Bus services are available within approximately 150 metres of Martin Place Station, located at Elizabeth Street and Castlereagh Street. Pedestrian connections between the existing Martin Place Station platforms and metro station platforms are provided. The existing taxi ranks close to the station were retained. New bicycle parking racks are provided on Castlereagh Street and Elizabeth Street near the Martin Place North accesses.

The Martin Place Station study area consists of six intersections. Table 5-46 presents the peak hours utilised for modelling the intersections. Table 5-47 provides a summary of the intersection LOS while Figure 5-53 visualises a geospatial summary of the intersection LOS within the Martin Place Station study area.

| Network Intersection |       | Weekday AM peak<br>hour |               | Weekday I<br>hoເ | PM peak<br>ır | Weekend peak hour |               |
|----------------------|-------|-------------------------|---------------|------------------|---------------|-------------------|---------------|
| ID                   | ID    | Day                     | Start<br>time | Day              | Start<br>time | Day               | Start<br>time |
|                      | MPL01 |                         | 8:30am        | Wednesday        | 5:45pm        | Saturday          | 6:15pm        |
|                      | MPL02 | Madaaaday               |               |                  |               |                   |               |
| MPL-N1               | MPL03 | wednesday               |               |                  |               |                   |               |
|                      | MPL04 |                         |               |                  |               |                   |               |
| -                    | MPL05 | Monday                  | 8:15am        | Wednesday        | 6:30pm        | Saturday          | 5:30pm        |
| -                    | MPL06 | Wednesday               | 8:30am        | Wednesday        | 5:15pm        | Saturday          | 5:30pm        |

#### Table 5-46 Block 4 – Martin Place Station peak hours modelled

#### Table 5-47 Block 4 – Martin Place Station intersection performance summary

| Intersection |                                                            | LOS                |                    |                 |  |
|--------------|------------------------------------------------------------|--------------------|--------------------|-----------------|--|
| ID           | Intersection                                               | Weekday AM<br>Peak | Weekday PM<br>Peak | Weekend<br>Peak |  |
| MPL01        | Hunter Street/Castlereagh Street/<br>Bligh Street (Signal) | LOS B              | LOS B              | LOS B           |  |
| MPL02        | Hunter Street/Elizabeth Street/<br>Chifley Square (Signal) | LOS B              | LOS C              | LOS C           |  |
| MPL03        | Bent Street/Bligh Street (Signal)                          | LOS A              | LOS A              | LOS A           |  |
| MPL04        | Bent Street/Phillip Street (Signal)                        | LOS B              | LOS B              | LOS B           |  |

| Intersection |                                                                 | LOS                |                    |                 |  |
|--------------|-----------------------------------------------------------------|--------------------|--------------------|-----------------|--|
| ID           | Intersection                                                    | Weekday AM<br>Peak | Weekday PM<br>Peak | Weekend<br>Peak |  |
| MPL05        | Pedestrian Mid-block Crossing at<br>Castlereagh Street (Signal) | LOS B              | LOS A              | LOS A           |  |
| MPL06        | Pedestrian Mid-block Crossing at<br>Elizabeth Street (Signal)   | LOS A              | LOS A              | LOS A           |  |

Overall, the intersection performance in the Martin Place Station study area during the peak hours is satisfactory, operating at LOS C or better.



Figure 5-53 Block 4 – Martin Place Station intersection performance summary

#### 5.5.1 MPL01 – Hunter Street/Castlereagh Street/Bligh Street

The signalised intersection, composed of Hunter Street, Castlereagh Street and Bligh Street, is located directly north-west of Martin Place North. It connects the local roads of Bligh Street and Hunter Street in the Sydney CBD with Castlereagh Street, a major local road running through the Sydney CBD.

Figure 5-54 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

19.2

21.0

40.4

8.3

19.4

37.9

53.9

20.0

19.1

53.9

Figure 5-54 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of MPL01

| Table 5-48 Block 4                                          | 4 – Intersection pe | erformance summ | ary of MPL01         |                               |                                                     |
|-------------------------------------------------------------|---------------------|-----------------|----------------------|-------------------------------|-----------------------------------------------------|
| Intersection                                                | Peak                | Approach        | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) |
|                                                             | Weekday<br>AM       | East            | 0.293                | 11.4                          | 38.6                                                |
| Hunter<br>Street/<br>Castlereagh<br>Street/<br>Bligh Street |                     | North           | 0.638                | 54.5                          | 33.4                                                |
|                                                             |                     | North-west      | 0.271                | 11.1                          | 34.3                                                |
|                                                             |                     | Total           | 0.638                | 20.1                          | 38.6                                                |
|                                                             | Weekday<br>PM       | East            | 0.256                | 12.1                          | 31.5                                                |
|                                                             |                     | North           | 0.704                | 55.7                          | 37.2                                                |
|                                                             |                     | North-west      | 0.330                | 10.2                          | 37.9                                                |

Total

East

North

North-west

Total

Weekend

Table 5-48 presents a performance summary of this intersection.

| PLO |
|-----|
| F   |

(Signal)

Overall, the intersection of Hunter Street, Castlereagh Street and Bligh Street performs satisfactorily at LOS B during all peak hours. The 95<sup>th</sup> percentile queue on Hunter Street (east approach) extends back to Elizabeth Street during the weekend peak hour.

0.704

0.447

0.599

0.173

0.599

LOS

LOS A LOS D LOS A LOS B LOS A LOS D LOS A

LOS B

LOS B

LOS C

LOS A

LOS B

It was also noted that Block 4 pedestrian volumes at Hunter Street and Castlereagh Street significantly increased across all peak hours compared to pre-opening conditions. Given that MPL01 is located in close proximity of Martin Place station, the rise in pedestrian activity is likely associated to commuters accessing Sydney Metro during Block 4.

# 5.5.2 MPL02 – Hunter Street/Elizabeth Street/Chifley Square

The signalised intersection, composed of Hunter Street, Elizabeth Street and Chifley Square, is located directly north-east of Martin Place North. It connects the local roads of Chifley Square and Hunter Street in the Sydney CBD with Elizabeth Street, a major local road linking the Sydney CBD and Waterloo.

Figure 5-55 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-55 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of MPL02

Table 5-49 presents a performance summary of this intersection.

| Intersection                                                               | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>™</sup><br>percentile<br>queue<br>(metres) | LOS   |
|----------------------------------------------------------------------------|---------------|------------|----------------------|-------------------------------|----------------------------------------------------|-------|
|                                                                            | Weekday<br>AM | South      | 0.850                | 21.2                          | 126.5                                              | LOS B |
|                                                                            |               | East       | 0.484                | 32.2                          | 45.4                                               | LOS C |
|                                                                            |               | North-east | 0.381                | 14.9                          | 26.9                                               | LOS B |
| Hunter<br>Street/<br>Elizabeth<br>Street/<br>Chifley<br>Square<br>(Signal) |               | West       | 0.537                | 32.0                          | 65.3                                               | LOS C |
|                                                                            |               | Total      | 0.850                | 24.8                          | 126.5                                              | LOS B |
|                                                                            | Weekday<br>PM | South      | 0.947                | 33.9                          | 209.6                                              | LOS C |
|                                                                            |               | East       | 0.419                | 32.8                          | 38.1                                               | LOS C |
|                                                                            |               | North-east | 0.351                | 28.5                          | 52.9                                               | LOS B |
|                                                                            |               | West       | 0.531                | 32.8                          | 65.3                                               | LOS C |
|                                                                            |               | Total      | 0.947                | 32.8                          | 209.6                                              | LOS C |
|                                                                            | Weekend       | South      | 0.903                | 41.0                          | 199.9                                              | LOS C |
|                                                                            |               | East       | 0.652                | 38.9                          | 39.3                                               | LOS C |

 Table 5-49 Block 4 – Intersection performance summary of MPL02

| Intersection | Peak | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |      | North-east | 0.288                | 17.5                          | 25.6                                                | LOS B |
|              |      | West       | 0.354                | 24.4                          | 50.1                                                | LOS B |
|              |      | Total      | 0.903                | 34.5                          | 199.9                                               | LOS C |

Overall, the intersection of Hunter Street, Elizabeth Street and Chifley Square performs satisfactorily at LOS C or better during all peak hours. The 95<sup>th</sup> percentile queue on Elizabeth Street (south approach) extends back to the mid-block crossing on Elizabeth Street (MPL06) during all peak hours. Similarly, the 95<sup>th</sup> percentile queue on Hunter Street (west approach) extends back to Bligh Street during all peak hours.

It was also noted that Block 4 pedestrian volumes at Hunter Street, Elizabeth Street and Chiefly Square significantly increased during the weekday AM peak hour compared to pre-opening conditions. Given that MPL02 is located in close proximity of Martin Place station, the rise in pedestrian activity is likely associated to commuters accessing Sydney Metro during Block 4.

## 5.5.3 MPL03 – Bent Street/Bligh Street

The signalised intersection, composed of Bent Street and Bligh Street, is located north of Martin Place North. It connects the local roads of Bent Street and Bligh Street in the Sydney CBD, providing access to the major local road of Castlereagh Street further south.

Figure 5-56 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-56 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of MPL03

Table 5-50 presents a performance summary of this intersection.

| Intersection                             | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|------------------------------------------|---------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                                          | Weekday<br>AM | South-east | 0.285                | 4.1                           | 39.1                                                | LOS A |
| Bent Street/<br>Bligh Street<br>(Signal) |               | North-west | 0.101                | 3.7                           | 11.0                                                | LOS A |
|                                          |               | Total      | 0.285                | 4.0                           | 39.1                                                | LOS A |
|                                          | Weekday<br>PM | South-east | 0.246                | 3.6                           | 24.3                                                | LOS A |
|                                          |               | North-west | 0.092                | 3.5                           | 10.0                                                | LOS A |
|                                          |               | Total      | 0.246                | 3.6                           | 24.3                                                | LOS A |
|                                          | Weekend       | South-east | 0.386                | 5.5                           | 31.4                                                | LOS A |
|                                          |               | North-west | 0.086                | 3.8                           | 9.0                                                 | LOS A |
|                                          |               | Total      | 0.386                | 5.1                           | 31.4                                                | LOS A |

#### Table 5-50 Block 4 – Intersection performance summary of MPL03

Overall, the intersection of Bent Street and Bligh Street performs satisfactorily at LOS A during all peak hours. The 95<sup>th</sup> percentile queue on Bent Street (south-east approach) extends back to Phillip Street during the weekday AM and weekend peak hours.

It was also noted that Block 4 pedestrian volumes at Bent Street and Bligh Street significantly increased during the weekday AM peak hour compared to pre-opening conditions. Given that MPL03 is located in close proximity of Martin Place station, the rise in pedestrian activity is likely associated to commuters accessing Sydney Metro during Block 4.

### 5.5.4 MPL04 – Bent Street/Phillip Street

The signalised intersection, composed of Bent Street and Phillip Street, is located north of Martin Place North. It connects the local roads of Bent Street and Phillip Street in the Sydney CBD, providing access to the major local road of Elizabeth Street further south.

Figure 5-57 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-57 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of MPL04

Table 5-51 presents a performance summary of this intersection.
| Intersection                               | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------------------------------------|---------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                                            |               | South-east | 0.596                | 23.5                          | 85.4                                                | LOS B |
|                                            |               | North      | 0.212                | 20.0                          | 33.3                                                | LOS B |
|                                            | Weekday<br>ΔM | North-west | 0.142                | 19.7                          | 16.8                                                | LOS B |
|                                            |               | South-west | 0.416                | 18.2                          | 63.0                                                | LOS B |
| Bent Street/<br>Phillip Street<br>(Signal) |               | Total      | 0.596                | 20.5                          | 85.4                                                | LOS B |
|                                            | Weekday<br>PM | South-east | 0.667                | 36.8                          | 65.4                                                | LOS C |
|                                            |               | North      | 0.189                | 11.0                          | 29.2                                                | LOS A |
|                                            |               | North-west | 0.329                | 35.3                          | 22.6                                                | LOS C |
|                                            |               | South-west | 0.400                | 10.7                          | 61.8                                                | LOS A |
|                                            |               | Total      | 0.667                | 18.8                          | 65.4                                                | LOS B |
|                                            |               | South-east | 0.390                | 26.3                          | 46.8                                                | LOS B |
|                                            |               | North      | 0.158                | 13.5                          | 21.8                                                | LOS A |
|                                            | Weekend       | North-west | 0.167                | 21.3                          | 15.9                                                | LOS B |
|                                            |               | South-west | 0.293                | 13.6                          | 45.6                                                | LOS A |
|                                            |               | Total      | 0.390                | 17.7                          | 46.8                                                | LOS B |

#### Table 5-51 Block 4 – Intersection performance summary of MPL04

Overall, the intersection of Bent Street and Phillip Street performs satisfactorily at LOS B during all peak hours. The 95<sup>th</sup> percentile queue lengths on Bent Street (south-east approach) extends back to Macquarie Street during the AM peak hour.

It was also noted that Block 4 pedestrian volumes at Hunter Street, Elizabeth Street and Chiefly Square significantly decreased during the weekday PM peak hour compared to pre-opening conditions. Exact reasons for the drop in pedestrian volumes are unknown.

#### 5.5.5 MPL05 – Pedestrian Mid-block Crossing at Castlereagh Street

The signalised pedestrian mid-block crossing at Castlereagh Street is located directly north-west of Martin Place South. It offers a signalised pedestrian crossing over Castlereagh Street, a major local road that runs through the Sydney CBD.

During Block 4, the configuration of the intersection was restructured as two approach/departure lanes (previously three approach/departure lanes in pre-opening conditions). Additionally, the eastern kerbside approach lane of Castlereagh Street was altered to be a partial bus and general traffic lane.

Figure 5-58 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-58 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of MPL05

#### Table 5-52 presents a performance summary of this intersection.

| Fable 5-52 Block 4 – Intersection | performance summary of MPL05 |
|-----------------------------------|------------------------------|
|-----------------------------------|------------------------------|

| Intersection                                                                          | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|---------------------------------------------------------------------------------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
| Pedestrian<br>Mid-blockWeekday<br>AMCrossing at<br>Castlereagh<br>StreetWeekday<br>PM | Weekday       | North    | 0.429                | 15.5                          | 29.5                                                | LOS B |
|                                                                                       | AM            | Total    | 0.429                | 15.5                          | 29.5                                                | LOS B |
|                                                                                       | Weekday<br>PM | North    | 0.281                | 12.3                          | 21.2                                                | LOS A |
|                                                                                       |               | Total    | 0.281                | 12.3                          | 21.2                                                | LOS A |
| (Pedestrian<br>only – Weel<br>Signal)                                                 |               | North    | 0.180                | 12.6                          | 12.6                                                | LOS A |
|                                                                                       | Weekend       | Total    | 0.180                | 12.6                          | 12.6                                                | LOS A |

Overall, the pedestrian mid-block crossing at Castlereagh Street performs satisfactorily at LOS B or better during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

It was also noted that Block 4 pedestrian volumes at the mid-block crossing at Castlereagh Street significantly increased during the weekday AM peak hour compared to pre-opening conditions. Given that MPL05 is located in close proximity of Martin Place station, the rise in pedestrian activity is likely associated to commuters accessing Sydney Metro during Block 4.

#### 5.5.6 MPL06 – Pedestrian Mid-block Crossing at Elizabeth Street

The signalised pedestrian mid-block crossing at Elizabeth Street is located directly north-east of Martin Place South. It offers a signalised pedestrian crossing over Elizabeth Street, a major local road linking the Sydney CBD and Waterloo.

Figure 5-59 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Figure 5-59 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of MPL06

| Fable 5-53 presents a | performance summary | of this intersection. |
|-----------------------|---------------------|-----------------------|
|-----------------------|---------------------|-----------------------|

| Intersection                                                                                      | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|---------------------------------------------------------------------------------------------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                                                                                                   |               | South    | 0.424                | 8.8                           | 77.9                                                | LOS A |
| Pedestrian<br>Mid-block<br>Crossing at<br>Elizabeth<br>Street<br>(Pedestrian<br>only –<br>Signal) | Weekday<br>AM | North    | 0.338                | 7.6                           | 58.3                                                | LOS A |
|                                                                                                   |               | Total    | 0.424                | 9.7                           | 77.9                                                | LOS A |
|                                                                                                   | Weekday<br>PM | South    | 0.431                | 8.9                           | 80.3                                                | LOS A |
|                                                                                                   |               | North    | 0.323                | 7.5                           | 55.2                                                | LOS A |
|                                                                                                   |               | Total    | 0.431                | 9.9                           | 80.3                                                | LOS A |
|                                                                                                   |               | South    | 0.374                | 8.4                           | 66.2                                                | LOS A |
|                                                                                                   | Weekend       | North    | 0.191                | 6.8                           | 29.4                                                | LOS A |
|                                                                                                   |               | Total    | 0.374                | 9.5                           | 66.2                                                | LOS A |

 Table 5-53 Block 4 – Intersection performance summary of MPL06

Overall, the pedestrian mid-block crossing at Elizabeth Street performs satisfactorily at LOS A during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

#### 5.5.7 Comparison with previous study blocks

Figure 5-60 provides a comparison of the total peak hourly traffic volumes recorded across all intersections for Block 4 against previous study blocks. As shown, Block 4 traffic volumes are relatively similar during the AM and PM peak hours, and slightly higher during the weekend peak hour compared to pre-opening conditions.



Figure 5-60 Study block comparison – Martin Place Station peak hourly traffic volumes across all intersections

A comparison of the intersection LOS for Block 4 against previous study blocks is shown in Figure 5-61. All intersections in the Martin Place Station study area perform at a LOS C or better during Block 4, which is generally similar to previous study blocks.

#### Sydney Metro City and Southwest - Traffic and Interchange Monitoring Block 4 Report – Sydney Metro C&SW - Traffic and Interchange Monitoring



Figure 5-61 Study block comparison – Martin Place Station intersection performance summary

# 5.6 Gadigal Station

Gadigal Station (previously Pitt Street Station) is a new underground station and the sixth stop on the City & Southwest Line (towards Sydenham). It is located at the junction of Sydney's southern CBD and the midtown retail precinct.

Gadigal Station has accesses from both Park Street and Bathurst Street. The two entrances are listed below:

- Park Street Entry; along Park Street between Pitt Street and Castlereagh Street
- Bathurst Street Entry; along Bathurst Street between Pitt Street and Castlereagh Street.

The over station developments at Gadigal Station were still under construction during Block 4, including some of the public domain works.

Several bus routes operate within the vicinity of the new Gadigal Station. Bus services are available within approximately 100 metres of Gadigal Station, located at Elizabeth Street and Park Street. The CBD and South-East Light Rail also operates nearby along George Street.

New bicycle parking racks are available on Park Street and Bathurst Street, near the station entrances.

The Gadigal Station study area consists of four intersections. Table 5-54 presents the peak hours utilised for modelling the intersections. Table 5-55 provides a summary of the intersection LOS while Figure 5-62 visualises a geospatial summary of the intersection LOS within the Gadigal Station study area.

Table 5-54 Block 4 – Gadigal Station peak hours modelled

| Network | Intersection | Weekda <u>y</u><br>h | eekday AM peak Weekday PM peak<br>hour hour |          | PM peak<br>Weekend peak hour |          |               |
|---------|--------------|----------------------|---------------------------------------------|----------|------------------------------|----------|---------------|
| ID ID   |              | Day                  | Start time                                  | Day      | Start<br>time                | Day      | Start<br>time |
|         | PIT01        |                      |                                             | Thursday | 5:00pm                       | Saturday | 1:45pm        |
| PIT-N1  | PIT02        | <b>T</b> I In        | 9:00am                                      |          |                              |          |               |
|         | PIT03        | Thursday             |                                             |          |                              |          |               |
|         | PIT04        |                      |                                             |          |                              |          |               |

#### Table 5-55 Block 4 – Gadigal Station intersection performance summary

| Intersection |                                                | LOS   |                    |                 |
|--------------|------------------------------------------------|-------|--------------------|-----------------|
| ID           | ID Intersection                                |       | Weekday<br>PM Peak | Weekend<br>Peak |
| PIT01        | Pitt Street/Bathurst Street<br>(Signal)        | LOS B | LOS B              | LOS A           |
| PIT02        | Castlereagh Street/Bathurst Street<br>(Signal) | LOS A | LOS B              | LOS A           |
| PIT03        | Park Street/Castlereagh Street<br>(Signal)     | LOS B | LOS C              | LOS B           |
| PIT04        | Park Street/Pitt Street<br>(Signal)            | LOS B | LOS B              | LOS A           |

Overall, the intersection performance in the Gadigal Station study area during the peak hours is satisfactory, operating at LOS C or better.



Figure 5-62 Block 4 – Gadigal Station intersection performance summary

### 5.6.1 PIT01 – Pitt Street/Bathurst Street

The signalised intersection, composed of Pitt Street and Bathurst Street, is located directly west of the Bathurst Street access to Gadigal Station. It connects the major local road of Pitt Street and major regional road of Bathurst Street running through the inner Sydney CBD.

During Block 4, the available storage on the right turn kerbside lane on Pitt Street (south approach) was reduced during the AM and PM peak hours due to the a construction work zone. Additionally, Pitt Street (south approach) was closed during the weekend peak hour to facilitate construction works.

Figure 5-63 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-63 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of PIT01

| Intersection                                   | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|------------------------------------------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                                                |               | South    | 0.618                | 31.0                          | 27.9                                                | LOS C |
| Pitt Street/<br>Bathurst<br>Street<br>(Signal) | Weekday<br>AM | West     | 0.437                | 10.7                          | 40.6                                                | LOS A |
|                                                |               | Total    | 0.618                | 15.4                          | 40.6                                                | LOS B |
|                                                | Weekday<br>PM | South    | 0.427                | 31.5                          | 39.1                                                | LOS C |
|                                                |               | West     | 0.341                | 10.4                          | 57.1                                                | LOS A |
|                                                |               | Total    | 0.427                | 15.7                          | 57.1                                                | LOS B |
|                                                |               | South    | 0.001                | 15.8                          | 0.0                                                 | LOS B |
|                                                | Weekend       | West     | 0.361                | 9.9                           | 33.0                                                | LOS A |
|                                                |               | Total    | 0.361                | 10.0                          | 33.0                                                | LOS A |

Table 5-56 presents a performance summary of this intersection.

| Table 5-56 Block 4 – Intersection | performance summary | of PIT01 |
|-----------------------------------|---------------------|----------|
|                                   |                     |          |

Overall, the intersection of Pitt Street and Bathurst Street performs satisfactorily at LOS B or better during all peak hours. The 95th percentile queue lengths are accommodated within the approach distances for all approaches.

It was also noted that Block 4 pedestrian volumes at Pitt Street and Bathurst Street significantly increased during the weekday AM and weekend peak hours compared to pre-opening conditions. Given that PIT01 is located along the frontage of Gadigal station, the rise in pedestrian activity is likely associated to commuters accessing Sydney Metro during Block 4.

## 5.6.2 PIT02 – Castlereagh Street/Bathurst Street

The signalised intersection, composed of Castlereagh Street and Bathurst Street, is located directly east of the Bathurst Street access to Gadigal Station. It connects the major local road of Castlereagh Street and major regional road of Bathurst Street running through the inner Sydney CBD.

During Block 4, the western kerb side lane on Castlereagh Street (north approach) was closed off due to construction works.

Figure 5-64 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-64 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of PIT02

| Tuble o of block + Intersection performance summary of the | Table 5-57 | Block 4 - | Intersection | performance | summary of PIT02 |
|------------------------------------------------------------|------------|-----------|--------------|-------------|------------------|
|------------------------------------------------------------|------------|-----------|--------------|-------------|------------------|

| Intersection                                             | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|----------------------------------------------------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                                                          |               | North    | 0.389                | 17.1                          | 40.3                                                | LOS B |
| Castlereagh<br>Street/<br>Bathurst<br>Street<br>(Signal) | Weekday<br>AM | West     | 0.324                | 4.9                           | 25.9                                                | LOS A |
|                                                          | 7 (17)        | Total    | 0.389                | 7.3                           | 40.3                                                | LOS A |
|                                                          | Weekday<br>PM | North    | 0.260                | 17.6                          | 40.1                                                | LOS B |
|                                                          |               | West     | 0.397                | 19.3                          | 66.5                                                | LOS B |
|                                                          |               | Total    | 0.397                | 19.0                          | 66.5                                                | LOS B |
|                                                          |               | North    | 0.233                | 13.0                          | 16.6                                                | LOS A |
|                                                          | Weekend       | West     | 0.306                | 3.0                           | 9.4                                                 | LOS A |
|                                                          |               | Total    | 0.306                | 4.4                           | 16.6                                                | LOS A |

Overall, the intersection of Castlereagh Street and Bathurst Street performs satisfactorily at LOS B or better during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

It was also noted that Block 4 pedestrian volumes at Castlereagh Street and Bathurst Street significantly decreased during the weekday AM peak hour compared to pre-opening conditions. Exact reasons for the decrease in pedestrian volumes are unknown, however there were significant construction works occurring on the footpaths at PIT02 which may have deterred pedestrians from crossing at this intersection and walking to adjacent intersections.

#### 5.6.3 PIT03 – Park Street/Castlereagh Street

The signalised intersection, composed of Park Street and Castlereagh Street, is located directly east of the Park Street access to Gadigal Station. It connects the major regional road of Park Street and major local road of Castlereagh Street running through the inner Sydney CBD.

During Block 4, the northern kerbside lane on Park Street (west approach) was occupied by a work zone during the AM peak hour. The kerbside departure lane on Park Street (west approach) was also occupied by a work zone during the AM and weekend peak hour. Additionally, the western kerbside lane on Castlereagh Street (southern leg) was closed during all peak hours due to construction works.

Figure 5-65 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.

Park St (W)



Source: Nearmap (September 2024)

Figure 5-65 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of PIT03

Table 5-58 presents a performance summary of this intersection.

| Tahlo 5-58 | R Block 4 - | Intersection | nerformance | summary | of PITO3 |
|------------|-------------|--------------|-------------|---------|----------|
| 10010 3-30 |             | mile section | periormance | Summary | 0111105  |

| Intersection           | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|------------------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                        |               | East     | 0.491                | 18.6                          | 77.4                                                | LOS B |
| Park                   | Weekday<br>AM | North    | 0.644                | 50.7                          | 59.7                                                | LOS D |
| Street/<br>Castlereagh |               | West     | 0.307                | 15.4                          | 43.6                                                | LOS B |
| Street                 |               | Total    | 0.644                | 27.4                          | 77.4                                                | LOS B |
| (Signal)               | Weekday       | East     | 0.308                | 16.8                          | 52.8                                                | LOS B |
|                        | PM            | North    | 0.753                | 51.1                          | 90.3                                                | LOS D |

| Intersection | Peak     | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|----------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |          | West     | 0.213                | 16.6                          | 27.1                                                | LOS B |
|              |          | Total    | 0.753                | 32.6                          | 90.3                                                | LOS C |
|              |          | East     | 0.448                | 9.6                           | 75.0                                                | LOS A |
|              |          | North    | 0.560                | 47.7                          | 49.7                                                | LOS D |
|              | vveekend | West     | 0.090                | 10.1                          | 10.2                                                | LOS A |
|              |          |          | 0.560                | 21.8                          | 75.0                                                | LOS B |

Overall, the intersection of Park Street and Castlereagh Street performs satisfactorily at LOS C or better during all peak hours. The 95<sup>th</sup> percentile queue on Park Street (east approach) extends back to Elizabeth Street during all peak hours.

#### 5.6.4 PIT04 – Park Street/Pitt Street

The signalised intersection, composed of Park Street and Pitt Street, is located directly west of the Park Street access to Gadigal Station. It connects the major regional road of Park Street and major local road of Pitt Street running through the inner Sydney CBD.

During Block 4, the kerbside approach and departure lanes of Park Street (east approach) was occupied by a work zone towards Castlereagh Street during the AM and PM peak hours, whereas the weekend peak hour was only affected by the work zone on the kerbside departure lane of Park Street (east approach).

Figure 5-66 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-66 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of PIT04

Table 5-59 presents a performance summary of this intersection.

| Intersection                | Peak    | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|-----------------------------|---------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                             |         | South    | 0.458                | 20.6                          | 32.2                                                | LOS B |
|                             | Weekday | East     | 0.796                | 18.5                          | 81.1                                                | LOS B |
|                             | AM      | West     | 0.194                | 10.7                          | 14.5                                                | LOS A |
|                             |         | Total    | 0.796                | 18.8                          | 18.8 81.1                                           |       |
|                             | Weekday | South    | 0.417                | 19.7                          | 27.6                                                | LOS B |
| Park Street/<br>Pitt Street |         | East     | 0.657                | 13.0                          | 59.0                                                | LOS A |
| (0) 1)                      | PM      | West     | 0.238                | 10.9                          | 18.3                                                | LOS A |
| (Signal)                    |         | Total    | 0.657                | 15.6                          | 59.0                                                | LOS B |
|                             |         | South    | 0.262                | 17.3                          | 17.1                                                | LOS B |
|                             |         | East     | 0.732                | 12.8                          | 76.8                                                | LOS A |
|                             | Weekend | West     | 0.111                | 8.9                           | 8.4                                                 | LOS A |
|                             |         | Total    | 0.732                | 13.8                          | 76.8                                                | LOS A |

#### Table 5-59 Block 4 – Intersection performance summary of PIT04

Overall, the intersection of Park Street and Pitt Street performs satisfactorily at LOS B or better during all peak hours. The 95th percentile queue on Park Street (east approach) extends back to Castlereagh Street during the AM and weekend peak hour.

It was also noted that Block 4 pedestrian volumes at Park Street and Pitt Street significantly increased during the weekday PM and weekend peak hours compared to pre-opening conditions. Given that PIT04 is located along the frontage of Gadigal station, the rise in pedestrian activity is likely associated to commuters accessing Sydney Metro during Block 4.

#### 5.6.5 Comparison with previous study blocks

Figure 5-67 provides a comparison of the total peak hourly traffic volumes recorded across all intersections for Block 4 against previous study blocks. As shown, traffic volumes are relatively similar during the AM and PM peak hours, and lower during the weekend peak hour compared to pre-opening conditions.



Figure 5-67 Study block comparison – Gadigal Station peak hourly traffic volumes across all intersections

A comparison of the intersection LOS for Block 4 against previous study blocks is shown in Figure 5-68. All intersections in the Gadigal Station study area perform at LOS C or better during Block 4, which is generally similar to previous study blocks.

#### Sydney Metro City and Southwest - Traffic and Interchange Monitoring Block 4 Report – Sydney Metro C&SW - Traffic and Interchange Monitoring

|                                                                      |         |                | PIT01 - I | PITT S  | T / BATH           | URST    | ST      |         |                    |             |         | PIT02 -  | CAST  | LEREA       | GH ST              | / BATH  | JRST S  | г           |                    |          |
|----------------------------------------------------------------------|---------|----------------|-----------|---------|--------------------|---------|---------|---------|--------------------|-------------|---------|----------|-------|-------------|--------------------|---------|---------|-------------|--------------------|----------|
|                                                                      | A       | M PEAK         |           | F       | M PEAK             |         |         | WE P    | EAK                |             | AM P    | EAK      |       | F           | M PE               | ٨K      | 1       | WE F        | PEAK               |          |
|                                                                      |         |                |           |         |                    |         |         |         |                    |             |         |          |       |             |                    |         |         |             |                    |          |
| York                                                                 | LOSA    | LOS B<br>LOS B | LOSB      | LOSB    | LOSB               | LOSB    | VSOT    | LOS A   | LOSA<br>LOSA       | <b>LOSA</b> | LOSA    | LOSA     | 5     | <b>LOSA</b> | LOSA               | LOSB    | V SOT   | <b>LOSA</b> | LOSA               | LOSA     |
| Street Stlereagh S                                                   | BLOCK 1 | BLOCK 3        | BLOCK 4   | BLOCK 1 | BLOCK 2<br>BLOCK 3 | BLOCK 4 | BLOCK 1 | BLOCK 2 | BLOCK 3<br>BLOCK 4 | BLOCK 1     | BLOCK 2 | BLOCK 4  |       | BLOCK 1     | BLOCK 2<br>BLOCK 3 | BLOCK 4 | BLOCK 1 | BLOCK 2     | BLOCK 3            | BLOCK 4  |
| Ca Ca                                                                |         | PIT            | 03 - PAF  | RK ST   | CASTL              | EREAG   | H ST    |         |                    |             |         |          | PIT04 | 4 - PAR     | K ST /             | PITT ST |         |             |                    |          |
| Ģ                                                                    | AI      | M PEAK         |           | F       | PM PEAK            |         |         | WE P    | EAK                |             | AM F    | EAK      |       | F           | PM PEA             | λK      |         | WE F        | EAK                |          |
| Druitt Streer                                                        | B SO B  | E S O          | OS B      | OSB     | LOS C              | LOS C   | BSO     | OSB     | OSB<br>OSB         | OS B        | OSB     | OSB<br>0 | 0     | OS B        | OSB<br>OSB         | OS B    | a so    | OSB         | OSB<br>° A         | ro       |
| Park Street                                                          |         |                | _         |         |                    |         |         | _       |                    | _           | _       |          |       |             |                    |         |         |             | _ <u> </u>         | <u>}</u> |
| PITO3<br>treet<br>treet                                              | BLOCK 1 | BLOCK 3        | BLOCK 4   | BLOCK 1 | BLOCK 2<br>BLOCK 3 | BLOCK 4 | BLOCK 1 | BLOCK 2 | BLOCK 3<br>BLOCK 4 | BLOCK 1     | BLOCK 2 | BLOCK 3  |       | BLOCK 1     | BLOCK 2<br>BLOCK 2 | BLOCK 4 | BLOCK 1 | BLOCK 2     | BLOCK 3<br>PLOCK 3 |          |
| PITO1<br>PITO2 Cross City Tunnel<br>Bathurst Street<br>Wilmot Street |         |                |           |         |                    |         |         |         |                    |             |         |          |       |             |                    |         |         |             |                    |          |
| Legend<br>\$ Signal<br>Station Access Street                         |         |                |           |         |                    |         |         |         |                    |             |         |          |       |             |                    |         |         |             |                    |          |

Figure 5-68 Study block comparison – Gadigal Station intersection performance summary

117

# 5.7 Central Station

Central Station is an existing station and the seventh stop on the City & Southwest Line (towards Sydenham). It is located at the southern end of the Sydney CBD, directly south of Belmore Park between Pitt Street and Elizabeth Street.

The Sydney Metro lines were built under the existing platforms 13, 14 and 15 in Central Station. In addition to the existing seven entrances, a new eastern entrance was recently opened on Chalmers Street providing access to both train and metro platforms.

Bus services are available within approximately 100 metres of Central Station, located at Eddy Avenue, Pitt Street, Lee Street and Elizabeth Street. Dedicated cycle lanes are currently provided along Elizabeth Street and Eddy Avenue near Central Station.

The Central Station study area consists of five intersections. During Block 4, one intersection (CEN04) which will be a new pedestrian mid-block crossing had not yet been constructed. Table 5-60 presents the peak hours utilised for modelling the intersections. Table 5-61 provides a summary of the intersection LOS while Figure 5-69 visualises a geospatial summary of the intersection LOS within the Central Station study area.

| Table  | 5-60 | Block 4 | 4 – 1 | Central | Station | peak | hours | modelled |
|--------|------|---------|-------|---------|---------|------|-------|----------|
| 1 0010 |      | DIGON   | •     | oomaa   | otation | poun | nouro | measurea |

| Network Intersection      |       | Weekday A<br>hou | M peak<br>r   | Weekday<br>hoเ | PM peak<br>Jr | Weekend peak hour |               |  |
|---------------------------|-------|------------------|---------------|----------------|---------------|-------------------|---------------|--|
| ID                        | ID    | Day              | Start<br>time | Day            | Start<br>time | Day               | Start<br>time |  |
|                           | CEN01 |                  | 0.15 am       |                | <b>F:4Fnm</b> | Coturdou          | 10.00         |  |
| CEIN-INT                  | CEN02 | wednesday        | 0.15am        | weunesuay      | 5. ropin      | Saluruay          | 12.00pm       |  |
|                           | CEN03 |                  | 0.45          | Thursday       | <b>5</b> -00  | Ostundau          | 40.00         |  |
| CEN-INZ                   | CEN05 | vvednesday       | 8:15am        | Thursday       | 5:30pm        | Saturday          | 12:00pm       |  |
| CEN04 Under construction. |       |                  |               |                |               |                   |               |  |

Table 5-61 Block 4 – Central Station intersection performance summary

| Intersection |                                                                                   |                    | LOS                |                 |
|--------------|-----------------------------------------------------------------------------------|--------------------|--------------------|-----------------|
| ID           | Intersection                                                                      | Weekday<br>AM Peak | Weekday<br>PM Peak | Weekend<br>Peak |
| CEN01        | Elizabeth Street/Eddy Avenue<br>(Signal)                                          | LOS B              | LOS B              | LOS B           |
| CEN02        | Elizabeth Street/Foveaux Street<br>(Signal)                                       | LOS B              | LOS C              | LOS B           |
| CEN03        | Elizabeth Street/Cooper Street<br>(Priority – Give Way)                           | LOS A              | LOS A              | LOS A           |
| CEN04        | New Pedestrian Mid-block Crossing at<br>Randle Lane<br>(Pedestrian only – Signal) |                    | Not operational    |                 |
| CEN05        | Elizabeth Street/Randle Street<br>(Signal)                                        | LOS A              | LOS A              | LOS A           |

Overall, the intersection performance in the Central Station study area during the peak hours is satisfactory, operating at LOS C or better.



Figure 5-69 Block 4 – Central Station intersection performance summary

### 5.7.1 CEN01 – Elizabeth Street/Eddy Avenue

The signalised intersection, composed of Elizabeth Street and Eddy Avenue, is located north-east of Central Station. It connects the regional roads of Eddy Avenue, running through the Sydney CBD, and Elizabeth Street, linking the Sydney CBD and Waterloo. The traffic signals at this intersection are coordinated with the intersection of Elizabeth Street and Foveaux Street (CEN02).

Figure 5-70 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-70 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of CEN01

Table 5-62 presents a performance summary of this intersection.

| Intersection | Peak     | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|----------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              | Weekdav  | South      | 0.728                | 12.3                          | 57.1                                                | LOS A |
|              |          | North      | 0.733                | 36.3                          | 155.1                                               | LOS C |
|              | AM       | North-west | 0.832                | 30.0                          | 78.1                                                | LOS C |
|              |          | Total      | 0.832                | 22.5                          | 155.1                                               | LOS B |
| Elizabeth    | Weekday  | South      | 0.618                | 10.4                          | 57.1                                                | LOS A |
| Street/ Eddy |          | North      | 0.864                | 51.2                          | 198.2                                               | LOS D |
| Avenue       | PM       | North-west | 0.627                | 22.6                          | 60.6                                                | LOS B |
| (Signal)     |          | Total      | 0.864                | 26.6                          | 198.2                                               | LOS B |
|              |          | South      | 0.405                | 6.2                           | 44.4                                                | LOS A |
|              |          | North      | 0.458                | 31.7                          | 53.9                                                | LOS C |
|              | vveekend | North-west | 0.615                | 26.6                          | 48.4                                                | LOS B |
|              |          | Total      | 0.615                | 18.0                          | 53.9                                                | LOS B |

Table 5-62 Block 4 – Intersection performance summary of CEN01

Overall, the intersection of Elizabeth Street and Eddy Avenue performs satisfactorily at LOS B during all peak hours. The 95<sup>th</sup> percentile queue on Elizabeth Street (north approach) extends back to Albion

Street during the weekday AM and PM peak hours. Similarly, the 95<sup>th</sup> percentile queue on Eddy Avenue (north-west approach) extends back to the pedestrian mid-block crossing on Eddy Avenue during all peak hours and the queues on Elizabeth Street (south approach) extends back to the intersection of Elizabeth Street/Foveaux Street (CEN02) during all peak hours.

## 5.7.2 CEN02 – Elizabeth Street/Foveaux Street

The signalised intersection, composed of Elizabeth Street and Foveaux Street, is located east of Central Station. It connects the regional roads of Foveaux Street, running through Surry Hills, and Elizabeth Street, linking the Sydney CBD and Waterloo. The traffic signals at this intersection are co-ordinated with the intersection of Elizabeth Street and Eddy Avenue (CEN01).

Figure 5-71 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Figure 5-71 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of CEN02

Table 5-63 presents a performance summary of this intersection.

| Intersection      | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|-------------------|---------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                   | Weekday<br>AM | South      | 0.636                | 27.9                          | 150.5                                               | LOS B |
| Flizabeth         |               | South-east | 0.628                | 27.8                          | 80.2                                                | LOS B |
|                   |               | North      | 0.385                | 10.4                          | 57.1                                                | LOS A |
|                   |               | Total      | 0.636                | 23.2                          | 150.5                                               | LOS B |
| Street/           | Weekdav       | South      | 0.554                | 32.1                          | 110.8                                               | LOS C |
| Foveaux<br>Street |               | South-east | 0.890                | 45.0                          | 160.7                                               | LOS D |
| Olicer            | PM            | North      | 0.500                | 10.8                          | 57.1                                                | LOS A |
| (Signal)          |               | Total      | 0.890                | 30.7                          | 160.7                                               | LOS C |
|                   |               | South      | 0.498                | 25.3                          | 103.5                                               | LOS B |
|                   | Weekend       | South-east | 0.310                | 22.7                          | 50.2                                                | LOS B |
|                   |               | North      | 0.307                | 9.2                           | 47.3                                                | LOS A |

Table 5-63 Block 4 – Intersection performance summary of CEN02

| Intersection | Peak | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |      | Total    | 0.498                | 19.9                          | 103.5                                               | LOS B |

Overall, the intersection of Elizabeth Street and Foveaux Street performs satisfactorily at LOS C or better during all peak hours. The 95<sup>th</sup> percentile queue on Elizabeth Street (north approach) extends back to Eddy Avenue during all peak hours. Similarly, the 95<sup>th</sup> percentile queue on Elizabeth Street (south approach) extends back to Randle Street during the AM peak hour and the queues on Foveaux Street extend back to Commonwealth Street during the PM peak hour.

#### 5.7.3 CEN03 – Elizabeth Street/Cooper Street

The priority intersection, composed of Elizabeth Street and Cooper Street, is located east of Central Station. It connects the local road of Cooper Street with the regional road of Elizabeth Street, linking the Sydney CBD to Waterloo.

Figure 5-72 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Figure 5-72 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of CEN03

Table 5-64 presents a performance summary of this intersection.

| Intersection             | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------------------|---------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
| El al al                 |               | South-east | 0.091                | 6.9                           | 2.6                                                 | LOS A |
| Elizabeth<br>Street/     | Weekday<br>AM | North      | 0.224                | 3.6                           | 5.3                                                 | LOS A |
| Cooper                   |               | Total      | 0.091                | 6.9                           | 2.6                                                 | LOS A |
| Street                   |               | South-east | 0.135                | 8.4                           | 3.7                                                 | LOS A |
| (Priority –<br>Give Way) | Weekday<br>PM | North      | 0.298                | 3.5                           | 4.0                                                 | LOS A |
|                          | PIN           | Total      | 0.135                | 8.4                           | 3.7                                                 | LOS A |

Table 5-64 Block 4 – Intersection performance summary of CEN03

| Intersection | Peak    | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|---------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |         | South-east | 0.068                | 5.9                           | 1.9                                                 | LOS A |
|              | Weekend | North      | 0.180                | 2.8                           | 2.5                                                 | LOS A |
|              |         | Total      | 0.068                | 5.9                           | 1.9                                                 | LOS A |

Overall, the intersection of Elizabeth Street and Cooper Street performs satisfactorily at LOS A during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

#### 5.7.4 CEN04 – New Pedestrian Mid-block Crossing at Randle Lane

The proposed pedestrian mid-block crossing at Randle Lane would be located directly east of Central Station. During Block 4, the mid-block crossing was yet to be constructed and therefore was not operational. As such, it was not assessed as part of the Block 4 study.

#### 5.7.5 CEN05 – Elizabeth Street/Randle Street

The signalised intersection, composed of Elizabeth Street and Randle Street, is located east of Central Station. It connects the local road of Randle Street with the regional road of Elizabeth Street, linking the Sydney CBD to Waterloo.

During Block 4, the kerbside bus lane on Randle Street (south-western approach) was closed off due to construction works.

Figure 5-73 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-73 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of CEN05

Table 5-65 presents a performance summary of this intersection.

| Intersection     | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95™<br>percentile<br>queue<br>(metres) | LOS   |
|------------------|---------------|------------|----------------------|-------------------------------|----------------------------------------|-------|
|                  |               | North      | 0.258                | 2.4                           | 34.4                                   | LOS A |
|                  | Weekday<br>AM | South-west | 0.404                | 7.1                           | 51.8                                   | LOS A |
| Elizabeth        | 7 (10)        | Total      | 0.404                | 5.1                           | 51.8                                   | LOS A |
| Street/          |               | North      | 0.346                | 2.9                           | 52.9                                   | LOS A |
| Randle<br>Street | Weekday<br>PM | South-west | 0.313                | 6.2                           | 35.5                                   | LOS A |
| (Signal)         | I IVI         | Total      | 0.346                | 4.3                           | 52.9                                   | LOS A |
|                  |               | North      | 0.220                | 2.2                           | 26.9                                   | LOS A |
|                  | Weekend       | South-west | 0.310                | 6.1                           | 32.7                                   | LOS A |
|                  |               | Total      | 0.310                | 4.3                           | 32.7                                   | LOS A |

#### Table 5-65 Block 4 – Intersection performance summary of CEN05

Overall, the intersection of Elizabeth Street and Randle Street performs satisfactorily at LOS A during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

#### 5.7.6 Comparison with previous study blocks

Figure 5-74 provides a comparison of the total peak hourly traffic volumes recorded across all intersections for Block 4 against previous study blocks. As shown, Block 4 traffic volumes are relatively similar in the AM and PM peak hours, and lower in the weekend peak hour compared to pre-opening conditions.



Figure 5-74 Study block comparison - Central Station peak hourly traffic volumes across all intersections

A comparison of the intersection LOS for Block 4 against previous study blocks is shown in Figure 5-75. All intersections in the Central Station study area perform at LOS C or better during Block 4, which is generally similar to previous study blocks.

#### Sydney Metro City and Southwest - Traffic and Interchange Monitoring Block 4 Report – Sydney Metro C&SW - Traffic and Interchange Monitoring



Figure 5-75 Study block comparison – Central Station intersection performance summary

## 5.8 Waterloo Station

Waterloo Station is a new underground station and the eighth stop on the City & Southwest Line (towards Sydenham). It is located in the north-western quadrant of Waterloo, bounded by Botany Road, Cope Street, Raglan Street and Wellington Street.

Waterloo Station has accesses on both Raglan Street and Cope Street. The two entrances are listed below:

- Raglan Street Entry; at the south-west corner of the intersection of Raglan Street and Cope Street
- Cope Street Entry; along the western side of Cope Street, north of Wellington Street.

Bus services are available within approximately 150 metres of Waterloo Station, located along Botany Road. The existing bus stops will be retained for northbound routes, and the existing bus stops for southbound routes will be relocated to the mid-block on Botany Road between Raglan Street and Wellington Street. A new on-road marked cycle link will be provided along Wellington Street.

The Waterloo Station study area consists of six intersections. Table 5-66 presents the peak hours utilised for modelling the intersections.

Table 5-67 provides a summary of the intersection LOS while Figure 5-76 visualises a geospatial summary of the intersection LOS within the Waterloo Station study area.

| Network | Intersection | Weekday /<br>hoເ | Weekday AM peak<br>hour |          | PM peak<br>Ir | Weekend peak hour |               |
|---------|--------------|------------------|-------------------------|----------|---------------|-------------------|---------------|
| ID      | ID           | Day              | Start<br>time           | Day      | Start<br>time | Day               | Start<br>time |
|         | WLO01        |                  | ay 7:45am               |          | 4:45pm        | Saturday          | 12:30pm       |
|         | WLO02        | Thursday         |                         | Thursday |               |                   |               |
|         | WLO03        |                  |                         |          |               |                   |               |
|         | WLO04        |                  |                         |          |               |                   |               |
|         | WLO05        |                  |                         |          |               |                   |               |
|         | WLO06        |                  |                         |          |               |                   |               |

#### Table 5-66 Block 4 – Waterloo Station peak hours modelled

Table 5-67 Block 4 – Waterloo Station intersection performance summary

| Intersection |                                                                                  |                    | LOS                |                 |
|--------------|----------------------------------------------------------------------------------|--------------------|--------------------|-----------------|
| ID           | Intersection                                                                     | Weekday<br>AM Peak | Weekday<br>PM Peak | Weekend<br>Peak |
| WLO01        | Botany Road/Raglan Street/<br>Henderson Road<br>(Signal)                         | LOS B              | LOS C              | LOS C           |
| WLO02        | Raglan Street/Cope Street<br>(Signal)                                            | LOS A              | LOS A              | LOS A           |
| WLO03        | Botany Road/Wellington Street/<br>Buckland Street<br>(Signal)                    | LOS A              | LOS A              | LOS A           |
| WLO04        | Cope Street/Wellington Street<br>(Stop)                                          | LOS A              | LOS A              | LOS A           |
| WLO05        | Wyndham Street/Henderson Road<br>(Signal)                                        | LOS B              | LOS C              | LOS C           |
| WLO06        | New Pedestrian Mid-block Crossing at<br>Cope Street<br>(Pedestrian only – Zebra) | LOS A              | LOS A              | LOS A           |

Overall, the intersection performance in the Waterloo Station study area during the peak hours is satisfactory, operating at LOS C or better.



Figure 5-76 Block 4 – Waterloo Station intersection performance summary

#### 5.8.1 WLO01 – Botany Road/Raglan Street/Henderson Road

The signalised intersection, composed of Botany Road, Raglan Street and Henderson Road, is located directly north-west of Waterloo Station. It connects the local road of Raglan Street in Waterloo with the State roads of Botany Road, linking Waterloo and Matraville, and Henderson Road, linking Waterloo and Eveleigh.

Figure 5-77 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-77 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of WLO01

Table 5-68 presents a performance summary of this intersection.

| Intersection      | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|-------------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                   |               | South    | 0.689                | 30.9                          | 133.5                                               | LOS C |
|                   |               | East     | 0.432                | 51.2                          | 42.9                                                | LOS D |
|                   | Weekday<br>AM | North    | 0.681                | 22.6                          | 93.7                                                | LOS B |
|                   | 7.101         | West     | 0.622                | 16.0                          | 28.0                                                | LOS B |
| Botany            |               | Total    | 0.689                | 26.8                          | 133.5                                               | LOS B |
| Road/             |               | South    | 0.916                | 72.7                          | 169.9                                               | LOS F |
| Ragian<br>Street/ |               | East     | 0.803                | 62.7                          | 67.0                                                | LOS E |
| Henderson         | Weekday<br>PM | North    | 0.849                | 26.3                          | 145.3                                               | LOS B |
| Road              | E IVI         | West     | 0.904                | 23.7                          | 68.1                                                | LOS B |
| (Signal)          |               | Total    | 0.916                | 40.4                          | 169.9                                               | LOS C |
|                   |               | South    | 0.556                | 45.6                          | 103.5                                               | LOS D |
|                   |               | East     | 0.508                | 55.1                          | 44.4                                                | LOS D |
|                   | vveekend      | North    | 0.792                | 28.0                          | 126.5                                               | LOS B |
|                   |               | West     | 0.708                | 18.3                          | 29.4                                                | LOS B |

| Table 5-68 Block 4 – Intersection  | performance summary | of WI | 001  |
|------------------------------------|---------------------|-------|------|
| Table 3-00 block 4 - Intel Section | periormance summary |       | .001 |

| Intersection | Peak | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |      | Total    | 0.792                | 33.3                          | 126.5                                               | LOS C |

Overall, the intersection of Botany Road, Raglan Street and Henderson Road performs satisfactorily at LOS C or better during all peak hours. The 95<sup>th</sup> percentile queue on Raglan Street (east approach) extends back to Cope Street during the weekday PM peak hour. Similarly, the 95<sup>th</sup> percentile queue on Henderson Road (west approach) extend back to the intersection of Wyndham Street/Henderson Street (WLO05) during the weekday PM peak hour.

It was also noted that Block 4 pedestrian volumes at Botany Road, Raglan Street and Henderson Road significantly increased across all peak hours compared to pre-opening conditions. Given that WLO01 is located along the frontage of Waterloo station, the rise in pedestrian activity is likely associated to commuters accessing Sydney Metro during Block 4.

#### 5.8.2 WLO02 – Raglan Street/Cope Street

The signalised intersection, composed of Raglan Street and Cope Street, is located directly north-east of Waterloo Station. It connects the local roads of Raglan Street and Cope Street in Waterloo. During Block 4, the intersection was redesigned from a roundabout intersection to a signalised intersection to cater for the opening of the Waterloo metro station.

Figure 5-78 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Figure 5-78 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of WLO02

Table 5-69 presents a performance summary of this intersection.

| Intersection       | Peak    | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------------|---------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
| Raglan             | Weekday | South    | 0.141                | 14.0                          | 6.0                                                 | LOS A |
| Street/Cope Street |         | East     | 0.185                | 9.6                           | 10.3                                                | LOS A |
| (Signal)           |         | North    | 0.302                | 19.5                          | 5.6                                                 | LOS B |

Table 5-69 Block 4 – Intersection performance summary of WLO02

| AECC | M |
|------|---|

| Intersection | Peak    | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|---------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |         | West     | 0.334                | 10.7                          | 20.6                                                | LOS A |
|              |         | Total    | 0.334                | 11.5                          | 20.6                                                | LOS A |
|              |         | South    | 0.114                | 17.4                          | 5.7                                                 | LOS B |
|              | Weekday | East     | 0.218                | 10.8                          | 15.2                                                | LOS A |
|              |         | North    | 0.252                | 22.5                          | 8.5                                                 | LOS B |
|              | I IVI   | West     | 0.269                | 11.6                          | 21.5                                                | LOS A |
|              |         | Total    | 0.269                | 12.9                          | 21.5                                                | LOS A |
|              |         | South    | 0.077                | 13.1                          | 3.3                                                 | LOS A |
|              |         | East     | 0.168                | 9.2                           | 9.6                                                 | LOS A |
|              | Weekend | North    | 0.195                | 18.3                          | 4.7                                                 | LOS B |
|              |         | West     | 0.324                | 10.5                          | 20.0                                                | LOS A |
|              |         | Total    | 0.324                | 11.0                          | 20.0                                                | LOS A |

Overall, the intersection of Raglan Street and Cope Street performs satisfactorily at LOS A during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

It was also noted that Block 4 pedestrian volumes at Raglan Street and Cope Street significantly increased across all peak hours compared to pre-opening conditions. Given that WLO02 is located along the frontage of Waterloo station, the rise in pedestrian activity is likely associated to commuters accessing Sydney Metro during Block 4.

## 5.8.3 WLO03 – Botany Road/Wellington Street/Buckland Street

The signalised intersection, composed of Botany Road, Wellington Street and Buckland Street, is located directly south-west of Waterloo Station. It connects the local roads of Wellington Street in Waterloo and Buckland Street, linking Waterloo and Alexandria, with the State road of Botany Road, linking Waterloo and Matraville.

Figure 5-79 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-79 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of WLO03

| Intersection        | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|---------------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                     |               | South    | 0.361                | 5.2                           | 66.4                                                | LOS A |
|                     |               | East     | 0.222                | 58.8                          | 13.6                                                | LOS E |
|                     | Weekday<br>AM | North    | 0.314                | 3.7                           | 47.6                                                | LOS A |
|                     | 7 (1)1        | West     | 0.340                | 52.8                          | 30.8                                                | LOS D |
|                     |               | Total    | 0.361                | 8.6                           | 66.4                                                | LOS A |
| Botany<br>Road/     | Weekday<br>PM | South    | 0.363                | 6.1                           | 71.0                                                | LOS A |
| Wellington          |               | East     | 0.319                | 59.1                          | 25.1                                                | LOS E |
| Street/<br>Buckland |               | North    | 0.365                | 2.5                           | 41.7                                                | LOS A |
| Street              |               | West     | 0.306                | 52.6                          | 30.3                                                | LOS D |
| (Signal)            |               | Total    | 0.365                | 8.9                           | 71.0                                                | LOS A |
| (eignai)            |               | South    | 0.428                | 7.3                           | 74.7                                                | LOS A |
| N                   |               | East     | 0.214                | 59.4                          | 17.6                                                | LOS E |
|                     | Weekend       | North    | 0.561                | 8.3                           | 82.0                                                | LOS A |
|                     |               | West     | 0.341                | 53.6                          | 33.8                                                | LOS D |
|                     |               | Total    | 0.561                | 13.6                          | 82.0                                                | LOS A |

 Table 5-70 presents a performance summary of this intersection.

 Table 5-70 Block 4 – Intersection performance summary of WLO03

Overall, the intersection of Botany Road, Wellington Street and Buckland Street performs satisfactorily at LOS A during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

It was also noted that Block 4 pedestrian volumes at Botany Road, Wellington Street and Buckland Street significantly increased during the weekend peak hour compared to pre-opening conditions. Given that WLO03 is located along the frontage of Waterloo station, the rise in pedestrian activity is likely associated to commuters accessing Sydney Metro during Block 4.

#### 5.8.4 WLO04 – Cope Street/Wellington Street

The priority intersection, composed of Cope Street and Wellington Street, is located directly south-east of Waterloo Station. It connects the local roads of Cope Street, linking Waterloo and Redfern, and Wellington Street in Waterloo. During Block 4, the intersection was redesigned from a roundabout intersection to a priority intersection to cater for the opening of the Waterloo metro station.

Figure 5-80 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.

ſ



Source: Nearmap (September 2024)

A 4

Figure 5-80 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of WLO03

| Table 5-71 pi | resents a | performance | summary | of this | intersection. |
|---------------|-----------|-------------|---------|---------|---------------|
|---------------|-----------|-------------|---------|---------|---------------|

Cope St (S)

| Intersection               | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|----------------------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                            |               | South    | 0.038                | 8.5                           | 1.0                                                 | LOS A |
|                            |               | East     | 0.043                | 5.8                           | 1.4                                                 | LOS A |
|                            | Weekday<br>AM | North    | 0.011                | 7.8                           | 0.3                                                 | LOS A |
|                            | 7 (17)        | West     | 0.074                | 4.8                           | 1.5                                                 | LOS A |
|                            |               | Total    | 0.038                | 8.5                           | 1.0                                                 | LOS A |
|                            | Weekday<br>PM | South    | 0.040                | 8.6                           | 1.1                                                 | LOS A |
| Cope Street/<br>Wellington |               | East     | 0.052                | 5.5                           | 1.6                                                 | LOS A |
| Street                     |               | North    | 0.011                | 7.9                           | 0.3                                                 | LOS A |
| (Stop)                     |               | West     | 0.094                | 4.7                           | 1.6                                                 | LOS A |
| (0.0p)                     |               | Total    | 0.040                | 8.6                           | 1.1                                                 | LOS A |
|                            | Weekend       | South    | 0.028                | 8.1                           | 0.7                                                 | LOS A |
|                            |               | East     | 0.040                | 5.2                           | 1.3                                                 | LOS A |
|                            |               | North    | 0.013                | 7.4                           | 0.3                                                 | LOS A |
|                            |               | West     | 0.102                | 4.7                           | 2.9                                                 | LOS A |
|                            |               | Total    | 0.028                | 8.1                           | 0.7                                                 | LOS A |

Overall, the intersection of Cope Street and Wellington Street performs satisfactorily at LOS A during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

#### 5.8.5 WLO05 - Wyndham Street/Henderson Road

The signalised intersection, composed of Wyndham Street and Henderson Road, is located west of Waterloo Station. It connects Henderson Road, linking Waterloo and Eveleigh, and Wyndham Street in Alexandria.

Figure 5-81 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-81 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of WLO05

| Intersection         | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|----------------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                      |               | South    | 0.633                | 53.1                          | 74.1                                                | LOS D |
|                      | Weekday       | East     | 0.618                | 7.9                           | 51.5                                                | LOS A |
|                      | AM            | West     | 0.742                | 60.1                          | 94.1                                                | LOS E |
|                      |               | Total    | 0.742                | 27.6                          | 94.1                                                | LOS B |
| Wyndham              | Weekday<br>PM | South    | 0.677                | 59.0                          | 73.0                                                | LOS E |
| Street/<br>Henderson |               | East     | 0.402                | 14.6                          | 79.7                                                | LOS B |
| Road                 |               | West     | 0.651                | 60.3                          | 100.4                                               | LOS E |
| (Signal)             |               | Total    | 0.677                | 31.2                          | 100.4                                               | LOS C |
|                      | Weekend       | South    | 0.584                | 53.4                          | 62.9                                                | LOS D |
|                      |               | East     | 0.331                | 13.1                          | 67.7                                                | LOS A |
|                      |               | West     | 0.667                | 61.4                          | 94.2                                                | LOS E |
|                      |               | Total    | 0.667                | 30.8                          | 94.2                                                | LOS C |

Table 5-72 presents a performance summary of this intersection.

|                                                     |               | South | 0.633 | 53.1 | 74.1  | L |
|-----------------------------------------------------|---------------|-------|-------|------|-------|---|
|                                                     | Weekday<br>AM | East  | 0.618 | 7.9  | 51.5  | L |
|                                                     |               | West  | 0.742 | 60.1 | 94.1  | L |
|                                                     |               | Total | 0.742 | 27.6 | 94.1  | L |
| Wyndham<br>Street/<br>Henderson<br>Road<br>(Signal) | Weekday<br>PM | South | 0.677 | 59.0 | 73.0  | L |
|                                                     |               | East  | 0.402 | 14.6 | 79.7  | L |
|                                                     |               | West  | 0.651 | 60.3 | 100.4 | L |
|                                                     |               | Total | 0.677 | 31.2 | 100.4 | L |
| . 3 /                                               |               |       |       |      |       |   |

Table 5-72 Block 4 – Intersection performance summary of WLO05

Overall, the intersection of Wyndham Street and Henderson Road performs satisfactorily at LOS C or better during all peak hours. The 95<sup>th</sup> percentile queue on Henderson Road (east approach) extends

back to Botany Road during the weekday PM and weekend peak hours. Similarly, the 95<sup>th</sup> percentile queue on Henderson Road (west approach) extends back to Garden Street during all peak hours.

It was also noted that Block 4 pedestrian volumes at Wyndham Street and Henderson Road significantly increased across all peak hours compared to pre-opening conditions. Given that WLO05 is located along the frontage of Waterloo station, the rise in pedestrian activity is likely associated to commuters accessing Sydney Metro during Block 4.

#### 5.8.6 WLO06 – New Pedestrian Mid-block Crossing at Cope Street

The new unsignalised pedestrian mid-block crossing at Cope Street is located directly east of Waterloo Station. This crossing was under construction during Block 1 to 3, however was operational during Block 4.

Figure 5-82 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-82 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of WLO06

Table 5-73 presents a performance summary of this intersection.

Table 5-73 Block 4 – Intersection performance summary of WLO06

| Intersection                    | Peak          | Approach | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|---------------------------------|---------------|----------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                                 |               | South    | 0.030                | 2.2                           | 0.8                                                 | LOS A |
| Now                             | Weekday<br>AM | North    | 0.007                | 2.2                           | 0.2                                                 | LOS A |
| Pedestrian                      |               | Total    | 0.030                | 2.2                           | 0.8                                                 | LOS A |
| Mid-block<br>Crossing at        | Weekday<br>PM | South    | 0.022                | 2.1                           | 0.5                                                 | LOS A |
| (Pedestrian<br>only –<br>Zebra) |               | North    | 0.005                | 2.1                           | 0.1                                                 | LOS A |
|                                 |               | Total    | 0.022                | 2.1                           | 0.5                                                 | LOS A |
|                                 | Weekend       | South    | 0.013                | 2.1                           | 0.3                                                 | LOS A |
|                                 |               | North    | 0.006                | 2.1                           | 0.2                                                 | LOS A |
|                                 |               | Total    | 0.013                | 2.1                           | 0.3                                                 | LOS A |

Overall, the pedestrian mid-block crossing at Cope Street performs satisfactorily at LOS A during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

#### 5.8.7 Comparison with previous study blocks

Figure 5-83 provides a comparison of the total peak hourly traffic volumes recorded across all intersections for Block 4 against previous study blocks. As shown, Block 4 traffic volumes are slightly lower during the AM and PM peak hours, and generally similar in the weekend peak hour compared to pre-opening conditions.



Figure 5-83 Study block comparison – Waterloo Station peak hourly traffic volumes across all intersections

A comparison of the intersection LOS for Block 4 against previous study blocks is shown in Figure 5-84. All intersections in the Waterloo Station study area perform at LOS C or better during Block 4, which is generally similar to previous study blocks.

Botany Road/Raglan Street (WLO01) had a notable change in LOS, whereby the intersection improved from a LOS D to a LOS C in the PM peak hour compared to Block 3. This change in LOS for WLO01 was due to lower traffic volumes at this intersection in Block 4 during the PM peak hour.

#### Sydney Metro City and Southwest - Traffic and Interchange Monitoring Block 4 Report – Sydney Metro C&SW - Traffic and Interchange Monitoring



Figure 5-84 Study block comparison – Waterloo Station intersection performance summary

# 5.9 Sydenham Station

Sydenham Station is an existing station and the ninth stop on the City & Southwest Line (towards Sydenham). It is located in the north-western area of Sydenham, bounded by Railway Parade, Gleeson Avenue, and Burrows Avenue in Sydenham.

Platforms 1 and 2 of the existing Sydenham Station have been upgraded and extended to facilitate metro functionality. In addition to the existing entrance at Gleeson Avenue, two new entrances have been constructed – one in the north and the other in the south. The northern entry opens onto a plaza near the corner of Railway Parade, and the southern entry provides access onto a plaza on Burrows Avenue near Hogan Avenue.

Bus services are provided within approximately 100 metres of Sydenham Station, located along Burrows Avenue and Railway Parade.

The Sydenham Station study area consists of six intersections. Table 5-74 presents the peak hours utilised for modelling the intersections. Table 5-75 provides a summary of the intersection LOS while Figure 5-85 visualises a geospatial summary of the intersection LOS within the Sydenham Station study area.

| Network | Intersection | Weekday AM peak<br>hour |               | Weekday PM peak<br>hour |               | Weekend peak hour |               |
|---------|--------------|-------------------------|---------------|-------------------------|---------------|-------------------|---------------|
| ID      | ID           | Day                     | Start<br>time | Day                     | Start<br>time | Day               | Start<br>time |
|         | SYD01        | Tuesday                 | 8:00am        | Wednesday               | 4:30pm        | Saturday          | 10:45am       |
| SYD-N1  | SYD02        | Tuesday                 |               |                         |               |                   |               |
| -       | SYD03        | Monday                  | 11:30am       | Wednesday               | 5:00pm        | Saturday          | 12:15pm       |
| -       | SYD04        | Thursday                | 8:00am        | Thursday                | 3:30pm        | Saturday          | 10:45am       |
| -       | SYD05        | Tuesday                 | 8:00am        | Friday                  | 4:45pm        | Saturday          | 1:30pm        |
| -       | SYD06        | Tuesday                 | 8:00am        | Wednesday               | 4:30pm        | Saturday          | 11:15am       |

Table 5-74 Block 4 – Sydenham Station peak hours modelled

| Table 5-75 Block 4 – Sydenhan | n Station intersection | performance summary |
|-------------------------------|------------------------|---------------------|
|-------------------------------|------------------------|---------------------|

| Intersection |                                                           | LOS                |                    |                 |  |
|--------------|-----------------------------------------------------------|--------------------|--------------------|-----------------|--|
| ID           | Intersection                                              | Weekday<br>AM Peak | Weekday<br>PM Peak | Weekend<br>Peak |  |
| SYD01        | Railway Parade/Gleeson Avenue<br>(Signal)                 | LOS A              | LOS A              | LOS A           |  |
| SYD02        | Burrows Avenue/Gleeson Avenue<br>(Signal)                 | LOS B              | LOS B              | LOS B           |  |
| SYD03        | Burrows Avenue/George Street<br>(Priority – Give Way)     | LOS A              | LOS A              | LOS A           |  |
| SYD04        | Railway Parade/Sydenham Road<br>(Signal)                  | LOS A              | LOS A              | LOS A           |  |
| SYD05        | Marrickville Road/Buckley Street<br>(Priority – Give Way) | LOS A              | LOS A              | LOS A           |  |
| SYD06        | Sydenham Road/Buckley Street<br>(Priority – Give Way)     | LOS A              | LOS A              | LOS A           |  |

Overall, the intersection performance in the Sydenham Station study area during the peak hours is satisfactory, operating at LOS B or better.



Figure 5-85 Block 4 – Sydenham Station intersection performance summary

#### 5.9.1 SYD01 – Railway Parade/Gleeson Avenue

The signalised intersection, composed of Railway Parade and Gleeson Avenue, is located directly west of Sydenham Station. It connects the State roads of Railway Parade and Gleeson Avenue in Sydenham.

Figure 5-86 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-86 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of SYD01

| Intersection | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|---------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |               | South-east | 0.211                | 4.5                           | 0.0                                                 | LOS A |
| Deikueu      | Weekday<br>AM | North-east | 0.505                | 14.0                          | 54.6                                                | LOS A |
|              |               | Total      | 0.505                | 11.1                          | 54.6                                                | LOS A |
| Parade/      | Weekday<br>PM | South-east | 0.245                | 4.6                           | 0.0                                                 | LOS A |
| Gleeson      |               | North-east | 0.442                | 12.9                          | 47.0                                                | LOS A |
| (Signal)     |               | Total      | 0.442                | 9.9                           | 47.0                                                | LOS A |
|              | Weekend       | South-east | 0.201                | 4.5                           | 0.0                                                 | LOS A |
|              |               | North-east | 0.434                | 9.8                           | 66.5                                                | LOS A |
|              |               | Total      | 0.434                | 8.2                           | 66.5                                                | LOS A |

Table 5-76 presents a performance summary of this intersection.

#### Table 5-76 Block 4 – Intersection performance summary of SYD01

Overall, the intersection of Railway Parade and Gleeson Avenue performs satisfactorily at LOS A during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

It was also noted that Block 4 vehicle volumes at Railway Parade and Gleeson Avenue significantly decreased across all peak hours compared to pre-opening conditions. Exact reasons for the reduction in vehicle demand is unknown, however the reduction in traffic volumes at SYD01 is consistent with that suggested by SCATS detector data.
# 5.9.2 SYD02 – Burrows Avenue/Gleeson Avenue

The signalised intersection, composed of Burrows Avenue and Gleeson Avenue, is located directly south of Sydenham Station. It connects the local road of Burrows Avenue with the State road of Gleeson Avenue in Sydenham.

Figure 5-87 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.



Source: Nearmap (September 2024)

Figure 5-87 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of SYD02

| Intersection | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|---------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |               | South-east | 0.341                | 15.3                          | 74.4                                                | LOS B |
|              |               | North-east | 0.371                | 53.1                          | 32.8                                                | LOS D |
|              | Weekday<br>AM | North-west | 0.533                | 5.7                           | 57.5                                                | LOS A |
|              |               | South-west | 0.148                | 52.5                          | 10.6                                                | LOS D |
|              |               | Total      | 0.533                | 15.9                          | 74.4                                                | LOS B |
| Burrows      |               | South-east | 0.430                | 17.5                          | 94.7                                                | LOS B |
| Avenue/      |               | North-east | 0.629                | 58.6                          | 61.8                                                | LOS E |
| Gleeson      | Weekday<br>PM | North-west | 0.520                | 5.6                           | 49.8                                                | LOS A |
| / Wondo      | I IVI         | South-west | 0.100                | 48.5                          | 8.2                                                 | LOS D |
| (Signal)     |               | Total      | 0.629                | 20.1                          | 94.7                                                | LOS B |
|              |               | South-east | 0.347                | 12.8                          | 79.2                                                | LOS A |
|              |               | North-east | 0.464                | 56.6                          | 39.4                                                | LOS E |
|              | Weekend       | North-west | 0.531                | 5.7                           | 64.8                                                | LOS A |
|              |               | South-west | 0.181                | 54.0                          | 11.6                                                | LOS D |
|              |               | Total      | 0.531                | 14.6                          | 79.2                                                | LOS B |

Table 5-77 presents a performance summary of this intersection.

Overall, the intersection of Burrows Avenue and Gleeson Avenue performs satisfactorily at LOS B during all peak hours. The 95<sup>th</sup> percentile queue on Gleeson Avenue (north-west approach) extends back to Railway Parade during the weekday AM and weekend peak hours.

It was also noted that Block 4 pedestrian volumes at Burrows Avenue and Gleeson Avenue significantly increased during the weekday PM and weekend peak hours compared to pre-opening conditions. Given that SYD02 is located along the frontage of Sydenham station, the rise in pedestrian activity is likely associated to commuters accessing Sydney Metro during Block 4.

### 5.9.3 SYD03 – Burrows Avenue/George Street

The priority intersection, composed of Burrows Avenue and George Street, is located directly east of Sydenham Station. It connects the local roads of Burrows Avenue and George Street in Sydenham.

Figure 5-88 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-88 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of SYD03

Table 5-78 presents a performance summary of this intersection.

Table 5-78 Block 4 – Intersection performance summary of SYD03

| Intersection | Peak    | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|---------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |         | South-east | 0.024                | 9.4                           | 0.5                                                 | LOS A |
|              | Weekday | North-east | 0.176                | 4.1                           | 6.4                                                 | LOS A |
| Burrows      | AM      | South-west | 0.200                | 5.2                           | 6.5                                                 | LOS A |
| Avenue/      |         | Total      | 0.024                | 9.4                           | 0.5                                                 | LOS A |
| Street       |         | South-east | 0.028                | 10.3                          | 0.6                                                 | LOS A |
| (Priority –  | Weekday | North-east | 0.306                | 4.3                           | 12.4                                                | LOS A |
| Give Way)    | PM      | South-west | 0.157                | 5.8                           | 4.7                                                 | LOS A |
|              |         | Total      | 0.028                | 10.3                          | 0.6                                                 | LOS A |
|              | Weekend | South-east | 0.036                | 10.0                          | 0.8                                                 | LOS A |

| Intersection | Peak | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |      | North-east | 0.205                | 4.2                           | 7.5                                                 | LOS A |
|              |      | South-west | 0.232                | 5.4                           | 7.5                                                 | LOS A |
|              |      | Total      | 0.036                | 10.0                          | 0.8                                                 | LOS A |

Overall, the intersection of Burrows Avenue and George Street performs satisfactorily at LOS A during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

It was also noted that Block 4 pedestrian volumes at Burrows Avenue and George Street significantly increased during the weekend peak hour compared to pre-opening conditions. Given that SYD03 is located along the frontage of Sydenham station, the rise in pedestrian activity is likely associated to commuters accessing Sydney Metro during Block 4.

### 5.9.4 SYD04 – Railway Parade/Sydenham Road

The signalised intersection, composed of Railway Parade and Sydenham Road, is located directly north of Sydenham Station. It connects the State roads of Railway Parade and Sydenham Road in Sydenham.

Figure 5-89 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-89 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of SYD04

Table 5-79 presents a performance summary of this intersection.

| Intersection | Peak | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |      | North-west | 0.450                | 6.4                           | 68.0                                                | LOS A |

 Table 5-79 Block 4 – Intersection performance summary of SYD04

| Intersection        | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|---------------------|---------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                     | Weekday       | South-west | 0.022                | 30.0                          | 1.7                                                 | LOS C |
|                     | AM            | Total      | 0.450                | 6.6                           | 68.0                                                | LOS A |
| Railway             |               | North-west | 0.420                | 5.6                           | 65.2                                                | LOS A |
| Parade/<br>Sydenham | Weekday<br>PM | South-west | 0.057                | 31.8                          | 4.6                                                 | LOS C |
| Road                | 1 101         | Total      | 0.420                | 6.0                           | 65.2                                                | LOS A |
| (Signal)            |               | North-west | 0.446                | 5.7                           | 71.7                                                | LOS A |
|                     | Weekend       | South-west | 0.093                | 36.0                          | 7.9                                                 | LOS C |
|                     |               | Total      | 0.446                | 6.4                           | 71.7                                                | LOS A |

Overall, the intersection of Railway Parade and Sydenham Road performs satisfactorily at LOS A during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

## 5.9.5 SYD05 – Marrickville Road/Buckley Street

The priority intersection, composed of Marrickville Road and Buckley Street, is located west of Sydenham Station. It connects the State roads of Buckley Street in Sydenham and Marrickville Road, linking Sydenham and Dulwich Hill.

Figure 5-90 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-90 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of SYD05

Table 5-80 presents a performance summary of this intersection.

### Table 5-80 Block 4 – Intersection performance summary of SYD05

| Intersection | Peak | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |      | South-east | 0.739                | 8.7                           | 35.6                                                | LOS A |

| Intersection             | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------------------|---------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                          | Weekday       | North-west | 0.887                | 12.4                          | 65.6                                                | LOS A |
|                          | AM            | Total      | 0.887                | 12.4                          | 65.6                                                | LOS A |
| Marrickville<br>Road/    |               | South-east | 0.706                | 7.7                           | 33.4                                                | LOS A |
| Buckley                  | Weekday<br>PM | North-west | 0.692                | 7.8                           | 22.1                                                | LOS A |
| Street                   | I IVI         | Total      | 0.692                | 7.8                           | 22.1                                                | LOS A |
| (Priority –<br>Give Way) |               | South-east | 0.341                | 6.2                           | 12.9                                                | LOS A |
|                          | Weekend       | North-west | 0.298                | 6.1                           | 10.0                                                | LOS A |
|                          |               | Total      | 0.341                | 6.2                           | 12.9                                                | LOS A |

Overall, the intersection of Marrickville Road and Buckley Street performs satisfactorily at LOS A during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

## 5.9.6 SYD06 – Sydenham Road/Buckley Street

The priority intersection, composed of Sydenham Road and Buckley Street, is located north of Sydenham Station. It connects the State roads of Buckley Street in Sydenham and Sydenham Road, linking Sydenham and Marrickville.

Figure 5-91 illustrates both the general intersection layout as modelled in SIDRA Intersection and the layout as per aerial imagery.





Source: Nearmap (September 2024)

Figure 5-91 Block 4 – AM peak model SIDRA Intersection layout (left) and Nearmap aerial imagery (right) of SYD06

Table 5-81 presents a performance summary of this intersection.

### Table 5-81 Block 4 – Intersection performance summary of SYD06

| Intersection | Peak | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------|------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|              |      | North-west | 0.418                | 0.1                           | 0.0                                                 | LOS A |

| Intersection             | Peak          | Approach   | Degree of saturation | Average<br>delay<br>(seconds) | 95 <sup>th</sup><br>percentile<br>queue<br>(metres) | LOS   |
|--------------------------|---------------|------------|----------------------|-------------------------------|-----------------------------------------------------|-------|
|                          | Weekday       | South-west | 0.261                | 5.8                           | 0.0                                                 | LOS A |
| <u> </u>                 | AM            | Total      | 0.261                | 5.8                           | 0.0                                                 | LOS A |
| Sydenham<br>Road/        |               | North-west | 0.396                | 0.1                           | 0.0                                                 | LOS A |
| Buckley                  | Weekday<br>PM | South-west | 0.196                | 5.8                           | 0.0                                                 | LOS A |
| Street                   | I IVI         | Total      | 0.196                | 5.8                           | 0.0                                                 | LOS A |
| (Priority –<br>Give Way) |               | North-west | 0.388                | 0.1                           | 0.0                                                 | LOS A |
|                          | Weekend       | South-west | 0.245                | 5.8                           | 0.0                                                 | LOS A |
|                          |               | Total      | 0.245                | 5.8                           | 0.0                                                 | LOS A |

Overall, the intersection of Sydenham Road and Buckley Street performs satisfactorily at LOS A during all peak hours. The 95<sup>th</sup> percentile queue lengths are accommodated within the approach distances for all approaches.

## 5.9.7 Comparison with previous study blocks

Figure 5-92 provides a comparison of the total peak hourly traffic volumes recorded across all intersections for Block 4 against previous study blocks. As shown, Block 4 traffic volumes are generally similar to pre-opening conditions during all peak hours.



Figure 5-92 Study block comparison – Sydenham Station peak hourly traffic volumes across all intersections

A comparison of the intersection LOS for Block 4 against previous study blocks is shown in Figure 5-93. All intersections in the Sydenham site perform at a LOS B or better during Block 4, which is generally similar to previous study blocks.

| 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SYD01 - F                                                        | AILWAY PDE / GLEESO                                              | NAVE                                                             | SYD02 - B                                                        | URROWS AVE / GLEESO                                              | ON AVE                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| Caloffan estrel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AM PEAK                                                          | PM PEAK                                                          | WE PEAK                                                          | AM PEAK                                                          | PM PEAK                                                          | WE PEAK                                                          |
| and the state of the set of the set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LOSA<br>LOSA<br>LOSA<br>LOSA                                     | A SOL<br>LOSA<br>LOSA<br>LOSA                                    | LOSA<br>LOSA<br>LOSA                                             | a sol                                                            | B SOL                                                            | A SOL<br>LOS B<br>LOS B<br>LOS B                                 |
| SHAT SYDOE SHILOW STU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BLOCK 1<br>BLOCK 2<br>BLOCK 3<br>BLOCK 4                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SYD03 - E                                                        | BURROWS AVE / GEORG                                              | GE ST                                                            | SYD04 - R                                                        | RAILWAY PDE / SYDENHA                                            | AM RD                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AM PEAK                                                          | PM PEAK                                                          | WE PEAK                                                          | AM PEAK                                                          | PM PEAK                                                          | WE PEAK                                                          |
| SYD04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 8 8 8 8<br>8 8 8 8<br>8 8 8 8                                  | 4 4 4 4<br>9 9 9 9 9                                             | 8 8 8 8<br>8 8 8 8<br>8 8 8                                      | Z Z Z Z                                                          | 4 4 4 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                          | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10° 10° 10°                                                      | L08 L08                                                          | L01 L01                                                          | 0 0 0 0                                                          | LOS 101                                                          | Lo. Lo.                                                          |
| software the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BLOCK 1<br>BLOCK 2<br>BLOCK 3<br>BLOCK 4                         |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SYD05 - MA                                                       | RRICKVILLE RD / BUCK                                             | LEY ST                                                           | SYD06 - 5                                                        | SYDENHAM RD / BUCKL                                              | EY ST                                                            |
| Astrony parts M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AM PEAK                                                          | PM PEAK                                                          | WE PEAK                                                          | AM PEAK                                                          | PM PEAK                                                          | WE PEAK                                                          |
| SYDD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                  |                                                                  |                                                                  |                                                                  |                                                                  |                                                                  |
| SYD01 BYD03 V Reality     | LOS A<br>LOS A<br>LOS A                                          | LOSA<br>LOSA<br>LOSA                                             | LOSA<br>LOSA<br>LOSA                                             | LOSA<br>LOSA<br>LOSA<br>LOSA                                     | LOSA<br>LOSA<br>LOSA                                             | V SOJ                                                            |
| SYD01 BYD03 V<br>SYD05 Automatic Automa | BLOCK 1 LOS A<br>BLOCK 2 LOS A<br>BLOCK 3 LOS A<br>BLOCK 4 LOS A | BLOCK 1 LOS A<br>BLOCK 2 LOS A<br>BLOCK 3 LOS A<br>BLOCK 4 LOS A | BLOCK 1 LOS A<br>BLOCK 2 LOS A<br>BLOCK 3 LOS A<br>BLOCK 4 LOS A | BLOCK 1 LOS A<br>BLOCK 2 LOS A<br>BLOCK 3 LOS A<br>BLOCK 4 LOS A | BLOCK 1 LOS A<br>BLOCK 2 LOS A<br>BLOCK 3 LOS A<br>BLOCK 4 LOS A | BLOCK 1 LOS A<br>BLOCK 2 LOS A<br>BLOCK 3 LOS A<br>BLOCK 4 LOS A |

Figure 5-93 Study block comparison – Sydenham Station intersection performance summary

# 6.0 Transport interchange monitoring

This section details analysis of the interchange traffic survey data at kerbside facilities nearby station interchanges.

# 6.1 Chatswood Station

In the Chatswood Station study area, a total of five taxi and kiss and ride facilities were assessed during Block 4. These included three kiss and ride facilities and two taxi facilities. Refer to Section 3.3 for detailed information about their locations and the number of bays.

### 6.1.1 Kiss and ride

Table 6-1 presents a summary of the peak hour vehicle demands for the kiss and ride facilities, as well as the average dwell time and total number of boarding/alighting passengers during the identified peak hours.

Based on the interchange survey data, the following were the key observations:

- CWDK1 Railway Street:
  - The highest demand recorded at CWDK1 occurred during the weekend peak hour, when there were 26 vehicles per hour.
  - The average dwell time during the weekday and weekend peak hours ranged from one to two minutes.
  - Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues.
- CWDK2 69 Albert Avenue:
  - The highest demand recorded at CWDK2 occurred during the weekday AM peak hour, when there were 75 vehicles per hour.
  - The average dwell time during the weekday and weekend peak hours ranged from one to three minutes.
  - Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues.
- CWDK3 Endeavour Street:
  - The highest demand recorded at CWDK3 occurred during the weekday AM peak hour, when there were 35 vehicles per hour.
  - The average dwell time during the weekday and weekend peak hours ranged from one to three minutes.
  - Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues.

### Table 6-1 Block 4 – Chatswood Station interchange assessment peak hour summary (kiss and ride)

| П       | Peak hour                                          |                     |                   |                     |  |  |  |  |  |
|---------|----------------------------------------------------|---------------------|-------------------|---------------------|--|--|--|--|--|
| 19      | Summary                                            | Weekday AM          | Weekday PM        | Weekend             |  |  |  |  |  |
|         | Peak hour                                          | Thursday<br>7am-8am | Friday<br>6pm-7pm | Saturday<br>6pm-7pm |  |  |  |  |  |
| CWDK1   | Vehicles (vehicle per hour)                        | 23                  | 22                | 26                  |  |  |  |  |  |
| Street) | Average dwell time (minutes)                       | 1                   | 1                 | 2                   |  |  |  |  |  |
|         | Boarding/alighting passenger<br>(excluding driver) | 31                  | 24                | 35                  |  |  |  |  |  |

| חו                             | Peak hour                                          |                      |                      |                     |  |
|--------------------------------|----------------------------------------------------|----------------------|----------------------|---------------------|--|
|                                | Summary                                            | Weekday AM           | Weekday PM           | Weekend             |  |
|                                | Peak hour                                          | Monday<br>7am-8am    | Wednesday<br>4pm-5pm | Sunday<br>5pm-6pm   |  |
| CWDK2                          | Vehicles (vehicle per hour)                        | 75                   | 45                   | 31                  |  |
| (Albert<br>Avenue)             | Average dwell time (minutes)                       | 1                    | 2                    | 3                   |  |
|                                | Boarding/alighting passenger<br>(excluding driver) | 114                  | 29                   | 45                  |  |
| CWDK3<br>(Endeavour<br>Street) | Peak hour                                          | Wednesday<br>7am-8am | Friday<br>6pm-7pm    | Saturday<br>4pm-5pm |  |
|                                | Vehicles (vehicle per hour)                        | 35                   | 31                   | 27                  |  |
|                                | Average dwell time (minutes)                       | 1                    | 1                    | 3                   |  |
|                                | Boarding/alighting passenger<br>(excluding driver) | 45                   | 31                   | 23                  |  |

Note: Average dwell times were rounded to the nearest minute.

Figure 6-1 to Figure 6-3 present the daily demand profile for the three kiss and ride facilities at Chatswood Station.



Figure 6-1 Block 4 – Daily demand profile of CWDK1



Figure 6-2 Block 4 – Daily demand profile of CWDK2



Figure 6-3 Block 4 – Daily demand profile of CWDK3

### 6.1.2 Taxi

Table 6-2 presents a summary of the peak hour vehicle demands for the taxi facilities, as well as the average dwell time and total number of boarding/alighting passengers during the identified peak hours.

Based on the interchange survey data, the following were the key observations:

- CWDT1 Victoria Avenue:
  - The highest demand recorded at CWDT1 occurred during the weekend peak hour, when there were 29 vehicles per hour.
  - The average dwell time during the weekday and weekend peak hours ranged from six to 13 minutes.
  - Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues.
- CWDT2 Endeavour Street:
  - The highest demand recorded at CWDT2 occurred during the weekend peak hour, where there were 17 vehicles per hour.
  - The average dwell time during the weekday and weekend peak hours ranged from one to three minutes.
  - Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues.

### Table 6-2 Block 4 – Chatswood Station interchange assessment peak hour summary (taxi)

| ID                             | Peak hour                                          |                     |                     |                     |  |
|--------------------------------|----------------------------------------------------|---------------------|---------------------|---------------------|--|
| 10                             | Summary                                            | Weekday AM          | Weekday PM          | Weekend             |  |
|                                | Peak hour                                          | Tuesday<br>9am-10am | Friday<br>11pm-12am | Saturday<br>6pm-7pm |  |
| CWDT1<br>(Victoria<br>Avenue)  | Vehicles (vehicle per hour)                        | 24                  | 26                  | 29                  |  |
|                                | Average dwell time (minutes)                       | 13                  | 6                   | 9                   |  |
|                                | Boarding/alighting passenger<br>(excluding driver) | 19                  | 34                  | 31                  |  |
| CWDT2<br>(Endeavour<br>Street) | Peak hour                                          | Tuesday<br>9am-10am | Tuesday<br>4pm-5pm  | Saturday<br>7pm-8pm |  |
|                                | Vehicles (vehicle per hour)                        | 15                  | 15                  | 17                  |  |
|                                | Average dwell time (minutes)                       | 1                   | 2                   | 3                   |  |

| Boarding/alighting passenger<br>(excluding driver) | 16 | 17 | 24 |  |
|----------------------------------------------------|----|----|----|--|
|                                                    |    |    |    |  |

Note: Average dwell times were rounded to the nearest minute.

# Figure 6-4 and Figure 6-5 present the daily demand profile for the two taxi facilities at Chatswood Station.



Figure 6-4 Block 4 – Daily hourly demand profile of CWDT1



Figure 6-5 Block 4 – Daily demand profile of CWDT2

### 6.1.3 Comparison with previous study blocks

Figure 6-6 provides a comparison of the total peak hourly vehicle demand recorded across the interchange facilities for Block 4 against pre-opening conditions. Key findings were as follows:

- CWDK1 Railway Street vehicle demands are generally similar during all peak hours compared to pre-opening conditions.
- CWDK2 69 Albert Avenue vehicle demands are generally similar during all peak hours compared to pre-opening conditions.
- CWDK3 Endeavour Street vehicle demands are generally similar during all peak hours compared to pre-opening conditions.
- CWDT1 Victoria Avenue vehicle demands are generally similar during all peak hours compared to pre-opening conditions.
- CWDT2 Endeavour Street vehicle demands are generally similar during all peak hours compared to pre-opening conditions in Block 2 and 3, however Block 1 demands were much lower.

Similarly, Figure 6-7 provides a comparison of the total peak hourly boarding and alighting demand recorded across the interchange facilities for Block 4 against pre-opening conditions. Key findings were as follows:

- CWDK1 Railway Street boarding and alighting demands are generally similar during all peak hours compared to pre-opening conditions.
- CWDK2 69 Albert Avenue boarding and alighting demands are generally similar during all peak hours compared to pre-opening conditions.
- CWDK3 Endeavour Street boarding and alighting demands are generally similar during the weekday AM and PM peak hours, and lower during the weekend peak hour compared to preopening conditions.
- CWDT1 Victoria Avenue boarding and alighting demands are generally similar during all peak hours compared to pre-opening conditions.
- CWDT2 Endeavour Street boarding and alighting demands are generally similar during all peak hours compared to pre-opening conditions in Blocks 2 and 3, however Block 1 demands were much lower.



Figure 6-6 Study block comparison – Chatswood Station interchange vehicle demand summary

152



Figure 6-7 Study block comparison – Chatswood Station interchange boarding and alighting demand summary

153

# 6.2 Crows Nest Station

In the Crows Nest Station study area, a total of four taxi and kiss and ride facilities were assessed during Block 4. These included one taxi facility and three kiss and ride facilities. Refer to Section 3.3 for detailed information about their locations and the number of bays.

### 6.2.1 Kiss and ride

Table 6-3 presents a summary of the peak hour vehicle demands for the kiss and ride facilities, as well as the average dwell time and total number of boarding/alighting passengers during the identified peak hours.

Based on the interchange survey data, the following were the key observations:

- CSTK1 Oxley Street (east):
  - The highest demand recorded at CSTK1 occurred during the weekend peak hour, when there were eight vehicles per hour.
  - The average dwell time during the weekday and weekend peak hours was up to one minute.
  - Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues.
- CSTK2 Oxley Street (west):
  - The highest demand recorded at CSTK2 occurred during the weekday AM peak hour, when there were 13 vehicles per hour
  - The average dwell time during the weekday and weekend peak hours ranged from one to eight minutes.
  - Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues.
- CSTK3 Clarke Street:
  - The highest demand recorded at CSTK3 occurred during the weekday AM and weekend peak hours, when there were five vehicles per hour
  - The average dwell time during the weekday and weekend peak hours ranged from one to two minutes.
  - Generally, no queues were observed to extend out of the bay and block the travel lane.
     Current number of bays are generally sufficient to cater the peak demand and queues.
     However, during Block 4, kiss and ride demand was observed to also occur in the existing P10 minutes parking zone on the opposite side of the road from CSTK3 Clarke Street.

### Table 6-3 Block 4 – Crows Nest Station interchange assessment peak hour summary (kiss and ride)

| ID                                   | Peak hour                                          |                     |                    |                     |  |
|--------------------------------------|----------------------------------------------------|---------------------|--------------------|---------------------|--|
|                                      | Summary                                            | Weekday AM          | Weekday PM         | Weekend             |  |
|                                      | Peak hour                                          | Thursday<br>7am-8am | Tuesday<br>4pm-5pm | Saturday<br>5pm-6pm |  |
| CSTK1<br>(Oxley<br>Street –<br>East) | Vehicles (vehicle per hour)                        | 7                   | 5                  | 8                   |  |
|                                      | Average dwell time (minutes)                       | 1                   | 1                  | 1                   |  |
|                                      | Boarding/alighting passenger<br>(excluding driver) | 6                   | 6                  | 11                  |  |

| ID                          | Peak hour                                          |                      |                     |                       |  |  |
|-----------------------------|----------------------------------------------------|----------------------|---------------------|-----------------------|--|--|
|                             | Summary                                            | Weekday AM           | Weekday PM          | Weekend               |  |  |
|                             | Peak hour                                          | Thursday<br>8am-9am  | Thursday<br>5pm-6pm | Sunday<br>2pm-3pm     |  |  |
| CSTK2<br>(Oxley             | Vehicles (vehicle per hour)                        | 13                   | 10                  | 9                     |  |  |
| Street –<br>West)           | Average dwell time (minutes)                       | 1                    | 8                   | 5                     |  |  |
|                             | Boarding/alighting passenger<br>(excluding driver) | 16                   | 16                  | 17                    |  |  |
| CSTK3<br>(Clarke<br>Street) | Peak hour                                          | Wednesday<br>7am-8am | Friday<br>5pm-6pm   | Saturday<br>10am-11am |  |  |
|                             | Vehicles (vehicle per hour)                        | 5                    | 4                   | 5                     |  |  |
|                             | Average dwell time (minutes)                       | 2                    | 1                   | 1                     |  |  |
|                             | Boarding/alighting passenger<br>(excluding driver) | 4                    | 4                   | 4                     |  |  |

Note: Average dwell times were rounded to the nearest minute.

Figure 6-8 to Figure 6-10 presents the daily demand profile for the three kiss and ride facilities at Crows Nest Station.



Figure 6-8 Block 4 – Daily demand profile of CSTK1



Figure 6-9 Block 4 – Daily demand profile of CSTK2



Figure 6-10 Block 4 – Daily demand profile of CSTK3

### 6.2.2 Taxi

Table 6-4 presents a summary of the peak hour vehicle demands for the taxi facility, as well as the average dwell time and total number of boarding/alighting passengers during the identified peak hours.

Based on the interchange survey data, the following were the key observations:

- CSTT1 Clarke Street:
  - The highest demand recorded at CSTT1 occurred during the weekday PM peak hour, when there were 11 vehicles per hour.
  - The average dwell time during the weekday and weekend peak hours ranged from one to four minutes.
  - Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues. Note that most vehicles accessing this bay were general vehicles.

Table 6-4 Block 4 – Crows Nest Station interchange assessment peak hour summary (taxi)

| ID                          | Peak hour                                          |                      |                      |                     |  |
|-----------------------------|----------------------------------------------------|----------------------|----------------------|---------------------|--|
|                             | Summary                                            | Weekday AM           | Weekday PM           | Weekend             |  |
| CSTT1<br>(Clarke<br>Street) | Peak hour                                          | Tuesday<br>10am-11am | Wednesday<br>7pm-8pm | Saturday<br>7pm-8pm |  |
|                             | Vehicles (vehicle per hour)                        | 6                    | 11                   | 7                   |  |
|                             | Average dwell time (minutes)                       | 3                    | 4                    | 1                   |  |
|                             | Boarding/alighting passenger<br>(excluding driver) | 5                    | 8                    | 9                   |  |

Note: Average dwell times were rounded to the nearest minute.

Figure 6-11 presents the daily demand profile for the taxi facility at Crows Nest Station.





### 6.2.3 Interchange demand summary

Figure 6-12 and Figure 6-13 provide a summary of the total peak hourly vehicle demand and boarding and alighting demand, respectively, recorded across the interchange facilities for Block 4.



Figure 6-12 Block 4 – Crows Nest Station interchange vehicle demand summary



Figure 6-13 Block 4 – Crows Nest Station interchange boarding and alighting demand summary

# 6.3 Victoria Cross Station

In the Victoria Cross Station study area, a total of five taxi, kiss and ride, bus, and accessible parking facilities were assessed during Block 4. These included one taxi facility, one kiss and ride facility, two bus facilities, and one accessible parking facility. Refer to Section 3.3 for detailed information about their locations and the number of bays.

### 6.3.1 Bus

Table 6-5 presents a summary of the peak hour demands for the bus facilities, as well as the average dwell time and total number of boarding/alighting passengers during the identified peak hours.

Based on the interchange survey data, the following were the key observations:

- VICB1 Miller Street (east):
  - The highest demand recorded at VICB1 occurred during the weekday AM peak hour, when there were 30 vehicles per hour.
  - The average dwell time during the weekday and weekend peak hours ranged from one to two minutes.
  - Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues.
- VICB2 Miller Street (west):
  - The highest demand recorded at VICB2 occurred during the weekday PM peak hour, where there were 28 vehicles per hour.
  - The average dwell time during the weekday and weekend peak hours was up to one minute.
  - Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues.

Table 6-5 Block 4 – Victoria Cross Station interchange assessment peak hour summary (bus)

| ID                                    | Peak hour                                          |                    |                   |                     |  |
|---------------------------------------|----------------------------------------------------|--------------------|-------------------|---------------------|--|
|                                       | Summary                                            | Weekday AM         | Weekday PM        | Weekend             |  |
|                                       | Peak hour                                          | Tuesday<br>8am-9am | Monday<br>5pm-6pm | Saturday<br>4pm-5pm |  |
| VICB1<br>(Miller                      | Vehicles (vehicle per hour)                        | 30                 | 14                | 12                  |  |
| Street -<br>East)                     | Average dwell time (minutes)                       | 1                  | 2                 | 1                   |  |
|                                       | Boarding/alighting passenger<br>(excluding driver) | 105                | 31                | 20                  |  |
| VICB2<br>(Miller<br>Street -<br>West) | Peak hour                                          | Tuesday<br>8am-9am | Monday<br>3pm-4pm | Saturday<br>1pm-2pm |  |
|                                       | Vehicles (vehicle per hour)                        | 11                 | 28                | 8                   |  |
|                                       | Average dwell time (minutes)                       | 1                  | 1                 | 1                   |  |
|                                       | Boarding/alighting passenger<br>(excluding driver) | 20                 | 26                | 4                   |  |

Note: Average dwell times were rounded to the nearest minute.

Figure 6-14 and Figure 6-15 present the daily demand profile for the two bus facilities at Victoria Cross Station.



Figure 6-14 Block 4 – Daily demand profile of VICB1



### Figure 6-15 Block 4 – Daily demand profile of VICB2

### 6.3.2 Kiss and ride

Table 6-6 presents a summary of the peak hour vehicle demands for the kiss and ride facility, as well as the average dwell time and total number of boarding/alighting passengers during the identified peak hours.

Based on the interchange survey data, the following were the key observations:

- VICK1 McLaren Street:
  - The highest demand recorded at VICK1 occurred during the weekday AM peak hour, where there were 25 vehicles per hour.
  - The average dwell time during the weekday and weekend peak hours ranged from one to four minutes.
  - Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues.

Table 6-6 Block 4 – Victoria Cross Station interchange assessment peak hour summary (kiss and ride)

| ID                           | Peak hour                    |                    |                     |                     |  |
|------------------------------|------------------------------|--------------------|---------------------|---------------------|--|
|                              | Summary                      | Weekday AM         | Weekday PM          | Weekend             |  |
| VICK1<br>(McLaren<br>Street) | Peak hour                    | Tuesday<br>8am-9am | Thursday<br>5pm-6pm | Saturday<br>8am-9am |  |
|                              | Vehicles (vehicle per hour)  | 25                 | 14                  | 8                   |  |
|                              | Average dwell time (minutes) | 1                  | 3                   | 4                   |  |

| ID | Peak hour                                          |            |            |         |
|----|----------------------------------------------------|------------|------------|---------|
|    | Summary                                            | Weekday AM | Weekday PM | Weekend |
|    | Boarding/alighting passenger<br>(excluding driver) | 21         | 13         | 8       |

Note: Average dwell times were rounded to the nearest minute.

### Figure 6-16 presents the daily demand profile for the kiss and ride facility at Victoria Cross Station.



Figure 6-16 Block 4 – Daily demand profile of VICK1

### 6.3.3 Taxi

Table 6-7 presents a summary of the peak hour demands for the taxi facility, as well as the average dwell time and total number of boarding/alighting passengers during the identified peak hours.

Based on the interchange survey data, the following were the key observations:

- VICT1 McLaren Street:
  - The highest demand recorded at VICT1 occurred during the weekday AM peak hour, when there were eight vehicles per hour.
  - The average dwell time during the weekday and weekend peak hours ranged from one to eight minutes.
  - Generally, no queues were observed to extend out of the bay and block the travel lane.
     Current number of bays are generally sufficient to cater the peak demand and queues. Note that most vehicles accessing this bay were general vehicles.

| Table 6-7 Block 4 – Victoria Cross Station interchange assessment peak hour summary (ta | xi) |
|-----------------------------------------------------------------------------------------|-----|
|-----------------------------------------------------------------------------------------|-----|

| ID                           | Peak hour                                          |                   |                      |                    |  |
|------------------------------|----------------------------------------------------|-------------------|----------------------|--------------------|--|
|                              | Summary                                            | Weekday AM        | Weekday PM           | Weekend            |  |
| VICT1<br>(McLaren<br>Street) | Peak hour                                          | Friday<br>8am-9am | Wednesday<br>6pm-7pm | Sunday<br>12pm-1pm |  |
|                              | Vehicles (vehicle per hour)                        | 8                 | 4                    | 3                  |  |
|                              | Average dwell time (minutes)                       | 8                 | 2                    | 1                  |  |
|                              | Boarding/alighting passenger<br>(excluding driver) | 11                | 5                    | 0                  |  |

Note: Average dwell times were rounded to the nearest minute.

Figure 6-17 presents the daily demand profile for the taxi facility at Victoria Cross Station.



Figure 6-17 Block 4 – Daily demand profile of VICT1

## 6.3.4 Accessible parking

Table 6-8 presents a summary of the peak hour demands for the accessible parking facility, as well as the average dwell time and total number of boarding/alighting passengers during the identified peak hours.

Based on the interchange survey data, the following were the key observations:

- VICA1 McLaren Street:
  - The highest demand recorded at VICA1 occurred during the weekday AM peak hour, when there were 11 vehicles per hour.
  - The average dwell time during the weekday and weekend peak hours ranged from one to 78 minutes.
  - Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues.

Table 6-8 Block 4 – Victoria Cross Station interchange assessment peak hour summary (accessible parking)

| ID                           | Peak hour                                             |                      |                      |                       |  |
|------------------------------|-------------------------------------------------------|----------------------|----------------------|-----------------------|--|
|                              | Summary                                               | Weekday AM           | Weekday PM           | Weekend               |  |
|                              | Peak hour                                             | Wednesday<br>8am-9am | Wednesday<br>3pm-4pm | Saturday<br>10am-11am |  |
| VICA1<br>(McLaren<br>Street) | Vehicles (vehicle per<br>hour)                        | 11                   | 3                    | 2                     |  |
|                              | Average dwell time<br>(minutes)                       | 1                    | 1                    | 78                    |  |
|                              | Boarding/alighting<br>passenger (excluding<br>driver) | 9                    | 5                    | 8                     |  |

Note: Average dwell times were rounded to the nearest minute.

Figure 6-18 presents the daily demand profile for the accessible parking at Victoria Cross Station.



Figure 6-18 Block 4 – Daily demand profile of VICA1

### 6.3.5 Interchange demand summary

Figure 6-19 and Figure 6-20 provide a summary of the total peak hourly vehicle demand and boarding and alighting demand, respectively, recorded across the interchange facilities for Block 4.



Figure 6-19 Block 4 – Victoria Cross Station interchange vehicle demand summary



Figure 6-20 Block 4 – Victoria Cross Station interchange boarding and alighting demand summary

# 6.4 Barangaroo Station

In the Barangaroo Station study area, a total of four taxi, kiss and ride, and bus facilities were assessed during Block 4. These included one taxi facility, one kiss and ride facility and two bus facilities. Refer to Section 3.3 for detailed information about their locations and the number of bays.

### 6.4.1 Bus

Table 6-9 presents a summary of the peak hour demands for the bus facilities, as well as the average dwell time and total number of boarding/alighting passengers during the identified peak hours.

Based on the interchange survey data, the following were the key observations:

- BGUB1 Hickson Road (east):
  - The highest demand recorded at BGUB1 occurred during the weekday PM peak hour, when there were nine vehicles per hour.
  - The average dwell time during the weekday and weekend peak hours was up to one minute.
  - Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues.
- BGUB2 Hickson Road (west):
  - The highest demand recorded at BGUB2 occurred during the weekday PM peak hour, when there were nine vehicles per hour.
  - The average dwell time during the weekday and weekend peak hours was up to one minute.
  - Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues.

 Table 6-9 Block 4 – Barangaroo Station interchange assessment peak hour summary (bus)

| ID                                   | Peak hour                                          |                     |                      |                       |  |
|--------------------------------------|----------------------------------------------------|---------------------|----------------------|-----------------------|--|
|                                      | Summary                                            | Weekday AM          | Weekday PM           | Weekend               |  |
|                                      | Peak hour                                          | Tuesday<br>8am-9am  | Wednesday<br>5pm-6pm | Sunday<br>4pm-5pm     |  |
| BGUB1<br>(Hickson                    | Vehicles (vehicle per hour)                        | 6                   | 9                    | 6                     |  |
| Road -<br>East)                      | Average dwell time (minutes)                       | 1                   | 1                    | 1                     |  |
|                                      | Boarding/alighting passenger<br>(excluding driver) | 8                   | 32                   | 25                    |  |
| BGUB2<br>(Hickson<br>Road -<br>West) | Peak hour                                          | Thursday<br>7am-8am | Wednesday<br>6pm-7pm | Saturday<br>11am-12pm |  |
|                                      | Vehicles (vehicle per hour)                        | 5                   | 9                    | 7                     |  |
|                                      | Average dwell time (minutes)                       | 1                   | 1                    | 1                     |  |
|                                      | Boarding/alighting passenger<br>(excluding driver) | 5                   | 12                   | 8                     |  |

Note: Average dwell times were rounded to the nearest minute.

Figure 6-21 and Figure 6-22 present the daily demand profiles for the two bus facilities at Barangaroo Station.



Figure 6-21 Block 4 – Daily demand profile of BGUB1





### 6.4.2 Kiss and ride

Table 6-10 presents a summary of the peak hour demands for the kiss and ride facility, as well as the average dwell time and total number of boarding/alighting passengers during the identified peak hours.

Based on the interchange survey data, the following were the key observations:

- BGUK1 Hickson Road:
  - The highest demand recorded at BGUK1 occurred during the weekday AM and PM peak hours, when there were three vehicles per hour.
  - The average dwell time during the weekday and weekend peak hours was up to one minute.
  - Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues.

Table 6-10 Block 4 – Barangaroo Station interchange assessment peak hour summary (kiss and ride)

| п                          | Peak hour                       |                   |                   |                     |  |
|----------------------------|---------------------------------|-------------------|-------------------|---------------------|--|
|                            | Summary                         | Weekday AM        | Weekday PM        | Weekend             |  |
| BGUK1<br>(Hickson<br>Road) | Peak hour                       | Monday<br>7am-8am | Friday<br>4pm-5pm | Sunday<br>11am-12pm |  |
|                            | Vehicles (vehicle per<br>hour)  | 3                 | 3                 | 2                   |  |
|                            | Average dwell time<br>(minutes) | 1                 | 1                 | 1                   |  |

| ID | Peak hour                                             |            |            |         |  |
|----|-------------------------------------------------------|------------|------------|---------|--|
|    | Summary                                               | Weekday AM | Weekday PM | Weekend |  |
|    | Boarding/alighting<br>passenger (excluding<br>driver) | 5          | 7          | 1       |  |

Note: Average dwell times were rounded to the nearest minute.

Figure 6-23 provides the daily demand profile for the kiss and ride facility at Barangaroo Station.



Figure 6-23 Block 4 – Daily demand profile of BGUK1

### 6.4.3 Taxi

Table 6-11 presents a summary of the peak hour demands for the taxi facility, as well as the average dwell time and total number of boarding/alighting passengers during the identified peak hours.

Based on the interchange survey data, the following were the key observations:

- BGUT1 Hickson Road:
  - The highest demand recorded at BGUT1 was one vehicle per hour which occurred during all peak hours.
  - The average dwell time during the weekday and weekend peak hours was up to one minute.
  - Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues.

| Table 6-11 Block 4 – Barangaroo St | ation interchange assessment | peak hour summary (taxi) |
|------------------------------------|------------------------------|--------------------------|
|------------------------------------|------------------------------|--------------------------|

| ID                         | Peak hour                                          |                    |                    |                      |  |
|----------------------------|----------------------------------------------------|--------------------|--------------------|----------------------|--|
|                            | Summary                                            | Weekday AM         | Weekday PM         | Weekend              |  |
| BGUT1<br>(Hickson<br>Road) | Peak hour                                          | Monday<br>9am-10am | Monday<br>12pm-1pm | Saturday<br>12pm-1pm |  |
|                            | Vehicles (vehicle per hour)                        | 1                  | 1                  | 1                    |  |
|                            | Average dwell time (minutes)                       | 1                  | 1                  | 1                    |  |
|                            | Boarding/alighting passenger<br>(excluding driver) | 0                  | 2                  | 0                    |  |

Note: Average dwell times were rounded to the nearest minute.

Figure 6-24 presents the daily demand profile for the taxi facility at Barangaroo Station.



Figure 6-24 Block 4 – Daily demand profile of BGUT1

### 6.4.4 Interchange demand summary

Figure 6-25 and Figure 6-26 provide a summary of the total peak hourly vehicle demand and boarding and alighting demand, respectively, recorded across the interchange facilities for Block 4.



Figure 6-25 Block 4 – Barangaroo Station interchange vehicle demand summary



Figure 6-26 Block 4 – Barangaroo Station interchange boarding and alighting demand summary

# 6.5 Waterloo Station

In the Waterloo Station study area, a total of four taxi, kiss and ride, bus, and accessible parking facilities were assessed during Block 4. These included one taxi facility, one kiss and ride facility, one bus facility, and one accessible parking facility. Refer to Section 3.3 for detailed information about their locations and the number of bays.

### 6.5.1 Bus

Table 6-12 presents a summary of the peak hour demands for the bus facility, as well as the average dwell time and total number of boarding/alighting passengers during the identified peak hours.

Based on the interchange survey data, the following were the key observations:

- WLOB1 Raglan Street:
  - The highest demand recorded at WLOB1 occurred during the weekday PM peak hour, when there were 11 vehicles per hour.
  - The average dwell time during all the peak hours was up to one minute.
  - Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues.

Table 6-12 Block 4 – Waterloo Station interchange assessment peak hour summary (bus)

| ID                          | Peak hour                                          |                   |                   |                     |  |
|-----------------------------|----------------------------------------------------|-------------------|-------------------|---------------------|--|
|                             | Summary                                            | Weekday AM        | Weekday PM        | Weekend             |  |
| WLOB1<br>(Raglan<br>Street) | Peak hour                                          | Monday<br>8am-9am | Monday<br>3pm-4pm | Saturday<br>8am-9am |  |
|                             | Vehicles (vehicle per hour)                        | 10                | 11                | 9                   |  |
|                             | Average dwell time (minutes)                       | 1                 | 1                 | 1                   |  |
|                             | Boarding/alighting passenger<br>(excluding driver) | 87                | 31                | 25                  |  |

Note: Average dwell times were rounded to the nearest minute.

Figure 6-27 presents the daily demand profile for the bus facility at Waterloo Station.



Figure 6-27 Block 4 – Daily demand profile of WLOB1

### 6.5.2 Kiss and ride

Table 6-13 presents a summary of the peak hour demands for the kiss and ride facility, as well as the average dwell time and total number of boarding/alighting passengers during the identified peak hours.

Based on the interchange survey data, the following were the key observations:

- WLOK1 Cope Street:
  - The highest demand recorded at WLOK1 occurred during the weekday PM peak hour, when there were 19 vehicles per hour
  - The average dwell time during the weekday and weekend peak hours ranged from one to five minutes.
  - Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues.

Table 6-13 Block 4 – Waterloo Station interchange assessment peak hour summary (kiss and ride)

| ID                        | Peak hour                                             |                     |                   |                   |
|---------------------------|-------------------------------------------------------|---------------------|-------------------|-------------------|
|                           | Summary                                               | Weekday AM          | Weekday PM        | Weekend           |
| WLOK1<br>(Cope<br>Street) | Peak hour                                             | Thursday<br>8am-9am | Friday<br>5pm-6pm | Sunday<br>5pm-6pm |
|                           | Vehicles (vehicle per<br>hour)                        | 16                  | 19                | 11                |
|                           | Average dwell time<br>(minutes)                       | 1                   | 2                 | 5                 |
|                           | Boarding/alighting<br>passenger (excluding<br>driver) | 16                  | 18                | 10                |

Note: Average dwell times were rounded to the nearest minute.

Figure 6-28 presents the daily demand profile for the kiss and ride facility at Waterloo Station.



Figure 6-28 Block 4 – Daily demand profile of WLOK1

### 6.5.3 Taxi

Table 6-14 presents a summary of the peak hour demands for the taxi facility, as well as the average dwell time and total number of boarding/alighting passengers during the identified peak hours.

Based on the interchange survey data, the following were the key observations:

- WLOT1 Cope Street:
  - The highest demand recorded at WLOT1 occurred during the weekday AM peak hour, when there were five vehicles per hour.
  - The average dwell time during the weekday and weekend peak hours ranged from one to three minutes.

- Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues.

Table 6-14 Block 4 – Waterloo Station interchange assessment peak hour summary (taxi)

| ID                        | Peak hour                                          |                                             |            |                       |  |
|---------------------------|----------------------------------------------------|---------------------------------------------|------------|-----------------------|--|
|                           | Summary                                            | Weekday AM                                  | Weekday PM | Weekend               |  |
| WLOT1<br>(Cope<br>Street) | Peak hour                                          | Peak hour Wednesday Monda<br>8am-9am 3pm-4p |            | Saturday<br>11pm-12am |  |
|                           | Vehicles (vehicle per hour)                        | 5                                           | 4          | 4                     |  |
|                           | Average dwell time (minutes)                       | 2                                           | 1          | 3                     |  |
|                           | Boarding/alighting passenger<br>(excluding driver) | 6                                           | 5          | 7                     |  |

Note: Average dwell times were rounded to the nearest minute.

Figure 6-29 presents the daily demand profile for the taxi facility at Waterloo Station.



### Figure 6-29 Block 4 – Daily demand profile of WLOT1

### 6.5.4 Accessible parking

Table 6-15 presents a summary of the peak hour demands for the accessible parking facility, as well as the average dwell time and total number of boarding/alighting passengers during the identified peak hours.

Based on the interchange survey data, the following were the key observations:

- WLOA1 Cope Street:
  - The highest demand recorded at WLOA1 occurred during the weekday PM peak hour, when there were three vehicles per hour.
  - The average dwell time during the weekday and weekend peak hours ranged from one to four minutes.
  - Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues.

Table 6-15 Block 4 – Waterloo Station interchange assessment peak hour summary (accessible parking)

| ID                        | Peak hour                      |                   |                     |                       |  |
|---------------------------|--------------------------------|-------------------|---------------------|-----------------------|--|
|                           | Summary                        | Weekday AM        | Weekday PM          | Weekend               |  |
| WLOA1<br>(Cope<br>Street) | Peak hour                      | Monday<br>6am-7am | Thursday<br>6pm-7pm | Saturday<br>10am-11am |  |
|                           | Vehicles (vehicle per<br>hour) | 1                 | 3                   | 1                     |  |
| חו | Peak hour                                             |            |            |         |
|----|-------------------------------------------------------|------------|------------|---------|
|    | Summary                                               | Weekday AM | Weekday PM | Weekend |
|    | Average dwell time<br>(minutes)                       | 1          | 4          | 1       |
|    | Boarding/alighting<br>passenger (excluding<br>driver) | 2          | 5          | 0       |

Note: Average dwell times were rounded to the nearest minute.

Figure 6-30 presents the daily demand profile for the accessible parking at Waterloo Station.



Figure 6-30 Block 4 – Daily demand profile of WLOA1

#### 6.5.5 Interchange demand summary

Figure 6-31 and Figure 6-32 provide a summary of the total peak hourly vehicle demand and boarding and alighting demand, respectively, recorded across the interchange facilities for Block 4. It is noted that some drivers occasionally parked in the interchange facilities without picking up or dropping off passengers, resulting in vehicle demand sometimes being higher than the boarding and alighting demand.

#### Sydney Metro City and Southwest - Traffic and Interchange Monitoring Block 4 Report – Sydney Metro C&SW - Traffic and Interchange Monitoring



Figure 6-31 Block 4 – Waterloo Station interchange vehicle demand summary

#### Sydney Metro City and Southwest - Traffic and Interchange Monitoring Block 4 Report – Sydney Metro C&SW - Traffic and Interchange Monitoring



Figure 6-32 Block 4 – Waterloo Station interchange boarding and alighting demand summary

#### 6.6 Sydenham Station

In the Sydenham Station study area, a total of five taxi, bus stop, kiss and ride and accessible parking facilities were assessed during Block 4. These included one bus facility, two kiss and ride facilities, one taxi facility and one accessible parking area. Refer to Section 3.3 for detailed information about their locations and the number of bays.

#### 6.6.1 Bus

Table 6-16 presents a summary of the peak hour demands for the bus facility, as well as the average dwell time and total number of boarding/alighting passengers during the identified peak hours.

Based on the interchange survey data, the following were the key observations:

- SYDB1 Railway Parade:
  - The highest demand recorded at SYDB1 occurred during the weekday AM peak hour, when there were 16 vehicles per hour.
  - The average dwell time during the weekday and weekend peak hours ranged from two to three minutes.
  - Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues.

| Table 6-16 Block 4 | I – Sydenham Station interchange assessment peak hour summary (bus) |
|--------------------|---------------------------------------------------------------------|
|                    |                                                                     |

| ID                | Peak hour                                          |                    |                    |                     |  |
|-------------------|----------------------------------------------------|--------------------|--------------------|---------------------|--|
|                   | Summary                                            | Weekday AM         | Weekday PM         | Weekend             |  |
|                   | Peak hour                                          | Tuesday<br>7am-8am | Tuesday<br>5pm-6pm | Saturday<br>1pm-2pm |  |
| SYDB1<br>(Pailway | Vehicles (vehicle per hour)                        | 16                 | 15                 | 8                   |  |
| Parade)           | Average dwell time (minutes)                       | 2                  | 3                  | 2                   |  |
|                   | Boarding/alighting passenger<br>(excluding driver) | 137                | 64                 | 34                  |  |

Note: Average dwell times were rounded to the nearest minute.

Figure 6-33 presents the daily demand profile for the bus facility at Sydenham Station.



Figure 6-33 Block 4 – Daily demand profile of SYDB1

#### 6.6.2 Kiss and ride

Table 6-17 presents a summary of the peak hour demands for the kiss and ride facilities, as well as the average dwell time and total number of boarding/alighting passengers during the identified peak hours.

Based on the interchange survey data, the following were the key observations:

- SYDK1 Burrows Avenue:
  - The highest demand recorded at SYDK1 occurred during the weekday PM peak hour, when there were 31 vehicles per hour.
  - The average dwell time during the weekday and weekend peak hours ranged from two to three minutes.
  - Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues.
- SYDK2 Sydenham Road:
  - The highest demand recorded at SYDK2 occurred during the weekday AM peak hour, when there were 45 vehicles per hour.
  - The average dwell time during the weekday and weekend peak hours ranged from one to two minutes.
  - Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues.

| Table 6-17 Block 4 – Sydenham S | station interchange assessment peak | hour summary (kiss and ride) |
|---------------------------------|-------------------------------------|------------------------------|
|---------------------------------|-------------------------------------|------------------------------|

| ID                  | Peak hour                                             |                     |                     |                       |  |
|---------------------|-------------------------------------------------------|---------------------|---------------------|-----------------------|--|
|                     | Summary                                               | Weekday AM          | Weekday PM          | Weekend               |  |
|                     | Peak hour                                             | Thursday<br>7am-8am | Thursday<br>6pm-7pm | Saturday<br>10am-11am |  |
| SYDK1               | Vehicles (vehicle per<br>hour)                        | 22                  | 31                  | 17                    |  |
| (Burrows<br>Avenue) | Average dwell time<br>(minutes)                       | 2                   | 2                   | 3                     |  |
|                     | Boarding/alighting<br>passenger (excluding<br>driver) | 29                  | 33                  | 18                    |  |
|                     | Peak hour                                             | Tuesday<br>8am-9am  | Thursday<br>5pm-6pm | Saturday<br>5pm-6pm   |  |
| SYDK2               | Vehicles (vehicle per<br>hour)                        | 45                  | 22                  | 20                    |  |
| (Sydenham<br>Road)  | Average dwell time<br>(minutes)                       | 1                   | 2                   | 1                     |  |
|                     | Boarding/alighting<br>passenger (excluding<br>driver) | 46                  | 20                  | 24                    |  |

Note: Average dwell times were rounded to the nearest minute.

Figure 6-34 and Figure 6-35 provide daily demand profile for the kiss and ride facilities at Sydenham Station.







Figure 6-35 Block 4 – Daily demand profile of SYDK2

#### 6.6.3 Taxi

Table 6-18 presents a summary of the peak hour demands for the taxi facility, as well as the average dwell time and total number of boarding/alighting passengers during the identified peak hours.

Based on the interchange survey data, the following were the key observations:

- SYDT1 Burrows Avenue:
  - The highest demand recorded at SYDT1 occurred during the weekday PM peak hour, when there were six vehicles per hour.
  - The average dwell time during the weekday and weekend peak hours ranged from one to two minutes.
  - Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues. Note that most vehicles accessing the bay were general vehicles.

#### Table 6-18 Block 4 – Sydenham Station interchange assessment peak hour summary (taxi)

| ID       | Peak hour                    |                   |                      |                   |  |
|----------|------------------------------|-------------------|----------------------|-------------------|--|
| 10       | Summary                      | Weekday AM        | Weekday PM           | Weekend           |  |
| SVDT1    | Peak hour                    | Friday<br>6am-7am | Thursday<br>9pm-10pm | Sunday<br>1pm-2pm |  |
| (Burrows | Vehicles (vehicle per hour)  | 4                 | 6                    | 5                 |  |
| Avenue)  | Average dwell time (minutes) | 1                 | 1                    | 2                 |  |

| ID | Peak hour                                          |            |            |         |  |
|----|----------------------------------------------------|------------|------------|---------|--|
| 10 | Summary                                            | Weekday AM | Weekday PM | Weekend |  |
|    | Boarding/alighting passenger<br>(excluding driver) | 1          | 5          | 12      |  |

Note: Average dwell times were rounded to the nearest minute.

Figure 6-36 presents the daily demand profile for the taxi facility at Sydenham Station.



Figure 6-36 Block 4 – Daily demand profile of SYDT1

#### 6.6.4 Accessible parking

Table 6-19 presents a summary of the peak hour demands for the accessible parking facility, as well as the average dwell time and total number of boarding/alighting passengers during the identified peak hours.

Based on the interchange survey data, the following were the key observations:

- SYDA1 Bolton Street:
  - The highest demand recorded at SYDA1 occurred during the weekday AM peak hour, when there were three vehicles per hour.
  - The average dwell time during the weekday and weekend peak hours ranged from four to 51 minutes.
  - Generally, no queues were observed to extend out of the bay and block the travel lane. Current number of bays are generally sufficient to cater the peak demand and queues.

Table 6-19 Block 4 – Sydenham Station interchange assessment peak hour summary (accessible parking)

| חו                 | Peak hour                                             |                      |                      |                   |  |  |
|--------------------|-------------------------------------------------------|----------------------|----------------------|-------------------|--|--|
|                    | Summary                                               | Weekday AM           | Weekday PM           | Weekend           |  |  |
|                    | Peak hour                                             | Tuesday<br>10am-11am | Thursday<br>12pm-1pm | Sunday<br>8am-9am |  |  |
| SYDA1              | Vehicles (vehicle per<br>hour)                        | 3                    | 2                    | 2                 |  |  |
| (Bolton<br>Street) | Average dwell time<br>(minutes)                       | 4                    | 29                   | 51                |  |  |
|                    | Boarding/alighting<br>passenger (excluding<br>driver) | 7                    | 4                    | 8                 |  |  |

Note: Average dwell times were rounded to the nearest minute.

Figure 6-37 presents the daily demand profile for the accessible parking at Sydenham Station.





#### 6.6.5 Comparison with previous study blocks

Figure 6-38 provides a comparison of the peak hourly vehicle demand recorded across the interchange facilities for Block 4 against pre-opening conditions. Key findings are as follows:

- SYDB1 Railway Parade vehicle demands are generally similar during all peak hours compared to pre-opening conditions.
- SYDK1 Burrows Avenue vehicle demands are generally similar in the weekday AM and weekend peak hours, and slightly higher in the weekday PM peak hour compared to pre-opening conditions.
- SYDK2 Sydenham Road vehicle demands are substantially higher during all peak hours compared to pre-opening conditions. This is likely due to the opening of the new Sydney Metro station access on Sydenham Road near this facility.
- SYDT1 Burrows Avenue vehicle demands are generally similar during all peak hours compared to pre-opening conditions in Block 2, however slightly higher than Block 1 and 3.
- SYDA1 Bolton Street vehicle demands are generally similar during all peak hours compared to preopening conditions.

Similarly, Figure 6-39 provides a comparison of the total peak hourly boarding and alighting demand recorded across the interchange facilities for Block 4 against pre-opening conditions. Key findings were as follows:

- SYDB1 Railway Parade boarding and alighting demands are:
  - slightly higher in the weekday AM peak hour compared to pre-opening conditions in Blocks 1, 2 and 3
  - similar in the weekday PM peak hour compared to pre-opening conditions in Block 1 and 3, however lower than Block 2 demands.
  - similar during the weekend peak hour compared to pre-opening conditions in Blocks 1, 2 and
     3.
- SYDK1 Burrows Avenue boarding and alighting demands are generally similar during all peak hours compared to pre-opening conditions.
- SYDK2 Sydenham Road boarding and alighting demands are substantially higher during all peak hours compared to pre-opening conditions. This is likely due to the opening of the new Sydney Metro station access on Sydenham Road near this facility.
- SYDT1 Burrows Avenue boarding and alighting demands are:
  - similar during the weekday AM peak hour compared to pre-opening conditions in Blocks 1 and 3, however lower than Block 2 demands
  - similar during the weekday PM peak hour compared to pre-opening conditions in Blocks 1, 2 and 3

- similar during the weekend peak hour compared to pre-opening conditions in Block 2, however higher than Block 1 and 3 demands.
- SYDA1 Bolton Street boarding and alighting demands are generally similar during all peak hours compared to pre-opening conditions.

It is noted that some drivers occasionally parked in the interchange facilities without picking up or dropping off passengers, resulting in vehicle demand sometimes being higher than the boarding and alighting demand.

184

#### Sydney Metro City and Southwest - Traffic and Interchange Monitoring Block 4 Report – Sydney Metro C&SW - Traffic and Interchange Monitoring



Figure 6-38 Block 4 – Study block comparison – Sydenham Station interchange vehicle demand summary

OFFICIAL

#### Sydney Metro City and Southwest - Traffic and Interchange Monitoring Block 4 Report – Sydney Metro C&SW - Traffic and Interchange Monitoring



Figure 6-39 Block 4 – Study block comparison – Sydenham Station interchange boarding and alighting demand summary

186

### 7.0 Summary

AECOM has been commissioned by Sydney Metro to undertake traffic and interchange monitoring for the Sydney Metro City & Southwest, covering the stretch between Chatswood Station and Sydenham Station (the Project).

The primary objective of the traffic and interchange monitoring assessment is to evaluate the potential impacts of metro operations at the nine stations along the Sydney Metro City & Southwest (Chatswood to Sydenham) on the surrounding intersections and interchange facilities.

To meet the CoA requirements and align with the project program for Sydney Metro City & Southwest (Chatswood to Sydenham), the traffic and interchange monitoring program will be conducted in six study blocks. The monitoring period will span 12 months before the commencement of CSSI operations (pre-opening) and another 12 months after the commencement (post-opening).

This report relates to Block 4 which represents the first study block following the commencement of operations of the Sydney Metro City & Southwest Line (Chatswood to Sydenham).

The overall scope of works for the Block 4 study covers the following:

- **Traffic monitoring:** Intersection surveys were conducted for a one-week period in September 2024. The surveys included classified intersection count survey and vehicular queue length survey.
- **Transport interchange monitoring:** Surveys were conducted at all stations with operating interchange facilities, namely Chatswood Station, Crows Nest Station, Victoria Cross Station, Barangaroo Station, Waterloo Station and Sydenham Station. Interchange operation surveys were conducted at these six stations continuously for a one-week period in September 2024.
- Site visit and observations: Site visits were undertaken in conjunction with the traffic and interchange operation monitoring for at least one weekday AM peak period, one weekday PM peak period, and one weekend peak period at each station.
- Intersection assessment: To evaluate the intersection operation during Block 4, isolated and network traffic modelling assessments were performed using SIDRA Intersection modelling software.
- **Traffic and interchange monitoring report:** The key findings of the Block 4 study were presented to Sydney Metro and key stakeholders in January 2025. This report provides a summary of the details regarding the Block 4 traffic and interchange operation assessment.

Key findings of the Block 4 study are:

- Intersection monitoring: Based on site observation and SIDRA Intersection modelling results, intersection operation and performance of key intersections at each station are summarised as follows.
  - Chatswood Dive Site:
    - The intersection of Mowbray Road and Hampden Road (CWD01) performs at LOS B during all peak hours.
    - Block 4 intersection performance is generally similar to pre-opening conditions.
  - Crows Nest Station:
    - All intersections within the Crows Nest Station study area perform at LOS C or better during all peak hours.
    - Block 4 intersection performance is generally similar to pre-opening conditions. Pacific Highway/Falcon Street/Shirley Road (CST04) had a notable change in LOS, whereby the intersection improved from a LOS D to a C in the weekday AM peak hour compared to Block 3. This change in LOS for CST04 was due to lower traffic volumes at this intersection in Block 4.

- Victoria Cross Station:
  - All intersections within the Victoria Cross Station study area operate at LOS D or better during all peak hours.
  - Block 4 intersection performance is generally similar to pre-opening conditions. Miller Street/Berry Street (VIC02) had a notable change in LOS, whereby the intersection reduced from a LOS C to a D in the weekday AM peak hour compared to Block 3. It should be noted however that this intersection was on the border of LOS C and D during Block 3. This change in LOS for VIC02 was due to higher traffic volumes at this intersection in Block 4.
- Barangaroo Station:
  - All intersections within the Barangaroo Station study area operate at LOS C or better during all peak hours.
  - Block 4 intersection performance is generally similar to pre-opening conditions.
- Martin Place Station:
  - All intersections within the Martin Place Station study area operate at LOS C or better during all peak hours.
  - Block 4 intersection performance is generally similar to pre-opening conditions.
- Gadigal Station:
  - All intersections within the Gadigal Station study area operate at LOS C or better during all peak hours.
  - Block 4 intersection performance is generally similar to pre-opening conditions.
- Central Station:
  - All intersections within the Central Station study area operate at LOS C or better during all peak hours.
  - Block 4 intersection performance is generally similar to pre-opening conditions.
- Waterloo Station:
  - All intersections within the Waterloo Station study area operate at LOS C or better during all peak hours.
  - Block 4 intersection performance is generally similar to pre-opening conditions. Botany Road/Raglan Street (WLO01) had a notable change in LOS, whereby the intersection improved from a LOS D to a LOS C in the weekday PM peak hour compared to Block 3. This change in LOS for WLO01 was due to lower traffic volumes at this intersection in Block 4.
- Sydenham Station:
  - All intersections within the Sydenham Station study area operate at LOS B or better during all peak hours.
  - Block 4 intersection performance is generally similar to pre-opening conditions.
- Transport interchange monitoring: The interchange operation surveys focused on analysing taxi, bus stop, kiss and ride, and accessible parking facilities at Chatswood Station, Crows Nest Station, Victoria Cross Station, Barangaroo Station, Waterloo Station and Sydenham Station. The key findings are summarised as follows:
  - Chatswood Station:
    - The capacities of the interchange facilities were generally sufficient to cater for the existing demand, with no queues extending outside the bays.
    - Block 4 vehicle demands were generally similar to pre-opening conditions for all interchange facilities across all peak hours.

189

- Crows Nest Station:
  - The capacities of the interchange facilities were generally sufficient to cater for the existing demand, with no queues extending outside the bays.
- Victoria Cross Station
  - The capacities of the interchange facilities were generally sufficient to cater for the existing demand, with no queues extending outside the bays.
- Barangaroo Station
  - The capacities of the interchange facilities were generally sufficient to cater for the existing demand, with no queues extending outside the bays.
- Waterloo Station
  - The capacities of the interchange facilities were generally sufficient to cater for the existing demand, with no queues extending outside the bays.
- Sydenham Station:
  - The capacities of the interchange facilities were generally sufficient to cater for the existing demand, with no queues extending outside the bays.
  - Block 4 vehicle demands were generally similar to pre-opening conditions for all interchange facilities, with the exception of Sydenham Road (SYDK2) which had demands that were substantially higher than pre-opening conditions across all peak hours. This increase is likely due to the opening of the new Sydney Metro station access on Sydenham Road near this facility.

In summary, the results from Block 4 traffic monitoring demonstrate generally satisfactory intersection performance, consistently achieving LOS D or better across all stations. The assessment of interchange facilities at Chatswood, Crows Nest, Victoria Cross, Barangaroo, Waterloo and Sydenham stations generally indicates sufficient provision to meet the demand observed during Block 4.

# Appendix A

# Stakeholder meeting minutes

Appendix A Stakeholder meeting minutes



## Minutes of Meeting

# Sydney Metro City & Southwest - Traffic and Interchange Operation Monitoring

| Subject      | Block 4 Presentation                                                                                                                                                                                                                                                                                                                                             | Page | 1               |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|
| Venue        | MS-Teams                                                                                                                                                                                                                                                                                                                                                         | Time | 3:00pm - 4:00pm |
| Participants | Nita Hutapea (NH), Sydney Metro<br>Jennifer Adams (JA), Inner West Council<br>Minas Kassiou (MK), Inner West Council<br>Michael Huy (MH), Inner West Council<br>George Tsaprounis (GT), Inner West Council<br>Arvind Narwal (AN), Inner West Council<br>Anoop Sridhar (AS), AECOM<br>Mack Brinums (MB), AECOM<br>Jimmy Wan (JW), AECOM<br>Mark Yeung (MY), AECOM |      |                 |
| Apologies    | Garry Hitchcox (GH), Sydney Metro                                                                                                                                                                                                                                                                                                                                |      |                 |
| File/Ref No. | SM-C&SW-MM-IWC-004                                                                                                                                                                                                                                                                                                                                               | Date | 29-Jan-2025     |
| Distribution | As above                                                                                                                                                                                                                                                                                                                                                         |      |                 |

| No | Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Action | Date |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| 1. | <ul> <li>Project Overview and Results</li> <li>NH gave an overview/background on the project.</li> <li>AS gave an overview of scope of works,<br/>approach and results of Block 4 monitoring.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -      | -    |
| 2. | <ul> <li>GT queried the number of bays at SYDK2 and whether the capacity was sufficient.</li> <li>MB noted there were two formal bays, however there were a number of instances where vehicles would drop-off across the driveways on either side of the bay, effectively accommodating four cars at one time. Block 4 observations indicated that the bay was sufficient with accommodating the demand without impacting through traffic. However, it was close to capacity, with video footage indicating occasions where a vehicle would leave the bay as another vehicle would arrive.</li> <li>AS noted Block 4 surveys occurred shortly after the opening of Sydney Metro. This bay would continue to be monitored in Block 5 and 6 to see if there is any change in demand as people become more aware of the available interchange facilities.</li> </ul> | Note   | -    |

# ΑΞϹΟΜ

| No | ltem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Action                                                                                                                                                                                                                                                                   | Date                 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 3. | <ul> <li>GT queried whether there was any data on turnstile numbers at Sydenham Station.</li> <li>AS noted tap-on/tap-off data was available, however it was difficult to aggregate it to the exact dates the Block 4 surveys were completed.</li> <li>MB noted that the Opal tap-on/tap-off data is collated by month. Sydney Metro commenced operations on 19 August 2024, therefore the August Opal data would not have shown the full increase in trips as a result of Sydney Metro given Sydney Metro was not operating for half the month. Similarly, the Bankstown line was closed in September, so September data would have been skewed whereby half the data would have had the Bankstown line closed.</li> <li>GT requested some further analysis on Opal data in future presentations.</li> <li>For Council's reference, Train and Metro Station Entry and Exit data can be downloaded here: https://opendata.transport.nsw.gov.au/data/datas et/train-station-entries-and-exits-data</li> </ul> | AECOM to<br>provide some<br>further analysis<br>on Opal data in<br>future<br>presentations                                                                                                                                                                               | Block 5              |
| 4. | <ul> <li>MH queried whether there was a breakdown of data available for the number of taxis vs general vehicles using SYDT1.</li> <li>AS noted a breakdown of vehicles was not available, as the survey company just records when a vehicle enters or leaves a bay. Given the extensive amount of data being collected (24 hours for 7 days), it is difficult to go into further detail to difference between taxis and general vehicles.</li> <li>It was agreed that AECOM would manually review the video footage for the identified AM, PM and WE peak hours and advise the split of taxis vs general vehicles.</li> <li>MH requested further detail on use of SYDT1 for future presentations.</li> </ul>                                                                                                                                                                                                                                                                                                 | AECOM to<br>review Block 4<br>video footage for<br>the identified AM,<br>PM and WE peak<br>hours and advise<br>the split of taxis<br>vs general<br>vehicles<br>AECOM to<br>provide further<br>commentary on<br>breakdown of<br>vehicles during<br>peak hours at<br>SYDT1 | 7/02/2025<br>Block 5 |

#### Enclosures:

- Block 4 Presentation Inner West Council
- Traffic survey data for Inner West Council sites



## Minutes of Meeting

# Sydney Metro City & Southwest - Traffic and Interchange Operation Monitoring

| Subject      | Block 4 Presentation                                                                                                                                                                      | Page | 1                 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------|
| Venue        | MS-Teams                                                                                                                                                                                  | Time | 10:00am - 11:00am |
| Participants | Nita Hutapea (NH), Sydney Metro<br>Jerimia Tukadra (JT), North Sydney Council<br>Anoop Sridhar (AS), AECOM<br>Mack Brinums (MB), AECOM<br>Jimmy Wan (JW), AECOM<br>Mark Yeung (MY), AECOM |      |                   |
| Apologies    | Garry Hitchcox (GH), Sydney Metro                                                                                                                                                         |      |                   |
| File/Ref No. | SM-C&SW-MM-NSC-001                                                                                                                                                                        | Date | 22-Jan-2025       |
| Distribution | As above                                                                                                                                                                                  |      |                   |

| No | Item                                                                                                                                                                                                                                                                                                                                                                              | Action | Date |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| 1. | <ul> <li>Introduction</li> <li>Attendees introduced themselves, highlighting their roles and organisations.</li> </ul>                                                                                                                                                                                                                                                            |        |      |
| 2. | <ul> <li>Project Overview and Results</li> <li>NH gave an overview/background on the project.</li> <li>AS gave an overview of scope of works and the approach for Block 4 monitoring.</li> </ul>                                                                                                                                                                                  |        |      |
| 3. | <ul> <li>JT made note that all information was very helpful, particularly taxi demand information.</li> <li>MB clarified that the taxi bay demand includes all vehicles that stopped in the bay, regardless of whether they were a taxi or not. At CSTT1 in particular, observations indicated the majority of this demand was associated with general vehicles.</li> </ul>       |        |      |
| 4. | <ul> <li>JT noted that Council has struggled to get taxis to use taxi zone on McLaren Street.</li> <li>NH noted that Sydney Metro had contacted the Taxi Council to try and increase utilisation of bay, but also noted Block 4 surveys were undertaken shortly after opening of Metro so it may take some time for people to become familiar with all the facilities.</li> </ul> | Note   |      |

#### Enclosures:

- Block 4 Presentation North Sydney Council
- Traffic survey data for the North Sydney Council sites



## Minutes of Meeting

# Sydney Metro City & Southwest - Traffic and Interchange Operation Monitoring

| Subject      | Block 4 Presentation                                                                                                                                                      | Page | 1               |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|
| Venue        | MS-Teams                                                                                                                                                                  | Time | 2:00pm - 3:00pm |
| Participants | Nita Hutapea (NH), Sydney Metro<br>Chris Slenders (CS), TfNSW<br>Anoop Sridhar (AS), AECOM<br>Mack Brinums (MB), AECOM<br>Jimmy Wan (JW), AECOM<br>Mark Yeung (MY), AECOM |      |                 |
| Apologies    | Garry Hitchcox (GH), Sydney Metro<br>Khaled Dib (KD), TfNSW<br>Zakaria Ahmad (ZA), TfNSW                                                                                  |      |                 |
| File/Ref No. | SM-C&SW-MM-TfNSW-004                                                                                                                                                      | Date | 23-Jan-2025     |
| Distribution | As above                                                                                                                                                                  |      |                 |

| No | Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Action | Date |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| 1. | <ul> <li>Project Overview and Results</li> <li>MB gave an overview of Block 4 monitoring results.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -      | -    |
| 2. | <ul> <li>CS noted it was interesting to see a reduction in pedestrian volumes at PIT02 given TfNSW have done separate surveys which indicated pedestrian volumes at this intersection had increased, although acknowledged surveys likely were completed at different times.</li> <li>MB noted that there was quite a lot of construction work occurring at this intersection which reduced pedestrian path and crossing widths during Block 4, so pedestrians may have preferred to cross at a different intersection. Construction works associated with Castlereagh Street cycleway have now finished since the Block 4 surveys were completed.</li> </ul> | -      | -    |

#### **Enclosures:**

- Block 4 Presentation
- Block 4 Survey Data

# Appendix B

# SIDRA Intersection modelling assumptions

## Appendix B SIDRA Intersection modelling assumptions

## **Technical Assumptions and Outputs Memo**

### 1.0 Traffic and Interchange monitoring data outputs

The following outputs are proposed to be provided for the traffic and interchange monitoring:

- Weekly profile graph for individual intersections for 24hr period.
- Summary of daily total traffic volumes per intersection/interchange in a tabular format.
- Weekly profile graph for each station (total of all intersections) for 24hr period.
- Summary of daily total traffic volumes for each station (total of all intersections) in a tabular format.
- Graph of total traffic flows of intersection for typical peak periods during weekdays (06:00-10:00 am and 03:00-07:00 pm) and weekends (10:00am 02:00pm).
- Turning movements for identified peak hours during weekdays AM and PM peaks and weekend peaks in a network flow diagram in excel spreadsheets.
- Pedestrian volumes for identified peak hours during weekdays AM and PM peaks and weekend peaks in a network diagram in excel spreadsheets.
- Vehicle counts for 7-day weekly profile, typical peak periods, identified peaks for interchanges to include:
  - o Vehicle counts for each bay
  - o Vehicle occupancy (passenger only, driver excluded)
  - Vehicle dwell time for each bay
  - Vehicle queue length (outside the bay)

### 2.0 SIDRA modelling related assumptions

Table 1 outlines technical assumptions that will be applied for SIDRA modelling analysis.

 Table 1
 SIDRA Modelling Assumptions

| SI No. | Parameter                                | Assumption                                                                                                       |
|--------|------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 1.     | SIDRA Software Version                   | SIDRA 9.1                                                                                                        |
| 2.     | Lane Configuration - Grade               | A default 0% grade will be applied to all lanes / TCS plans where applicable.                                    |
| 3.     | Lane Width                               | A default 3.3m lane width will be applied to all lanes.                                                          |
| 4.     | Approach / Exit Cruise Speed             | Based on posted speed limit. A default speed of 50km/h will be adopted where posted speed limit is not enforced. |
| 5.     | Roundabout Entry Radius & Entry<br>Angle | A default entry radius of 20m and a default entry angle of 30 degrees will be adopted for all roundabouts.       |
| 6.     | Critical Gap & Follow-up Headway         | The default 'Program' input will be adopted for all movements.                                                   |
| 7.     | Gap Acceptance                           | The default 'SIDRA Standard' gap acceptance capacity model will be adopted for all vehicle types.                |

| SI No. | Parameter                                            | Assumption                                                                                                                                                                                                                          |
|--------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                                      | Reference will also be made to relevant<br>standards/requirements in Austroads (RMS<br>Modelling Guidelines), where applicable.                                                                                                     |
| 8.     | Vehicle Movement Start Loss & End Gain               | Based on SCATS data provided and survey<br>footages / site observations                                                                                                                                                             |
| 9.     | Pedestrian Walking Speed (Average)                   | 1.2 m/s                                                                                                                                                                                                                             |
| 10.    | Pedestrian Crossing Distance                         | Based on intersection geometry/Program<br>(TCS plan where available / Nearmap aerial<br>imageries)                                                                                                                                  |
| 11.    | Peak Flow Period                                     | 30 minutes                                                                                                                                                                                                                          |
| 12.    | Peak Flow Factor                                     | 95%                                                                                                                                                                                                                                 |
| 13.    | Phasing Arrangements                                 | Based on SCATS data provided                                                                                                                                                                                                        |
| 14.    | Phase Time and Frequency                             | Based on SCATS data provided                                                                                                                                                                                                        |
| 15.    | Yellow Time & All-Red Time                           | Based on SCATS data provided                                                                                                                                                                                                        |
| 16.    | Site Cycle/phase Time                                | User-Given Phase Time<br>(Based on Phase time & frequency)                                                                                                                                                                          |
| 17.    | Maximum Number of Iterations for<br>Network Analysis | A default 30 iterations will be adopted. Increases of<br>the maximum number of iterations may be applied<br>depending on the Diagnostics Status.                                                                                    |
| 18.    | Network Cycle Time                                   | User-Given Cycle Time<br>(Based on User-Given Phase Time for all signals<br>within the network)                                                                                                                                     |
| 19.    | Network Signal Coordination                          | Coordinated Sites / User offsets / CCGs will be<br>defined based on SCATS data provided.<br>Signal offsets included in the SIDRA models<br>provided by Sydney Metro will be adopted where<br>relevant SCATS data are not available. |
| 20.    | Queue in Outputs (Site & Network)                    | 95th Percentile                                                                                                                                                                                                                     |
| 21.    | PCU factor                                           | LV: 1.0, HV & Bus: 2.0, Bicycles: 0.3                                                                                                                                                                                               |
| 22.    | Site level of service method                         | Delay (RTA NSW)                                                                                                                                                                                                                     |
| 23.    | Extra Bunching (Site Analysis)                       | Based on RMS Traffic Modelling Guidelines                                                                                                                                                                                           |
| 24.    | Movement Classes                                     | Based on each intersection geometry (LV, HV, Buses, Bicycles)                                                                                                                                                                       |
| 25.    | All other parameters                                 | Default SIDRA settings                                                                                                                                                                                                              |

The following additional assumptions will be adopted for SIDRA modelling based on the discussion with Sydney Metro on 04 Apr 2023.

| Table 2 Additional SI | ORA Modelling | Assumptions |
|-----------------------|---------------|-------------|
|-----------------------|---------------|-------------|

| SI No. | Items              | Assumption                                                                                                                                                                                                                                                                                                                                          |
|--------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.     | Network peak hours | For each station, peak hours will be identified for<br>individual intersections and proposed networks<br>(highlighted in green cells in Figure 1).<br>By reviewing these individual and network peak<br>hours, a station-wide peak hour will be<br>nominated/adopted for each peak period.<br>Peak period dates will be identified for each station |

https://aecom.sharepoint.com/sites/SydneyMetroCSW/Shared Documents/General/200\_Project\_Control/210\_Project\_Plan\_Risk/Appendix 2 -Technical Assumptions and Outputs Memo (v2).docx Revision 0 – 24-Mar-2023

Prepared for - Sydney Metro - ABN: 12 354 063 515

| SI No. | Items                              | Assumption                                                                                                                                                                                                                                                                                                                                                                       |
|--------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                    | for AM, PM and weekend. For eg.SYD AM Peak -<br>Tuesday; SYD PM Peak - Thursday; WLO AM<br>Peak - Wednesday                                                                                                                                                                                                                                                                      |
| 2.     | Cyclist movements                  | For SIDRA modelling, cyclist movements will only be included if there is a dedicated cycling phase.                                                                                                                                                                                                                                                                              |
| 3.     | Intersection approach/lane closure | Due to construction activities, some<br>approaches/lanes were observed temporarily<br>(partially) closed on site. These temporary closures<br>will be reflected in the models unless it only occurs<br>for a short period of time (for e.g. 10 to 15mins).<br>Notes will be made to approach/lane closure<br>observed on-site, and approach/lane excluded in<br>SIDRA modelling. |
| 4.     | CST06 intersection geometry        | Hume St North (one-way exit) will not be included<br>in Block 1 modelling.<br>Notes will be made to the left turn movements<br>observed from Clarke St northwest to Hume St<br>north.                                                                                                                                                                                            |
| 5.     | BGU05 intersection geometry        | Clarence St northbound on-ramp lane to SHB will not be included in the modelling.                                                                                                                                                                                                                                                                                                |
| 6.     | CEN03/CEN05 intersection geometry  | Elizabeth St/Randle St intersection has been included as CEN05, and will be modelled as network model with CEN03.                                                                                                                                                                                                                                                                |



Figure 1 Adopted Network Volume for Network Peak Hour Identification

The following SIDRA outputs would be provided for each intersection.

- Degree of saturation (DoS)
- Average delay (sec)
- 95th percentile queue (m)
- Level of service (LoS)

A sample format of the output table is shown in Table 3.

#### Table 3 Example SIDRA output format

| Intersection | Peak    | Leg   | Degree of saturation (DoS) | Average<br>delay (sec) | 95 <sup>th</sup> percentile<br>queue (m) | Level of<br>service (LoS) |
|--------------|---------|-------|----------------------------|------------------------|------------------------------------------|---------------------------|
|              |         | South |                            |                        |                                          |                           |
|              |         | East  |                            |                        |                                          |                           |
|              | AM      | North |                            |                        |                                          |                           |
|              |         | West  |                            |                        |                                          |                           |
|              |         | Total |                            |                        |                                          |                           |
| Road1 /      | РМ      | South |                            |                        |                                          |                           |
| Road2        |         | East  |                            |                        |                                          |                           |
| (Signal /    |         | North |                            |                        |                                          |                           |
| Roundabout / |         | West  |                            |                        |                                          |                           |
| Priority)    |         | Total |                            |                        |                                          |                           |
|              |         | South |                            |                        |                                          |                           |
|              |         | East  |                            |                        |                                          |                           |
|              | Weekend | North |                            |                        |                                          |                           |
|              |         | West  |                            |                        |                                          |                           |
|              |         | Total |                            |                        |                                          |                           |

### Sydney Metro City & Southwest - Traffic and Interchange Operation Monitoring SIDRA Network Model Coverage

|          |                 |                        |                                                                          |                                   |                               |                       | SIDRA Network Model (AECOM |               |
|----------|-----------------|------------------------|--------------------------------------------------------------------------|-----------------------------------|-------------------------------|-----------------------|----------------------------|---------------|
| S.ID     | Intersection ID | Station Name           | Intersection Name                                                        | Intersection Control              | Intersection Geometry         | Intersection Geometry | Revised)                   | Coordination  |
|          |                 |                        |                                                                          |                                   | Layout                        | Code                  | Pre-opening                |               |
| 01       | CWD01           | Chatswood Station      | Mowbray Rd / Hampden Rd                                                  | Signal                            | 3-leg Intersection            | 2_4_6                 | -                          | -             |
| 02       | CWD02           | Chatswood Station      | Pedestrian Bridge Crossing along Mowbray                                 | Pedestrian only - Bridge Crossing | Bridge Crossing               | 2_6                   | -                          | -             |
| 03       | CST01           | Crows Nest Station     | Pacific Hwy / Albany St                                                  | Signal                            | 3-leg Intersection            | 3_4_8                 | CST-N1                     | Offset_CST-N1 |
| 04       | CST02           | Crows Nest Station     | Pacific Hwy / Oxley St                                                   | Signal                            | 4-leg Intersection            | 2468                  | CST-N1                     | Offset CST-N1 |
| 05       | CST03           | Crows Nest Station     | Pacific Hwy / Hume St                                                    | Signal                            | 4-leg Intersection            | 2 4 6 8               | CST-N1                     | Offset CST-N1 |
| 06       | CST04           | Crows Nest Station     | Pacific Hwy / Falcon St / Shirley Rd                                     | Signal                            | 5-leg Intersection            | 1 3 4 6 8             | CST-N1                     | Offset CST-N1 |
| 07       | CST05           | Crows Nest Station     | Clarke St / Ovley St                                                     | Priority - Give Way               | 3-leg Intersection            | 1 4 6                 | CST-N1                     |               |
| 08       | CSTOR           | Crows Nest Station     | Clarke St / Hume St                                                      | Priority Give Way                 | A leg Intersection            | 1 4 6 8               | CST N1                     |               |
| 00       | CST00           | Crows Nest Station     | Clarke St / Willoughby Bd                                                | Priority Cive Way                 | 2 log Intersection            | 1 5 7                 | 031-111                    | -             |
| 09       | 00700           |                        |                                                                          | Filolity - Give way               | 3-leg intersection            |                       | -                          | -             |
| 10       | CS108           | Crows Nest Station     | Albany St / Willoughby Rd                                                | Signal                            | 4-leg Intersection            | 1_3_5_7               |                            | -             |
| 11       | CST09           | Crows Nest Station     | Albany St / Oxley St                                                     | Roundabout                        | 4-leg Intersection            | 1_3_5_7               | CST-N1                     | -             |
| 12       | CST10           | Crows Nest Station     | Albany St / Clarke Ln                                                    | Priority - Give Way               | 3-leg Intersection            | 3_4_7                 | CST-N1                     | -             |
| 13       | CST11           | Crows Nest Station     | Oxley St / Clarke Ln                                                     | Priority - Stop                   | 4-leg Intersection            | 2_4_6_8               | CST-N1                     | -             |
| 14       | CST12           | Crows Nest Station     | Hume St / Clarke Ln                                                      | Priority - Stop                   | 3-leg Intersection            | 2_4_6                 | CST-N1                     | -             |
| 15       | CST13           | Crows Nest Station     | Pacific Hwy / Alexander St                                               | Signal                            | 4-leg Intersection            | 1_3_4_8               | CST-N1                     | Offset_CST-N1 |
| 16       | CST14           | Crows Nest Station     | Falcon St / Alexander St                                                 | Signal                            | 4-leg Intersection            | 1_3_5_7               | CST-N1                     | Offset_CST-N1 |
| 17       | VIC01           | Victoria Cross Station | Pacific Hwy / Berry St                                                   | Signal                            | 4-leg Intersection            | 3468                  | VIC-N1                     | Offset VIC-N1 |
| 18       | VIC02           | Victoria Cross Station | Miller St / Berry St                                                     | Signal                            | 4-leg Intersection            | 1 3 5 7               | VIC-N1                     | Offset VIC-N1 |
| 19       | VIC03           | Victoria Cross Station | Miller St / Mcl aren St                                                  | Signal                            | 4-leg Intersection            | 1 3 5 7               | VIC-N1                     |               |
| 20       | VIC04           | Victoria Cross Station | Pacific Hwy / Miller St                                                  | Signal                            | 5-leg Intersection            | 1 4 5 7 8             | VIC-N1                     | Offset VIC-N1 |
| 20       | BCU01           | Barangaroo Station     | Hickson Pd / Towns Pl                                                    | Priority Give Way                 | 3 leg Intersection            | 368                   | BCU N1                     | Oliset_ViC-NT |
| 21       | DOUDD           | Darangaroo Station     | Delecto Del (Teuro Di                                                    | Developent                        |                               | 3_0_0                 | DGU-N1                     | -             |
| 22       | BGUUZ           | Barangaroo Station     | Daigety Rd / Towns Pi                                                    | Roundabout                        | 3-leg intersection            | 4_5_7                 | BGU-N1                     | -             |
| 23       | BGU03           | Barangaroo Station     | Kent St / Argyle St                                                      | Priority - Give Way               | 4-leg Intersection            | 1_3_5_7               | -                          | -             |
| 24       | BGU04           | Barangaroo Station     | Pedestrian Mid-block Crossing at Kent St near Gas Ln                     | Pedestrian only - Signal          | Pedestrian Mid-block Crossing | 1_5                   | BGU-N2                     | Offset_BGU-N2 |
| 25       | BGU05           | Barangaroo Station     | Kent St / Sydney Harbour Bridge (SHB) On-ramp                            | Signal                            | 4-leg Intersection            | 1_2_3_5               | BGU-N2                     | Offset_BGU-N2 |
| 26       | BGU06           | Barangaroo Station     | Hickson Rd / Napoleon St / Sussex St                                     | Signal                            | 4-leg Intersection            | 1_3_5_7               | BGU-N3                     | -             |
| 27       | BGU07           | Barangaroo Station     | Margaret St / Kent St / Napoleon St                                      | Signal                            | 4-leg Intersection            | 1 3 5 8               | BGU-N2                     | Offset BGU-N2 |
| 28       | BGU08           | Barangaroo Station     | Margaret St / Clarence St                                                | Signal                            | 4-leg Intersection            | 1 3 5 7               | BGU-N2                     | Offset BGU-N2 |
| 29       | BGU09           | Barangaroo Station     | Margaret St / York St                                                    | Signal                            | A-leg Intersection            | 1 3 5 7               | BGU-N2                     |               |
| 30       | BGU10           | Barangaroo Station     | Pedestrian Mid block Crossing at Sussex St under Exchange Pl             | Pedestrian only Signal            | Pedestrian Mid block Crossing | 1 5                   | BOU N3                     | -             |
| 21       | BGU10           | Barangaroo Station     | Pedestrian Mid-block Crossing at Kept St peer Margaret St                | Pedestrian only Signal            | Pedestrian Mid-block Crossing | 1_5                   | BG0-N3<br>BCU N3           | -             |
| 31       | BOUIT           | Barangaroo Station     |                                                                          | Fedestrian only - Signal          | Fedestrian wid-block crossing |                       | BGU-N3                     |               |
| 32       | BGU12           | Barangaroo Station     | Sussex St / Erskine St                                                   | Signal                            | 4-leg Intersection            | 1_3_5_7               | BGU-N3                     | Offset_BGU-N3 |
| 33       | BGU13           | Barangaroo Station     | Kent St / Erskine St                                                     | Signal                            | 4-leg Intersection            | 1_3_5_7               | BGU-N3                     | Offset_BGU-N3 |
| 34       | BGU14           | Barangaroo Station     | Sussex St / King St                                                      | Signal                            | 4-leg Intersection            | 1_3_5_6               | BGU-N4                     | Offset_BGU-N4 |
| 35       | BGU15           | Barangaroo Station     | Kent St / King St                                                        | Signal                            | 4-leg Intersection            | 1_3_5_7               | BGU-N4                     | Offset_BGU-N4 |
| 36       | BGU16           | Barangaroo Station     | New Pedestrian Mid-block Crossing at Hickson Rd (north of Metro Station) | Pedestrian only - Zebra           | Pedestrian Mid-block Crossing | 1_5                   | -                          | -             |
| 37       | BGU17           | Barangaroo Station     | New Pedestrian Mid-block Crossing at Hickson Rd (south of Metro Station) | Pedestrian only - Zebra           | Pedestrian Mid-block Crossing | 1 5                   | -                          | -             |
| 38       | BGU18           | Barangaroo Station     | Shelley St / Frskine St                                                  | Signal                            | 4-leg Intersection            | 1357                  | BGU-N3                     | -             |
| 39       | MPL 01          | Martin Place Station   | Hunter St / Castlereagh St / Bligh St                                    | Signal                            | 4-leg Intersection            | 1358                  | MPL-N1                     | Offset MPL-N1 |
| 40       | MDL 02          | Martin Place Station   | Hunter St / Elizabeth St / Chifley Square                                | Signal                            |                               | 2 2 5 7               |                            | Offact MPL N1 |
| 40       | IVIFL02         |                        | Hunter St / Elizabeth St / Chiney Square                                 | Signal                            | 4-leg intersection            | 2_3_5_7               |                            | OliseLMPL-NT  |
| 41       | MPL03           | Martin Place Station   | Bent St / Bligh St                                                       | Signal                            | 3-leg Intersection            | 4_6_8                 | MPL-N1                     | Offset_MPL-N1 |
| 42       | MPL04           | Martin Place Station   | Bent St / Phillip St                                                     | Signal                            | 4-leg Intersection            | 1_4_6_8               | MPL-N1                     | Offset_MPL-N1 |
| 43       | MPL05           | Martin Place Station   | Pedestrian Mid-block Crossing at Castlereagh St                          | Pedestrian only - Signal          | Pedestrian Mid-block Crossing | 1_5                   | -                          | -             |
| 44       | MPL06           | Martin Place Station   | Pedestrian Mid-block Crossing at Elizabeth St                            | Pedestrian only - Signal          | Pedestrian Mid-block Crossing | 1_5                   | -                          | -             |
| 45       | PIT01           | Pitt Street Station    | Pitt St / Bathurst St                                                    | Signal                            | 4-leg Intersection            | 1_3_5_7               | PIT-N1                     | -             |
| 46       | PIT02           | Pitt Street Station    | Castlereagh St / Bathurst St                                             | Signal                            | 4-leg Intersection            | 1_3_5_7               | PIT-N1                     | -             |
| 47       | PIT03           | Pitt Street Station    | Park St / Castlereagh St                                                 | Signal                            | 4-leg Intersection            | 1 3 5 7               | PIT-N1                     | -             |
| 48       | PIT04           | Pitt Street Station    | Park St / Pitt St                                                        | Signal                            | 4-leg Intersection            | 1 3 5 7               | PIT-N1                     | -             |
| 49       | CEN01           | Central Station        | Flizabeth St / Eddy Ave                                                  | Signal                            | 3-leg Intersection            | 1.5.8                 | CEN-N1                     | Offset CEN-N1 |
| #0<br>E0 | CENIO           | Central Station        | Elizabeth St / Equation St                                               | Signal                            | 3 leg Intersection            | 1 4 5                 | CEN N4                     | Offeet CEN NI |
| 50       | OENU2           |                        | Elizabeth Ot / Fovedux St                                                | Drive Ma                          |                               | 1_4_0                 |                            | Unser_CEN-NT  |
| 51       | CEN03           | Central Station        | Elizabeth St / Cooper St                                                 | Priority - Give way               | 3-leg Intersection            | 1_4_5                 | CEN-N2                     | -             |
| 52       | CEN04           | Central Station        | New Pedestrian Mid-block Crossing at Randle Ln                           | Pedestrian only - Signal          | Pedestrian Mid-block Crossing | 2_6                   | -                          | -             |
| 53       | CEN05           | Central Station        | Elizabeth St / Randle St                                                 | Signal                            | 3-leg Intersection            | 1_5_6                 | CEN-N2                     | -             |
| 54       | WLO01           | Waterloo Station       | Botany Rd / Raglan St / Henderson Rd                                     | Signal                            | 4-leg Intersection            | 1_3_5_7               | WLO-N1                     | Offset_WLO-N1 |
| 55       | WLO02           | Waterloo Station       | Raglan St / Cope St                                                      | Signal                            | 4-leg Intersection            | 1_3_5_7               | WLO-N1                     | -             |
| 56       | WLO03           | Waterloo Station       | Botany Rd / Wellington St / Buckland St                                  | Signal                            | 4-leg Intersection            | 1 3 5 7               | WLO-N1                     | Offset_WLO-N1 |
| 57       | WLO04           | Waterloo Station       | Cope St / Wellington St                                                  | Priority - Stop                   | 4-leg Intersection            | 1 3 5 7               | WLO-N1                     | -             |
| 58       | WL 005          | Waterloo Station       | Wyndham St / Henderson Rd                                                | Signal                            | 4-leg Intersection            | 1357                  | WLO-N1                     | Offset WLO-N1 |
| 50       | WL 006          | Waterloo Station       | New Pedestrian Mid block Crossing at Cope St                             | Pedestrian only Zebra             | Pedestrian Mid block Crossing | 1.5                   | TLO-NI                     | ONSC_MEDINI   |
| 09       | EVD04           | Sudanham Ctation       | Pailway Dda / Classen Ave                                                | Cignol                            | 2 log Intersection            | 246                   | SVD N4                     | -             |
| 60       | STDUT           | Sydennam Station       | naiway rue / Gleeson Ave                                                 | Signal                            | 3-leg intersection            | 2-4-0                 | STU-N1                     | -             |
| 61       | SYD02           | Sydenham Station       | Burrows Ave / Gieeson Ave                                                | Signal                            | 4-leg intersection            | 2_4_0_8               | SYD-N1                     | -             |
| 62       | SYD03           | Sydenham Station       | Burrows Ave / George St                                                  | Priority - Give Way               | 3-leg Intersection            | 2_4_6                 | -                          | -             |
| 63       | SYD04           | Sydenham Station       | Railway Pde / Sydenham Rd                                                | Signal                            | 3-leg Intersection            | 5_6_8                 | -                          | -             |
| 64       | SYD05           | Sydenham Station       | Marrickville Rd / Buckley St                                             | Priority - Give Way               | 3-leg Intersection            | 2_4_8                 | -                          | -             |
| 65       | SYD06           | Sydenham Station       | Sydenham Rd / Buckley St                                                 | Priority - Give Way               | 3-leg Intersection            | 4_6_8                 | -                          | -             |

Sydney Metro City & Southwest - Traffic and Interchange Operation Monitoring Intersection Geometry

#### Source: Nearmap accessed XX XX XXXX

Include NearMaps layout (already prepared for each site) and include a markup showing the approach distances, short lane lengths, parking zone, no stopping zone etc.



#### Sydney Metro City & Southwest - Traffic and Interchange Operation Monitoring

| Site Name:              |  |
|-------------------------|--|
| Site ID:                |  |
| Type:                   |  |
| Scenario:               |  |
|                         |  |
|                         |  |
| Links to:               |  |
| Links to:<br>SIDRA File |  |

| atus     |                                            |  |  |
|----------|--------------------------------------------|--|--|
| Open     | Attention Required for modeller / reviewer |  |  |
| Progress | Working in progress                        |  |  |
| Closed   | Closed                                     |  |  |
| N/A      | Not Applicable/Not Required                |  |  |
|          |                                            |  |  |
| odeller: |                                            |  |  |
|          |                                            |  |  |

AM Po

PM Poak

| rranic volume input |          |
|---------------------|----------|
| SCATS Data          | TCS Plan |
|                     |          |

| item | Model Element                    | Notes (For modeller)                                                                                                                                 | Modeller |       | Reviewer |       | Verifier |       | Modeller |       | Reviewer |       | Verifier |       | Modeller |       | Reviewer |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | General                          |                                                                                                                                                      | Status   | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.1  | SIDRA Setup                      | New South Wales                                                                                                                                      | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.2  | Intersection Type                | For priority intersections, check for 'give way' or 'stop'                                                                                           | Open     |       | Open     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2    | Intersection                     |                                                                                                                                                      |          |       |          |       |          |       |          |       |          |       |          |       |          |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.1  | Site Name                        | To be consistent with the Intersection Master List                                                                                                   | Open     |       | Open     | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.2  | Site Title                       | Include TCS numbers in the model. if applicable                                                                                                      | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.3  | Approach Names                   | Include as per Nearmap, compare with Intersection Master List                                                                                        | Open     |       | Open     | <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.4  | Leg Geometry                     | Two-way, one-way etc.                                                                                                                                | Open     |       | Open     | <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.5  | Approach/Exit Distance           | Check and update as per NearMaps (distance till the next intersection if more than 500m)                                                             | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                  | For isolated intersections, include as per Traffic modelling guidelines. For sites in the network, ensure Program                                    |          |       |          |       |          |       |          |       |          |       |          |       |          |       |          | ( III - IIII - III - IIII - IIIII - IIII - IIII - IIII - IIIII - IIII - IIII - IIII - IIII - IIIII - IIII - IIII - IIII - IIII - IIIII - IIIII - IIII - IIII - IIIII - IIIII - IIII - IIIII - IIIII - IIIII - IIIII - IIIII - IIIII - IIIIII |
| 2.6  | Extra Bunching                   | option is selected for 'network internal' approaches (user input should still be included for 'network external'                                     | Open     |       | Open     | ( III - IIII - III - IIII - IIIII - IIII - IIIII - IIII - IIIII - IIII - IIIII - IIII - IIII - IIII - IIIII - IIIII - IIII - IIII - IIIII - IIIII - IIII - IIII - IIII - IIIII - IIII - IIII - IIII - IIIII - IIIII - IIII - IIII - IIIII - IIIIII                                                                                                      |
|      | -                                | approaches, where applicable).                                                                                                                       |          |       |          |       |          |       |          |       |          |       |          |       |          |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3    | Movement Definitions             |                                                                                                                                                      |          |       |          |       |          |       |          |       |          |       |          |       |          |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.1  | Vehicle Types                    | Confirm inclusion of Ruses Biownes if relevant (for easier volume input select Bus and biownes for all intersections)                                | Open     |       | Open     |       | Onen     |       | Open     |       | Open     |       | Onen     |       | Open     |       | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.1  | Venice Types                     | comministration of Babba, Boyees, in recent (for cashe volume input, select bas and boyees for an intersection)                                      |          |       |          |       | opon     |       | Open     |       |          |       | open     |       |          |       | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.2  | OD Movements                     | Switch off banned movements as her site observations, compare with Intersection Master list for banned movements                                     | Onen     |       | Onen     |       | Open     |       | Open     |       | Onen     |       | Open     |       | Open     |       | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                  | owner en damed motentents as per site observations, compare war merecetter matter not for damed motentents.                                          |          |       |          |       |          |       |          |       |          |       |          |       |          |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4    | Lane Geometry                    |                                                                                                                                                      |          |       |          |       |          |       | _        |       |          |       |          |       |          |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.1  | Lane Configuration / Length      | Check the full length of lane and 'short lane' based on Nearmap - refer Intersection Geometry tab (round to 5m)                                      | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.0  | Less Tree                        | Under and and an ender for effectione                                                                                                                |          |       |          |       | 0        |       | 0        |       |          |       | 0        |       |          |       | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.2  | Lane Type                        | High angle or Low angle for slip lanes                                                                                                               | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.5  | Current and Number               |                                                                                                                                                      | Open     |       | Open     |       | Open     |       | Open     |       | Open     |       | Open     |       | Open     |       | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.4  | Grade                            | A defende 000 versie will be explicit to all leaves (TCC eleverythere explicitly                                                                     | Open     |       | Open     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.5  | Lana Dissiplinos                 | A detault une grade will de applied to all lanes. / I CS plans where applicable.                                                                     | Open     |       | Open     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.0  | Lane Capacity Adjustment         | Options in specific movement classes have barried invertients (or eq. right turn only of DUSes)                                                      | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5    | Lane Movements                   | Justinications based on site observations required it these factors are adjusted                                                                     | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5    | Lane movements                   | As per site observations or support ideas. From approach lane to exit lane (e.g. hus lane on approach side should                                    |          |       |          |       |          |       |          |       |          |       |          |       |          |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5.1  | Lane Movement Proportion         | As per site observations of survey videos. I for approach are to exit rare (e.g. bus rare on approach side should<br>direct to bus rare on out side) | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6    | Roundabout (if applicable)       |                                                                                                                                                      |          |       |          |       |          |       |          |       |          |       |          |       |          |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6.1  | Number of Lanes                  |                                                                                                                                                      | N/A      |       | N/A      |       | N/A      |       | N/A      |       | N/A      |       | N/A      |       | N/A      |       | N/A      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6.2  | Circulating Width                |                                                                                                                                                      | N/A      |       | N/A      |       | N/A      |       | N/A      |       | N/A      |       | N/A      |       | N/A      |       | N/A      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.3  | Island Diameter                  |                                                                                                                                                      | N/A      |       | N/A      |       | N/A      |       | N/A      |       | N/A      |       | N/A      |       | N/A      |       | N/A      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                  | Include ped crossing for all rounadbouts (with / without zebra crossing); if there's no zebra crossing, make a note in                               |          |       |          |       |          |       |          |       |          |       |          |       |          |       |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.4  | Ped Crossing at Roundabout       | the checklist - 'No zebra crossing, priority settings (ped or veh) to be further revied with survey footages to calibrate                            | N/A      |       | N/A      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                  | the model.'                                                                                                                                          |          |       |          |       |          |       |          |       |          |       |          |       |          |       |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7    | Pedestrians                      |                                                                                                                                                      |          |       |          |       |          |       |          |       |          |       |          |       |          |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7.1  | Crossing Location / Type         | Full crossing / staged crossing / slip lane crossing (signalised or zebra)                                                                           | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7.2  | Pedestrian Volume                | Update as per surveys                                                                                                                                | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7.3  | Peak Flow Factor                 | 95%                                                                                                                                                  | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7.4  | Crossing Distance                | Based on intersection geometry (round to 0.5m)                                                                                                       | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7.5  | Walking Speed (Average)          | 1.2 m/s (as recommended in RMS Modelling Guide)                                                                                                      | Open     |       | Open     | ( III - IIII - III - IIII - IIIII - IIII - IIIII - IIII - IIIII - IIII - IIIII - IIII - IIII - IIII - IIIII - IIIII - IIII - IIII - IIIII - IIII - IIII - IIII - IIII - IIII - IIIII - IIII - IIII - IIII - IIIII - IIIIII                                                                                                      |
| 7.6  | Pedestrian Timing Data           | Adopt the SCATS walk time as minimum walk time, minimum clearance as default 5 sec, Clearance 1 & 2 as per                                           | Onen     |       | Onen     |       | Open     |       | Open     |       | Onen     |       | Open     |       | Open     |       | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                  | SCATS data                                                                                                                                           |          |       |          |       |          |       | -        |       |          |       |          |       |          |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.7  | waik Time Extension              | Remain as 'unticked' (can adjust based on survey videos, where applicable)                                                                           | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8    | volumes                          |                                                                                                                                                      |          |       |          |       |          |       | -        |       |          |       |          |       |          |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8.1  | Vehicle Volumes                  | Check individual intersections; For network model, check midblock flows (ensure inpit volumes are set to 'Separate')                                 | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8.2  | Peak Flow Period                 | 20 minutos                                                                                                                                           | Open     |       | Onen     |       | Open     |       | Open     |       | Onen     |       | Onen     |       | Open     |       | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 83   | Peak Flow Factor                 | 06%                                                                                                                                                  | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9    | Priorities                       |                                                                                                                                                      | Open     |       | Open     |       | open     |       | Open     |       | Open     |       | Open     |       | Open     |       | Open-    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9.1  | Priorities                       | Ensure priority settings updated for turn movements at signals with opposed ped movements                                                            | Open     |       | Onen     |       | Open     |       | Onen     |       | Onen     |       | Open     |       | Open     |       | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10   | Gap Acceptance                   |                                                                                                                                                      | e pen    |       |          |       |          |       | 0,0011   |       |          |       |          |       |          |       | 0,000    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10.1 | Opposing Peds (Extra Loss)       | Justifications required if these factors are adjusted                                                                                                | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11   | Vehicle Movement Data            |                                                                                                                                                      |          |       |          |       |          |       |          |       |          |       |          |       |          |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11.1 | Approach / Exit Cruise Speed     | Based on posted speed limits or agreed assumptions (if no posted speed limits)                                                                       | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11.2 | Start Loss / End Gain            | Justifications required if these factors are adjusted                                                                                                | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11.3 | Early Cut-Off / Late Start       | Justifications required if these factors are adjusted                                                                                                | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12   | Phasing & Timing (if applicable) |                                                                                                                                                      |          |       |          |       |          |       |          |       |          |       |          |       |          |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12.1 | Phasing Arrangements             | As per SCATS. TCS Plan                                                                                                                               | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12.2 | Red Arrow Drop Off               |                                                                                                                                                      | Open     |       | Open     |       | Open     |       | Open     |       | Open     |       | Open     |       | Open     |       | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12.3 | Phase Time / Frequency           | User-give phase times. Frequency as per SCATS/Site observations                                                                                      | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12.4 | Yellow Time                      | As per SCATS (if SCATS data indicates .5, round up and leave a note in the checklist)                                                                | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12.5 | All-Red Time                     | As per SCATS (if SCATS data indicates .5, round up and leave a note in the checklist)                                                                | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13   | Parameter Settings               |                                                                                                                                                      |          |       |          |       |          |       |          |       |          |       |          |       |          |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13.1 | Site LoS Method                  | Delay (RTA NSW); Site Level of Service Target LoS C                                                                                                  | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13.2 | Queue in Output                  | 95th Percentile                                                                                                                                      | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13.3 | Inco lactor                      | [LV: 1.0, HV & BUS: 2.0, Bicycles: 0.3                                                                                                               | Open     |       | Open -   |       | Open     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Weekend Peak

#### Sydney Metro City & Southwest - Traffic and Interchange Operation Monitoring SIDRA Network Model Coverage

| Site Name:     CHW Network 1       Site D:     Network 1       Site D:     NA       Scenario:     TBC       Links to:     Clease 1       SIDRA File     NA       Traffic Volume Input     Reviewer:       SCATS Data     Verifier: |                              |                                           |        |       |        |                     |        |          |        |          |        |                     |        |          |        |          |        |                      |        |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------|--------|-------|--------|---------------------|--------|----------|--------|----------|--------|---------------------|--------|----------|--------|----------|--------|----------------------|--------|----------|
| ltem                                                                                                                                                                                                                               | Model Element                | Notes                                     | Mod    | eller |        | AM Peak<br>Reviewer | 1      | Verifier |        | Modeller |        | PM Peak<br>Reviewer |        | Verifier |        | Modeller | S      | Sat Peak<br>Reviewer |        | Verifier |
| 1                                                                                                                                                                                                                                  | Network Data                 |                                           | Status | Notes | Status | Notes               | Status | Notes    | Status | Notes    | Status | Notes               | Status | Notes    | Status | Notes    | Status | Notes                | Status | Notes    |
| 1.1                                                                                                                                                                                                                                | Queue in Output              | 95th Percentile                           | Open   |       | Open   |                     | Open   |          | Open   |          | Open   |                     | Open   |          | Open   |          | Open   |                      | Open   |          |
| 1.2                                                                                                                                                                                                                                | Maximum Number of Iterations | 30; unless notes are given in Diagnostics | Open   |       | Open   |                     | Open   |          | Open   |          | Open   |                     | Open   |          | Open   |          | Open   |                      | Open   |          |
| 2                                                                                                                                                                                                                                  | CCGs                         |                                           |        |       |        |                     |        |          |        |          |        |                     |        |          |        |          |        |                      |        |          |
| 2.1                                                                                                                                                                                                                                | CCG Set Up                   | If applicable                             | Open   |       | Open   |                     | Open   |          | Open   |          | Open   |                     | Open   |          | Open   |          | Open   |                      | Open   |          |
| 3                                                                                                                                                                                                                                  | Network Timing               |                                           |        |       |        |                     |        |          |        |          |        |                     |        |          |        |          |        |                      |        |          |
| 3.1                                                                                                                                                                                                                                | Coordinated Site Selection   | If applicable                             | Open   |       | Open   |                     | Open   |          | Open   |          | Open   |                     | Open   |          | Open   |          | Open   |                      | Open   |          |
| 3.2                                                                                                                                                                                                                                | User Offset                  | If applicable                             | Open   |       | Open   |                     | Open   |          | Open   |          | Open   |                     | Open   |          | Open   |          | Open   |                      | Open   |          |
| 3.3                                                                                                                                                                                                                                | Route Defination             | If applicable                             | Open   |       | Open   |                     | Open   |          | Open   |          | Open   |                     | Open   |          | Open   |          | Open   |                      | Open   |          |
| 3.4                                                                                                                                                                                                                                | Network Cycle Time           | If applicable                             | Open   |       | Open   |                     | Open   |          | Open   |          | Open   |                     | Open   |          | Open   |          | Open   |                      | Open   |          |

# Appendix C

# Network flow diagrams

Appendix C Network flow diagrams









Block 4

| 79           |          |                 |               |  |
|--------------|----------|-----------------|---------------|--|
| 7<br>↓<br>68 | 196<br>ݷ | 490<br><b>3</b> | Albany Street |  |
| 50<br>1      |          | 519             |               |  |
| 8            |          |                 |               |  |

Alexander Street 377 1 360 To CST07 136 **1** 712 → 7 → 332 28 ⊥ → 804 Falcon Stree t 11
 ← 676
 ⊊ 27 Ť ↑ ↑ ↑
1 230 64 **←** -21 677 714 295 359


Block 4

Time Period

| 69      |     |     |               |  |
|---------|-----|-----|---------------|--|
| 12      | 100 | 433 |               |  |
| ↓<br>45 |     | 3   | Albany Street |  |
| 62      |     | 424 |               |  |
| 7       |     |     |               |  |
|         |     |     |               |  |

Alexander Street 394 **1** 302 To CST07 208 **1** 730 → 20 → 270 32 805 Falcon Stree 
 ←
 ↑
 ⊢

 10
 178
 43
 **←** 21 721 755 231 306



Block 4

Vehicle Type Time Perio

| 29 115 368<br>↓ ↓ 3<br>55 3<br>80 456<br>Albany Street | 86      |     |     |               |
|--------------------------------------------------------|---------|-----|-----|---------------|
| ↓ ↓ Albany Street   55 456                             | 29      | 115 | 368 |               |
| 88 456                                                 | 1<br>55 | 4   | 3   | Albany Street |
| 430                                                    | 88      |     | 456 |               |











































# Appendix D

## Movement summary outputs

Appendix D Movement summary outputs

#### Site: CWD01 [CWD01 Mowbray Rd / Hampden Rd (Site Folder: Block 4 Model - 2024 AM Peak)]

#### Output produced by SIDRA INTERSECTION Version: 9.1.6.228

#### TCS 3037

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 150 seconds (Site User-Given Phase Times)

| Vehic     | le Mo   | ovement      | t Perfo                       | rma                       | nce                         |                            |                     |                       |                     |                               |                              |              |                      |                           |                        |
|-----------|---------|--------------|-------------------------------|---------------------------|-----------------------------|----------------------------|---------------------|-----------------------|---------------------|-------------------------------|------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn    | Mov<br>Class | Derr<br>F<br>[ Total<br>veh/h | nand<br>lows<br>HV ]<br>% | Ar<br>F<br>[ Total<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% B<br>Que<br>[ Veh.<br>veh | ack Of<br>eue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | East:   | Hampder      | n Rd (Sl                      | E)                        |                             |                            |                     |                       |                     |                               |                              |              |                      |                           |                        |
| 21        | L2      | All MCs      | 215                           | 3.9                       | 215                         | 3.9                        | 0.516               | 58.6                  | LOS E               | 13.7                          | 99.3                         | 0.92         | 0.82                 | 0.92                      | 18.2                   |
| Appro     | ach     |              | 215                           | 3.9                       | 215                         | 3.9                        | 0.516               | 58.6                  | LOS E               | 13.7                          | 99.3                         | 0.92         | 0.82                 | 0.92                      | 18.2                   |
| NorthE    | East: I | Mowbray      | Rd (NE                        | )                         |                             |                            |                     |                       |                     |                               |                              |              |                      |                           |                        |
| 24        | L2      | All MCs      | 93                            | 0.0                       | 93                          | 0.0                        | 0.459               | 22.0                  | LOS B               | 20.3                          | 146.4                        | 0.60         | 0.58                 | 0.60                      | 32.1                   |
| 25        | T1      | All MCs      | 935                           | 4.5                       | 935                         | 4.5                        | *0.459              | 17.4                  | LOS B               | 20.3                          | 147.5                        | 0.60         | 0.55                 | 0.60                      | 25.9                   |
| Appro     | ach     |              | 1027                          | 4.1                       | 1027                        | 4.1                        | 0.459               | 17.8                  | LOS B               | 20.3                          | 147.5                        | 0.60         | 0.56                 | 0.60                      | 26.7                   |
| North\    | Vest:   | Dive Site    | Access                        | s (NV                     | /)                          |                            |                     |                       |                     |                               |                              |              |                      |                           |                        |
| 27        | L2      | All MCs      | 1                             | 0.0                       | 1                           | 0.0                        | 0.001               | 3.5                   | LOS A               | 0.0                           | 0.1                          | 0.14         | 0.43                 | 0.14                      | 34.9                   |
| 29        | R2      | All MCs      | 1                             | 0.0                       | 1                           | 0.0                        | *0.009              | 74.6                  | LOS F               | 0.1                           | 0.5                          | 0.96         | 0.59                 | 0.96                      | 6.3                    |
| Appro     | ach     |              | 2                             | 0.0                       | 2                           | 0.0                        | 0.009               | 39.0                  | LOS C               | 0.1                           | 0.5                          | 0.55         | 0.51                 | 0.55                      | 11.5                   |
| South     | West:   | Mowbray      | / Rd (S                       | W)                        |                             |                            |                     |                       |                     |                               |                              |              |                      |                           |                        |
| 31        | T1      | All MCs      | 931                           | 3.6                       | 931                         | 3.6                        | 0.320               | 5.3                   | LOS A               | 10.0                          | 71.8                         | 0.33         | 0.29                 | 0.33                      | 39.1                   |
| 32        | R2      | All MCs      | 389                           | 2.7                       | 389                         | 2.7                        | *0.478              | 19.1                  | LOS B               | 18.6                          | 133.1                        | 0.74         | 0.81                 | 0.74                      | 30.9                   |
| Appro     | ach     |              | 1320                          | 3.3                       | 1320                        | 3.3                        | 0.478               | 9.4                   | LOS A               | 18.6                          | 133.1                        | 0.45         | 0.45                 | 0.45                      | 35.1                   |
| All Vel   | nicles  |              | 2564                          | 3.7                       | 2564                        | 3.7                        | 0.516               | 16.9                  | LOS B               | 20.3                          | 147.5                        | 0.55         | 0.52                 | 0.55                      | 28.6                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian M               | lovemei       | nt Perfo     | ormanc         | e                     |                  |                         |              |                      |                |                   |                |
|----------------------------|---------------|--------------|----------------|-----------------------|------------------|-------------------------|--------------|----------------------|----------------|-------------------|----------------|
| Mov<br>ID Crossing         | Input<br>Vol. | Dem.<br>Flow | Aver.<br>Delay | Level of A<br>Service | VERAGE E<br>QUEL | BACK OF<br>JE<br>Dist 1 | Prop.<br>Que | Eff.<br>Stop<br>Rate | Travel<br>Time | Travel<br>Dist. S | Aver.<br>Speed |
|                            | ped/h         | ped/h        | sec            |                       | ped              | m                       |              | Trate                | sec            | m                 | m/sec          |
| SouthEast: Hampden Rd (SE) |               |              |                |                       |                  |                         |              |                      |                |                   |                |
| P5 Full                    | 5             | 5            | 68.2           | LOS F                 | 0.0              | 0.0                     | 0.95         | 0.95                 | 234.8          | 200.0             | 0.85           |
| NorthEast: Mo              | wbray Ro      | l (NE)       |                |                       |                  |                         |              |                      |                |                   |                |
| P6 Full                    | 28            | 29           | 68.2           | LOS F                 | 0.1              | 0.1                     | 0.95         | 0.95                 | 234.9          | 200.0             | 0.85           |
| NorthWest: Div             | ve Site Ac    | ccess (N     | W)             |                       |                  |                         |              |                      |                |                   |                |
| P7 Full                    | 1             | 1            | 70.1           | LOS F                 | 0.0              | 0.0                     | 0.97         | 0.97                 | 236.8          | 200.0             | 0.84           |
| All<br>Pedestrians         | 34            | 36           | 68.3           | LOS F                 | 0.1              | 0.1                     | 0.95         | 0.95                 | 235.0          | 200.0             | 0.85           |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 8:51:04 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\01 SM C&SW\_CWD (Block 4).sip9

## Site: CWD01 [CWD01 Mowbray Rd / Hampden Rd (Site Folder: Block 4 Model - 2024 PM Peak)]

#### Output produced by SIDRA INTERSECTION Version: 9.1.6.228

#### TCS 3037

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 150 seconds (Site User-Given Phase Times)

| Vehic     | le M   | ovement      | t Perfo                       | rma                       | nce                         |                            |                     |                       |                     |                               |                              |              |                      |                           |                        |
|-----------|--------|--------------|-------------------------------|---------------------------|-----------------------------|----------------------------|---------------------|-----------------------|---------------------|-------------------------------|------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Derr<br>F<br>[ Total<br>veh/h | nand<br>lows<br>HV ]<br>% | Ar<br>F<br>[ Total<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% B<br>Que<br>[ Veh.<br>veh | ack Of<br>eue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | East:  | Hampder      | n Rd (Sl                      | E)                        |                             |                            |                     |                       |                     |                               |                              |              |                      |                           |                        |
| 21        | L2     | All MCs      | 201                           | 0.5                       | 201                         | 0.5                        | 0.419               | 54.0                  | LOS D               | 12.2                          | 85.5                         | 0.88         | 0.80                 | 0.88                      | 19.1                   |
| Appro     | ach    |              | 201                           | 0.5                       | 201                         | 0.5                        | 0.419               | 54.0                  | LOS D               | 12.2                          | 85.5                         | 0.88         | 0.80                 | 0.88                      | 19.1                   |
| NorthE    | ast: I | Mowbray      | Rd (NE                        | )                         |                             |                            |                     |                       |                     |                               |                              |              |                      |                           |                        |
| 24        | L2     | All MCs      | 9                             | 0.0                       | 9                           | 0.0                        | 0.506               | 24.8                  | LOS B               | 24.1                          | 170.0                        | 0.65         | 0.59                 | 0.65                      | 30.9                   |
| 25        | T1     | All MCs      | 1111                          | 1.0                       | 1111                        | 1.0                        | *0.506              | 20.2                  | LOS B               | 24.1                          | 170.1                        | 0.65         | 0.59                 | 0.65                      | 24.2                   |
| Appro     | ach    |              | 1120                          | 1.0                       | 1120                        | 1.0                        | 0.506               | 20.3                  | LOS B               | 24.1                          | 170.1                        | 0.65         | 0.59                 | 0.65                      | 24.3                   |
| North     | Vest:  | Dive Site    | Access                        | s (NV                     | /)                          |                            |                     |                       |                     |                               |                              |              |                      |                           |                        |
| 27        | L2     | All MCs      | 1                             | 0.0                       | 1                           | 0.0                        | 0.001               | 3.2                   | LOS A               | 0.0                           | 0.1                          | 0.13         | 0.43                 | 0.13                      | 35.3                   |
| 29        | R2     | All MCs      | 1                             | 0.0                       | 1                           | 0.0                        | *0.009              | 74.6                  | LOS F               | 0.1                           | 0.5                          | 0.96         | 0.59                 | 0.96                      | 6.3                    |
| Appro     | ach    |              | 2                             | 0.0                       | 2                           | 0.0                        | 0.009               | 38.9                  | LOS C               | 0.1                           | 0.5                          | 0.54         | 0.51                 | 0.54                      | 11.5                   |
| South     | Nest:  | Mowbray      | Rd (S                         | W)                        |                             |                            |                     |                       |                     |                               |                              |              |                      |                           |                        |
| 31        | T1     | All MCs      | 836                           | 0.8                       | 836                         | 0.8                        | 0.282               | 5.4                   | LOS A               | 8.8                           | 62.2                         | 0.32         | 0.29                 | 0.32                      | 38.9                   |
| 32        | R2     | All MCs      | 314                           | 0.7                       | 314                         | 0.7                        | *0.447              | 22.2                  | LOS B               | 16.6                          | 116.8                        | 0.80         | 0.83                 | 0.80                      | 29.3                   |
| Appro     | ach    |              | 1149                          | 0.7                       | 1149                        | 0.7                        | 0.447               | 10.0                  | LOS A               | 16.6                          | 116.8                        | 0.45         | 0.43                 | 0.45                      | 34.4                   |
| All Vel   | nicles |              | 2473                          | 0.9                       | 2473                        | 0.9                        | 0.506               | 18.3                  | LOS B               | 24.1                          | 170.1                        | 0.58         | 0.53                 | 0.58                      | 27.2                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian M               | loveme        | nt Perf      | ormanc         | e          |                |                         |              |              |                |                   |                |  |
|----------------------------|---------------|--------------|----------------|------------|----------------|-------------------------|--------------|--------------|----------------|-------------------|----------------|--|
| Mov<br>ID Crossing         | Input<br>Vol. | Dem.<br>Flow | Aver.<br>Delay | Level of A | AVERAGE<br>QUE | BACK OF<br>UE<br>Diet 1 | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. 3 | Aver.<br>Speed |  |
|                            | ped/h         | ped/h        | sec            |            | ped            | m                       |              | Hate         | sec            | m                 | m/sec          |  |
| SouthEast: Hampden Rd (SE) |               |              |                |            |                |                         |              |              |                |                   |                |  |
| P5 Full                    | 12            | 13           | 68.2           | LOS F      | 0.1            | 0.1                     | 0.95         | 0.95         | 234.9          | 200.0             | 0.85           |  |
| NorthEast: Mo              | wbray Ro      | d (NE)       |                |            |                |                         |              |              |                |                   |                |  |
| P6 Full                    | 49            | 52           | 68.3           | LOS F      | 0.2            | 0.2                     | 0.96         | 0.96         | 235.0          | 200.0             | 0.85           |  |
| NorthWest: Div             | ve Site A     | ccess (N     | IW)            |            |                |                         |              |              |                |                   |                |  |
| P7 Full                    | 1             | 1            | 70.1           | LOS F      | 0.0            | 0.0                     | 0.97         | 0.97         | 236.8          | 200.0             | 0.84           |  |
| All<br>Pedestrians         | 62            | 65           | 68.3           | LOS F      | 0.2            | 0.2                     | 0.96         | 0.96         | 235.0          | 200.0             | 0.85           |  |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 8:51:05 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\01 SM C&SW\_CWD (Block 4).sip9

## Site: CWD01 [CWD01 Mowbray Rd / Hampden Rd (Site Folder: Block 4 Model - 2024 Weekend Peak)]

#### Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TCS 3037

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 145 seconds (Site User-Given Phase Times)

| Vehic     | le M    | ovement      | t Perfo                      | rma                       | nce                          |                            |                     |                       |                     |                               |                              |              |                      |                           |                        |
|-----------|---------|--------------|------------------------------|---------------------------|------------------------------|----------------------------|---------------------|-----------------------|---------------------|-------------------------------|------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn    | Mov<br>Class | Dem<br>F<br>[ Total<br>veh/h | nand<br>Iows<br>HV ]<br>% | Ar<br>Fl<br>[ Total<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% B<br>Que<br>[ Veh.<br>veh | ack Of<br>eue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | East:   | Hampder      | n Rd (Sl                     | E)                        |                              |                            |                     |                       |                     |                               |                              |              |                      |                           |                        |
| 21        | L2      | All MCs      | 289                          | 1.1                       | 289                          | 1.1                        | 0.532               | 50.2                  | LOS D               | 17.0                          | 120.3                        | 0.89         | 0.82                 | 0.89                      | 20.0                   |
| Appro     | ach     |              | 289                          | 1.1                       | 289                          | 1.1                        | 0.532               | 50.2                  | LOS D               | 17.0                          | 120.3                        | 0.89         | 0.82                 | 0.89                      | 20.0                   |
| North     | East: I | Mowbray      | Rd (NE                       | )                         |                              |                            |                     |                       |                     |                               |                              |              |                      |                           |                        |
| 24        | L2      | All MCs      | 31                           | 0.0                       | 31                           | 0.0                        | 0.548               | 27.1                  | LOS B               | 25.7                          | 182.3                        | 0.70         | 0.64                 | 0.70                      | 29.7                   |
| 25        | T1      | All MCs      | 1112                         | 1.8                       | 1112                         | 1.8                        | *0.548              | 22.6                  | LOS B               | 25.7                          | 182.7                        | 0.70         | 0.64                 | 0.70                      | 22.8                   |
| Appro     | ach     |              | 1142                         | 1.8                       | 1142                         | 1.8                        | 0.548               | 22.7                  | LOS B               | 25.7                          | 182.7                        | 0.70         | 0.64                 | 0.70                      | 23.1                   |
| North\    | Nest:   | Dive Site    | Access                       | s (NV                     | /)                           |                            |                     |                       |                     |                               |                              |              |                      |                           |                        |
| 27        | L2      | All MCs      | 1                            | 0.0                       | 1                            | 0.0                        | 0.001               | 3.5                   | LOS A               | 0.0                           | 0.1                          | 0.14         | 0.44                 | 0.14                      | 34.9                   |
| 29        | R2      | All MCs      | 1                            | 0.0                       | 1                            | 0.0                        | *0.010              | 73.3                  | LOS F               | 0.1                           | 0.5                          | 0.96         | 0.59                 | 0.96                      | 6.4                    |
| Appro     | ach     |              | 2                            | 0.0                       | 2                            | 0.0                        | 0.010               | 38.4                  | LOS C               | 0.1                           | 0.5                          | 0.55         | 0.51                 | 0.55                      | 11.6                   |
| South     | West:   | Mowbray      | / Rd (S                      | W)                        |                              |                            |                     |                       |                     |                               |                              |              |                      |                           |                        |
| 31        | T1      | All MCs      | 1096                         | 0.5                       | 1096                         | 0.5                        | 0.356               | 4.8                   | LOS A               | 10.8                          | 76.2                         | 0.31         | 0.28                 | 0.31                      | 40.4                   |
| 32        | R2      | All MCs      | 372                          | 0.8                       | 372                          | 0.8                        | *0.501              | 27.6                  | LOS B               | 18.4                          | 129.6                        | 0.80         | 0.89                 | 0.80                      | 27.2                   |
| Appro     | ach     |              | 1467                         | 0.6                       | 1467                         | 0.6                        | 0.501               | 10.6                  | LOS A               | 18.4                          | 129.6                        | 0.44         | 0.44                 | 0.44                      | 33.7                   |
| All Vel   | hicles  |              | 2901                         | 1.1                       | 2901                         | 1.1                        | 0.548               | 19.3                  | LOS B               | 25.7                          | 182.7                        | 0.59         | 0.55                 | 0.59                      | 26.7                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian M               | lovemei       | nt Perfe     | ormanc         | e                     |                  |                         |              |                      |                |                 |                |  |
|----------------------------|---------------|--------------|----------------|-----------------------|------------------|-------------------------|--------------|----------------------|----------------|-----------------|----------------|--|
| Mov<br>ID Crossing         | Input<br>Vol. | Dem.<br>Flow | Aver.<br>Delay | Level of A<br>Service | VERAGE E<br>QUEL | BACK OF<br>JE<br>Dist 1 | Prop.<br>Que | Eff.<br>Stop<br>Rate | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |  |
|                            | ped/h         | ped/h        | sec            |                       | ped              | m                       |              | Nato                 | sec            | m               | m/sec          |  |
| SouthEast: Hampden Rd (SE) |               |              |                |                       |                  |                         |              |                      |                |                 |                |  |
| P5 Full                    | 8             | 8            | 65.7           | LOS F                 | 0.0              | 0.0                     | 0.95         | 0.95                 | 232.4          | 200.0           | 0.86           |  |
| NorthEast: Mowbray Rd (NE) |               |              |                |                       |                  |                         |              |                      |                |                 |                |  |
| P6 Full                    | 18            | 19           | 65.7           | LOS F                 | 0.1              | 0.1                     | 0.95         | 0.95                 | 232.4          | 200.0           | 0.86           |  |
| NorthWest: Div             | ve Site Ac    | cess (N      | W)             |                       |                  |                         |              |                      |                |                 |                |  |
| P7 Full                    | 1             | 1            | 67.6           | LOS F                 | 0.0              | 0.0                     | 0.97         | 0.97                 | 234.3          | 200.0           | 0.85           |  |
| All<br>Pedestrians         | 27            | 28           | 65.8           | LOS F                 | 0.1              | 0.1                     | 0.95         | 0.95                 | 232.4          | 200.0           | 0.86           |  |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 8:51:05 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\01 SM C&SW\_CWD (Block 4).sip9

Site: CST01 [CST01 Pacific Hwy / Albany St (Site Folder: Block 4 Model - 2024 AM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

■ Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

#### TCS 768

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 135 seconds (Network Site User-Given Phase Times)

| Vehic                       | le M                | ovemen       | t Perfc                        | orma                      | nce                            |                           |                     |                       |                     |                           |                         |              |                      |                           |                        |
|-----------------------------|---------------------|--------------|--------------------------------|---------------------------|--------------------------------|---------------------------|---------------------|-----------------------|---------------------|---------------------------|-------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID                   | Turn                | Mov<br>Class | Derr<br>Fl<br>[ Total<br>veh/h | nand<br>lows<br>HV ]<br>% | Ar<br>Fl<br>[ Total ]<br>veh/h | rival<br>ows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| SouthEast: Pacific Hwy (SE) |                     |              |                                |                           |                                |                           |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 22                          | T1                  | All MCs      | 1296                           | 5.0                       | 1296                           | 5.0                       | 0.501               | 1.8                   | LOS A               | 5.6                       | 40.9                    | 0.15         | 0.13                 | 0.15                      | 54.6                   |
| 23b                         | R3                  | All MCs      | 157                            | 2.7                       | 157                            | 2.7                       | *0.892              | 83.2                  | LOS F               | 11.3                      | 81.2                    | 1.00         | 0.93                 | 1.21                      | 6.1                    |
| Appro                       | ach                 |              | 1453                           | 4.8                       | 1453                           | 4.8                       | 0.892               | 10.6                  | LOS A               | 11.3                      | 81.2                    | 0.24         | 0.22                 | 0.26                      | 37.1                   |
| East:                       | East: Albany St (E) |              |                                |                           |                                |                           |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 4b                          | L3                  | All MCs      | 29                             | 3.6                       | 29                             | 3.6                       | *0.678              | 67.5                  | LOS E               | 6.8                       | 49.0                    | 0.98         | 0.84                 | 0.99                      | 2.7                    |
| 6a                          | R1                  | All MCs      | 462                            | 3.0                       | 462                            | 3.0                       | 0.678               | 56.0                  | LOS D               | 6.8                       | 49.0                    | 0.98         | 0.84                 | 0.98                      | 10.1                   |
| Appro                       | ach                 |              | 492                            | 3.0                       | 492                            | 3.0                       | 0.678               | 56.6                  | LOS E               | 6.8                       | 49.0                    | 0.98         | 0.84                 | 0.99                      | 9.7                    |
| North                       | Nest:               | Pacific H    | wy (NV                         | V)                        |                                |                           |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 27a                         | L1                  | All MCs      | 323                            | 1.3                       | 323                            | 1.3                       | 0.557               | 23.7                  | LOS B               | 18.0                      | 128.7                   | 0.67         | 0.73                 | 0.67                      | 16.8                   |
| 28                          | T1                  | All MCs      | 1229                           | 5.7                       | 1229                           | 5.7                       | * 0.557             | 13.7                  | LOS A               | 18.0                      | 128.7                   | 0.52         | 0.48                 | 0.52                      | 25.8                   |
| Appro                       | ach                 |              | 1553                           | 4.7                       | 1553                           | 4.7                       | 0.557               | 15.8                  | LOS B               | 18.0                      | 128.7                   | 0.55         | 0.53                 | 0.55                      | 23.2                   |
| All Ve                      | hicles              |              | 3497                           | 4.5                       | 3497                           | 4.5                       | 0.892               | 19.4                  | LOS B               | 18.0                      | 128.7                   | 0.48         | 0.44                 | 0.49                      | 24.0                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov              | vement | Perforr | nance    |              |              |       |              |        |        |       |  |
|-----------------------------|--------|---------|----------|--------------|--------------|-------|--------------|--------|--------|-------|--|
| Mov                         | Dem.   | Aver.   | Level of | AVERAGE      | BACK OF      | Prop. | Eff.         | Travel | Travel | Aver. |  |
| ID Crossing                 | Flow   | Delay   | Service  | QUE<br>[ Ped | UE<br>Dist ] | Que   | Stop<br>Rate | Time   | Dist.  | Speed |  |
|                             | ped/h  | sec     |          | ped          | m            |       |              | sec    | m      | m/sec |  |
| SouthEast: Pacific Hwy (SE) |        |         |          |              |              |       |              |        |        |       |  |
| P5 Full                     | 301    | 55.8    | LOS E    | 1.1          | 1.1          | 0.92  | 0.92         | 222.5  | 200.0  | 0.90  |  |
| East: Albany St (E          | )      |         |          |              |              |       |              |        |        |       |  |
| P2 Full                     | 949    | 57.4    | LOS E    | 3.4          | 3.4          | 0.94  | 0.94         | 74.1   | 20.0   | 0.27  |  |
| All Pedestrians             | 1251   | 57.0    | LOS E    | 3.4          | 3.4          | 0.93  | 0.93         | 109.8  | 63.3   | 0.58  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:07 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

Site: CST02 [CST02 Pacific Hwy / Oxley St (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

■ Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

#### TCS 767

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 135 seconds (Network Site User-Given Phase Times)

| Vehic     | cle M    | ovement      | t Perfo  | orma         | nce      |               |              |                |                     |          |          |                |              |                 |                |
|-----------|----------|--------------|----------|--------------|----------|---------------|--------------|----------------|---------------------|----------|----------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn     | Mov<br>Class | Dem<br>F | nand<br>Iows | Ar<br>Fl | rival<br>lows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back | Of Queue | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |          |              | [ Total  | UH           | [ Total  | HV]           | v/c          | 990            |                     | [Veh.    | Dist ]   |                | Rate         | Cycles          | km/h           |
| South     | East:    | Pacific H    | wy (SE   | )            | VCH/H    | 70            | v/C          | 300            |                     | VCII     |          | _              | _            |                 | NIII/II        |
| 1         | L2       | All MCs      | 124      | 3.4          | 124      | 3.4           | *0.579       | 17.6           | LOS B               | 12.1     | 88.0     | 0.29           | 0.34         | 0.29            | 25.6           |
| 2         | T1       | All MCs      | 1298     | 5.0          | 1298     | 5.0           | 0.579        | 6.9            | LOS A               | 12.6     | 91.7     | 0.29           | 0.30         | 0.29            | 37.3           |
| Appro     | ach      |              | 1422     | 4.9          | 1422     | 4.9           | 0.579        | 7.9            | LOS A               | 12.6     | 91.7     | 0.29           | 0.30         | 0.29            | 35.2           |
| North     | East:    | Oxley St (   | (NE)     |              |          |               |              |                |                     |          |          |                |              |                 |                |
| 4         | L2       | All MCs      | 97       | 4.3          | 97       | 4.3           | 0.246        | 49.1           | LOS D               | 5.3      | 38.2     | 0.86           | 0.75         | 0.86            | 2.8            |
| 5         | T1       | All MCs      | 94       | 2.2          | 94       | 2.2           | 0.221        | 46.1           | LOS D               | 5.0      | 35.9     | 0.86           | 0.68         | 0.86            | 7.9            |
| Approach  |          |              | 191      | 3.3          | 191      | 3.3           | 0.246        | 47.6           | LOS D               | 5.3      | 38.2     | 0.86           | 0.72         | 0.86            | 5.4            |
| North     | West:    | Pacific H    | wy (NV   | V)           |          |               |              |                |                     |          |          |                |              |                 |                |
| 7         | L2       | All MCs      | 72       | 1.5          | 72       | 1.5           | 0.345        | 9.0            | LOS A               | 3.2      | 23.4     | 0.13           | 0.21         | 0.13            | 43.7           |
| 8         | T1       | All MCs      | 1187     | 5.9          | 1187     | 5.9           | 0.345        | 0.9            | LOS A               | 3.2      | 23.4     | 0.06           | 0.08         | 0.06            | 52.6           |
| Appro     | ach      |              | 1259     | 5.6          | 1259     | 5.6           | 0.345        | 1.4            | LOS A               | 3.2      | 23.4     | 0.06           | 0.09         | 0.06            | 52.0           |
| South     | West     | : Oxley St   | (SW)     |              |          |               |              |                |                     |          |          |                |              |                 |                |
| 10        | L2       | All MCs      | 155      | 2.7          | 155      | 2.7           | *0.505       | 62.4           | LOS E               | 9.3      | 66.8     | 0.95           | 0.80         | 0.95            | 5.0            |
| 11        | T1       | All MCs      | 102      | 1.0          | 102      | 1.0           | 0.238        | 50.9           | LOS D               | 5.5      | 38.9     | 0.86           | 0.72         | 0.86            | 6.5            |
| 12        | R2       | All MCs      | 101      | 3.1          | 101      | 3.1           | 0.433        | 59.2           | LOS E               | 6.1      | 43.7     | 0.94           | 0.79         | 0.94            | 5.1            |
| Appro     | Approach |              | 358      | 2.4          | 358      | 2.4           | 0.505        | 58.2           | LOS E               | 9.3      | 66.8     | 0.92           | 0.77         | 0.92            | 5.4            |
| All Ve    | hicles   | ;            | 3229     | 4.8          | 3229     | 4.8           | 0.579        | 13.3           | LOS A               | 12.6     | 91.7     | 0.31           | 0.30         | 0.31            | 23.6           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Critical Movement (Signal Timing)

| Pe                          | destrian Mov  | vement       | Perforr        | nance               |                |             |              |              |                |                 |                |  |  |
|-----------------------------|---------------|--------------|----------------|---------------------|----------------|-------------|--------------|--------------|----------------|-----------------|----------------|--|--|
| Mov<br>ID                   | /<br>Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF     | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |  |  |
|                             |               | ped/h        | sec            |                     | l Pea<br>ped   | Dist j<br>m |              | Rate         | sec            | m               | m/sec          |  |  |
| SouthEast: Pacific Hwy (SE) |               |              |                |                     |                |             |              |              |                |                 |                |  |  |
| P1                          | Full          | 1            | 55.1           | LOS E               | 0.0            | 0.0         | 0.90         | 0.90         | 71.8           | 20.0            | 0.28           |  |  |
| Nor                         | thEast: Oxley | St (NE)      |                |                     |                |             |              |              |                |                 |                |  |  |

| P2 Full                     | 1001 | 57.5 | LOS E | 3.6 | 3.6 | 0.94 | 0.94 | 74.2 | 20.0 | 0.27 |  |  |
|-----------------------------|------|------|-------|-----|-----|------|------|------|------|------|--|--|
| NorthWest: Pacific Hwy (NW) |      |      |       |     |     |      |      |      |      |      |  |  |
| P3 Full                     | 376  | 56.0 | LOS E | 1.3 | 1.3 | 0.92 | 0.92 | 72.7 | 20.0 | 0.28 |  |  |
| SouthWest: Oxley St (SW)    |      |      |       |     |     |      |      |      |      |      |  |  |
| P4 Full                     | 227  | 55.7 | LOS E | 0.8 | 0.8 | 0.91 | 0.91 | 72.3 | 20.0 | 0.28 |  |  |
| All Pedestrians             | 1605 | 56.9 | LOS E | 3.6 | 3.6 | 0.93 | 0.93 | 73.6 | 20.0 | 0.27 |  |  |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:07 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

Site: CST03 [CST03 Pacific Hwy / Hume St (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

#### TCS 766

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 135 seconds (Network Site User-Given Phase Times)

| Vehicle Movement Performance |        |              |                               |                           |                                |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
|------------------------------|--------|--------------|-------------------------------|---------------------------|--------------------------------|----------------------------|---------------------|-----------------------|---------------------|---------------------------|-------------------------|----------------|----------------------|---------------------------|------------------------|
| Mov<br>ID                    | Turn   | Mov<br>Class | Derr<br>F<br>[ Total<br>veh/h | nand<br>lows<br>HV ]<br>% | Ar<br>Fl<br>[ Total ]<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| SouthEast: Pacific Hwy (SE)  |        |              |                               |                           |                                |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 1                            | L2     | All MCs      | 31                            | 3.4                       | 31                             | 3.4                        | 0.110               | 6.1                   | LOS A               | 0.2                       | 1.6                     | 0.03           | 0.14                 | 0.03                      | 36.4                   |
| 2                            | T1     | All MCs      | 1320                          | 5.1                       | 1320                           | 5.1                        | *0.433              | 0.5                   | LOS A               | 1.4                       | 10.2                    | 0.04           | 0.04                 | 0.04                      | 57.8                   |
| Appro                        | ach    |              | 1351                          | 5.1                       | 1351                           | 5.1                        | 0.433               | 0.7                   | LOS A               | 1.4                       | 10.2                    | 0.04           | 0.05                 | 0.04                      | 56.8                   |
| NorthWest: Pacific Hwy (NW)  |        |              |                               |                           |                                |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 8                            | T1     | All MCs      | 1385                          | 5.5                       | 1385                           | 5.5                        | 0.334               | 3.2                   | LOS A               | 10.1                      | 73.7                    | 0.21           | 0.19                 | 0.21                      | 42.0                   |
| Appro                        | ach    |              | 1385                          | 5.5                       | 1385                           | 5.5                        | 0.334               | 3.2                   | LOS A               | 10.1                      | 73.7                    | 0.21           | 0.19                 | 0.21                      | 42.0                   |
| SouthWest: Hume St (SW)      |        |              |                               |                           |                                |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 10                           | L2     | All MCs      | 101                           | 2.1                       | 101                            | 2.1                        | *0.501              | 67.2                  | LOS E               | 6.5                       | 46.0                    | 0.99           | 0.78                 | 0.99                      | 4.2                    |
| 12                           | R2     | All MCs      | 38                            | 0.0                       | 38                             | 0.0                        | 0.138               | 58.8                  | LOS E               | 2.2                       | 15.3                    | 0.90           | 0.73                 | 0.90                      | 4.8                    |
| Appro                        | ach    |              | 139                           | 1.5                       | 139                            | 1.5                        | 0.501               | 64.9                  | LOS E               | 6.5                       | 46.0                    | 0.96           | 0.77                 | 0.96                      | 4.4                    |
| All Ve                       | hicles |              | 2875                          | 5.1                       | 2875                           | 5.1                        | 0.501               | 5.0                   | LOS A               | 10.1                      | 73.7                    | 0.17           | 0.15                 | 0.17                      | 39.5                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Movement Performance |                             |       |       |          |                     |         |       |              |        |        |       |  |
|---------------------------------|-----------------------------|-------|-------|----------|---------------------|---------|-------|--------------|--------|--------|-------|--|
| Mo                              | ·                           | Dem.  | Aver. | Level of | AVERAGE             | BACK OF | Prop. | Eff.         | Travel | Travel | Aver. |  |
| ID                              | Crossing                    | Flow  | Delay | Service  | QUEUE<br>[Ped Dist] |         | Que   | Stop<br>Rate | Time   | Dist.  | Speed |  |
|                                 |                             | ped/h | sec   |          | ped                 | m       |       |              | sec    | m      | m/sec |  |
| Sou                             | SouthEast: Pacific Hwy (SE) |       |       |          |                     |         |       |              |        |        |       |  |
| P1                              | Full                        | 1     | 55.1  | LOS E    | 0.0                 | 0.0     | 0.90  | 0.90         | 71.8   | 20.0   | 0.28  |  |
| NorthWest: Pacific Hwy (NW)     |                             |       |       |          |                     |         |       |              |        |        |       |  |
| P3                              | Full                        | 213   | 55.6  | LOS E    | 0.7                 | 0.7     | 0.91  | 0.91         | 72.3   | 20.0   | 0.28  |  |
| SouthWest: Hume St (SW)         |                             |       |       |          |                     |         |       |              |        |        |       |  |
| P4                              | Full                        | 96    | 58.1  | LOS E    | 0.3                 | 0.3     | 0.93  | 0.93         | 74.8   | 20.0   | 0.27  |  |
| All F                           | Pedestrians                 | 309   | 56.4  | LOS E    | 0.7                 | 0.7     | 0.92  | 0.92         | 73.1   | 20.0   | 0.27  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:07 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

Site: CST04 [CST04 Pacific Hwy / Falcon St / Shirley Rd (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

TCS 765

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 135 seconds (Network Site User-Given Phase Times)

| Vehic  | le M   | ovement   | t Perfo    | orma | nce          |       |        |       |          |          |          |       |              |                  |       |
|--------|--------|-----------|------------|------|--------------|-------|--------|-------|----------|----------|----------|-------|--------------|------------------|-------|
| Mov    | Turn   | Mov       | Dem        | nand | Ar           | rival | Deg.   | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff.         | Aver.            | Aver. |
| ID     |        | Class     | H<br>Total | IOWS | H<br>I Total | IOWS  | Satn   | Delay | Service  | [\/eh    | Dist 1   | Que   | Stop<br>Rate | No. of<br>Cycles | Speed |
|        |        |           | veh/h      | %    | veh/h        | %     | v/c    | sec   |          | veh      | m        |       | Trate        | Cycles           | km/h  |
| South  | East:  | Pacific H | wy (SE     | )    |              |       |        |       |          |          |          |       |              |                  |       |
| 1      | L2     | All MCs   | 298        | 4.9  | 298          | 4.9   | 0.256  | 15.4  | LOS B    | 7.8      | 57.0     | 0.44  | 0.70         | 0.44             | 30.5  |
| 2      | T1     | All MCs   | 885        | 5.9  | 885          | 5.9   | 0.638  | 34.7  | LOS C    | 23.6     | 173.9    | 0.86  | 0.76         | 0.86             | 11.5  |
| Appro  | ach    |           | 1183       | 5.7  | 1183         | 5.7   | 0.638  | 29.9  | LOS C    | 23.6     | 173.9    | 0.75  | 0.74         | 0.75             | 16.1  |
| East:  | Falco  | n St (E)  |            |      |              |       |        |       |          |          |          |       |              |                  |       |
| 21b    | L3     | All MCs   | 7          | 0.0  | 7            | 0.0   | 0.921  | 33.3  | LOS C    | 18.1     | 130.6    | 1.00  | 0.99         | 1.19             | 5.0   |
| 21a    | L1     | All MCs   | 243        | 3.9  | 243          | 3.9   | *0.921 | 67.9  | LOS E    | 18.1     | 130.6    | 1.00  | 0.99         | 1.19             | 12.4  |
| 23a    | R1     | All MCs   | 440        | 3.3  | 440          | 3.3   | 0.921  | 58.5  | LOS E    | 18.1     | 130.6    | 1.00  | 0.97         | 1.16             | 5.4   |
| Appro  | ach    |           | 691        | 3.5  | 691          | 3.5   | 0.921  | 61.6  | LOS E    | 18.1     | 130.6    | 1.00  | 0.98         | 1.17             | 8.4   |
| North: | Willo  | ughby Rd  | l (N)      |      |              |       |        |       |          |          |          |       |              |                  |       |
| 7      | L2     | All MCs   | 47         | 2.2  | 47           | 2.2   | 0.035  | 3.8   | LOS A    | 0.2      | 1.6      | 0.08  | 0.48         | 0.08             | 37.0  |
| Appro  | ach    |           | 47         | 2.2  | 47           | 2.2   | 0.035  | 3.8   | LOS A    | 0.2      | 1.6      | 0.08  | 0.48         | 0.08             | 37.0  |
| North  | West:  | Pacific H | wy (NV     | V)   |              |       |        |       |          |          |          |       |              |                  |       |
| 7a     | L1     | All MCs   | 398        | 6.6  | 398          | 6.6   | 0.501  | 20.3  | LOS B    | 11.8     | 87.3     | 0.78  | 0.80         | 0.78             | 22.7  |
| 8      | T1     | All MCs   | 1025       | 4.9  | 1025         | 4.9   | *0.730 | 22.8  | LOS B    | 23.8     | 173.8    | 0.75  | 0.67         | 0.75             | 21.5  |
| Appro  | ach    |           | 1423       | 5.4  | 1423         | 5.4   | 0.730  | 22.1  | LOS B    | 23.8     | 173.8    | 0.76  | 0.71         | 0.76             | 21.8  |
| South  | West   | Shirley R | Rd (SW     | )    |              |       |        |       |          |          |          |       |              |                  |       |
| 10     | L2     | All MCs   | 25         | 4.2  | 25           | 4.2   | 0.928  | 85.2  | LOS F    | 29.4     | 210.9    | 1.00  | 1.11         | 1.29             | 9.0   |
| 12a    | R1     | All MCs   | 440        | 2.6  | 440          | 2.6   | *0.928 | 76.4  | LOS F    | 29.7     | 211.7    | 1.00  | 1.10         | 1.29             | 8.9   |
| 12     | R2     | All MCs   | 296        | 1.8  | 296          | 1.8   | 0.928  | 78.5  | LOS F    | 29.7     | 211.7    | 1.00  | 1.07         | 1.28             | 8.7   |
| Appro  | ach    |           | 761        | 2.4  | 761          | 2.4   | 0.928  | 77.5  | LOS F    | 29.7     | 211.7    | 1.00  | 1.09         | 1.28             | 8.8   |
| All Ve | hicles |           | 4105       | 4.6  | 4105         | 4.6   | 0.928  | 41.0  | LOS C    | 29.7     | 211.7    | 0.83  | 0.83         | 0.92             | 13.5  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov     | vement       | Perform        | nance               |                            |                         |              |                      |                |                 |                |
|--------------------|--------------|----------------|---------------------|----------------------------|-------------------------|--------------|----------------------|----------------|-----------------|----------------|
| Mov<br>ID Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE E<br>QUEL<br>[ Ped | BACK OF<br>JE<br>Dist ] | Prop.<br>Que | Eff.<br>Stop<br>Rate | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |

|                    | ped/h     | sec  |       | ped | m   |      |      | sec  | m    | m/sec |
|--------------------|-----------|------|-------|-----|-----|------|------|------|------|-------|
| SouthEast: Pacific | c Hwy (S  | E)   |       |     |     |      |      |      |      |       |
| P1 Full            | 125       | 54.5 | LOS E | 0.4 | 0.4 | 0.90 | 0.90 | 71.2 | 20.0 | 0.28  |
| East: Falcon St (E | )         |      |       |     |     |      |      |      |      |       |
| P5 Full            | 295       | 58.6 | LOS E | 1.1 | 1.1 | 0.94 | 0.94 | 75.3 | 20.0 | 0.27  |
| NorthWest: Pacifi  | c Hwy (N  | IW)  |       |     |     |      |      |      |      |       |
| P3 Full            | 309       | 54.9 | LOS E | 1.1 | 1.1 | 0.91 | 0.91 | 71.6 | 20.0 | 0.28  |
| SouthWest: Shirle  | ey Rd (SV | N)   |       |     |     |      |      |      |      |       |
| P4 Full            | 16        | 57.9 | LOS E | 0.1 | 0.1 | 0.93 | 0.93 | 74.6 | 20.0 | 0.27  |
| All Pedestrians    | 745       | 56.4 | LOS E | 1.1 | 1.1 | 0.92 | 0.92 | 73.0 | 20.0 | 0.27  |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:07 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

V Site: CST05 [CST05 Clarke St / Oxley St (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

NA Site Category: (None) Give-Way (Two-Way)

| Vehic     | le M     | ovemen             | t Perfc                       | orma                      | nce                          |                            |                |                |                     |                           |                           |              |                      |                           |                        |
|-----------|----------|--------------------|-------------------------------|---------------------------|------------------------------|----------------------------|----------------|----------------|---------------------|---------------------------|---------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn     | Mov<br>Class       | Dem<br>Fi<br>[ Total<br>veb/b | nand<br>lows<br>HV ]<br>% | Ar<br>Fl<br>[ Total<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn   | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | c Of Queue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | East:    | Clarke S           | t (SE)                        | 70                        | VOII/II                      |                            |                | 000            |                     | Volt                      |                           |              |                      |                           |                        |
| 1<br>3a   | L2<br>R1 | All MCs<br>All MCs | 23<br>59                      | 4.5<br>3.6                | 23<br>59                     | 4.5<br>3.6                 | 0.085<br>0.085 | 5.2<br>5.9     | LOS A<br>LOS A      | 0.3<br>0.3                | 2.1<br>2.1                | 0.36<br>0.36 | 0.58<br>0.58         | 0.36<br>0.36              | 32.2<br>32.2           |
| Appro     | ach      |                    | 82                            | 3.8                       | 82                           | 3.8                        | 0.085          | 5.7            | LOSA                | 0.3                       | 2.1                       | 0.36         | 0.58                 | 0.36                      | 32.2                   |
| North:    | Oxle     | y St (N)           |                               |                           |                              |                            |                |                |                     |                           |                           |              |                      |                           |                        |
| 24a       | L1       | All MCs            | 107                           | 1.0                       | 107                          | 1.0                        | 0.147          | 4.4            | LOS A               | 0.0                       | 0.0                       | 0.00         | 0.53                 | 0.00                      | 29.6                   |
| 26a       | R1       | All MCs            | 167                           | 3.1                       | 167                          | 3.1                        | 0.147          | 4.1            | LOS A               | 0.0                       | 0.0                       | 0.00         | 0.53                 | 0.00                      | 29.6                   |
| Appro     | ach      |                    | 275                           | 2.3                       | 275                          | 2.3                        | 0.147          | 4.2            | NA                  | 0.0                       | 0.0                       | 0.00         | 0.53                 | 0.00                      | 29.6                   |
| South     | West:    | Oxley St           | t (SW)                        |                           |                              |                            |                |                |                     |                           |                           |              |                      |                           |                        |
| 10a       | L1       | All MCs            | 114                           | 0.9                       | 114                          | 0.9                        | 0.107          | 2.8            | LOS A               | 0.4                       | 3.0                       | 0.28         | 0.54                 | 0.28                      | 22.4                   |
| 12        | R2       | All MCs            | 65                            | 0.0                       | 65                           | 0.0                        | 0.107          | 4.8            | LOS A               | 0.4                       | 3.0                       | 0.28         | 0.54                 | 0.28                      | 22.4                   |
| Appro     | ach      |                    | 179                           | 0.6                       | 179                          | 0.6                        | 0.107          | 3.5            | NA                  | 0.4                       | 3.0                       | 0.28         | 0.54                 | 0.28                      | 22.4                   |
| All Ve    | hicles   |                    | 536                           | 2.0                       | 536                          | 2.0                        | 0.147          | 4.2            | NA                  | 0.4                       | 3.0                       | 0.15         | 0.54                 | 0.15                      | 28.7                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:07 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

V Site: CST06 [CST06 Clarke St / Hume St (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

NA Site Category: (None) Give-Way (Two-Way)

| Vehi      | cle M  | ovemen       | t Perfo                      | orma                      | ince                         |                            |                     |                       |                     |                           |                           |                |                      |                           |                        |
|-----------|--------|--------------|------------------------------|---------------------------|------------------------------|----------------------------|---------------------|-----------------------|---------------------|---------------------------|---------------------------|----------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F<br>[ Total<br>veh/h | nand<br>Iows<br>HV ]<br>% | Ar<br>Fl<br>[ Total<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | c Of Queue<br>Dist ]<br>m | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | East:  | Clarke S     | t (SE)                       |                           |                              |                            |                     |                       |                     |                           |                           |                |                      |                           |                        |
| 21        | L2     | All MCs      | 1                            | 100.<br>0                 | 1                            | 100.<br>0                  | 0.054               | 4.0                   | LOS A               | 0.1                       | 0.8                       | 0.10           | 0.11                 | 0.10                      | 19.2                   |
| 2         | T1     | All MCs      | 81                           | 3.9                       | 81                           | 3.9                        | 0.054               | 0.0                   | LOS A               | 0.1                       | 0.8                       | 0.10           | 0.11                 | 0.10                      | 36.8                   |
| 23a       | R1     | All MCs      | 16                           | 0.0                       | 16                           | 0.0                        | 0.054               | 3.7                   | LOS A               | 0.1                       | 0.8                       | 0.10           | 0.11                 | 0.10                      | 37.5                   |
| Appro     | bach   |              | 98                           | 4.3                       | 98                           | 4.3                        | 0.054               | 0.6                   | NA                  | 0.1                       | 0.8                       | 0.10           | 0.11                 | 0.10                      | 36.6                   |
| North     | West:  | Clarke S     | t (NW)                       |                           |                              |                            |                     |                       |                     |                           |                           |                |                      |                           |                        |
| 27b       | L3     | All MCs      | 4                            | 0.0                       | 4                            | 0.0                        | 0.090               | 4.1                   | LOS A               | 0.0                       | 0.2                       | 0.01           | 0.02                 | 0.01                      | 38.3                   |
| 8         | T1     | All MCs      | 165                          | 0.6                       | 165                          | 0.6                        | 0.090               | 0.0                   | LOS A               | 0.0                       | 0.2                       | 0.01           | 0.02                 | 0.01                      | 39.6                   |
| 29        | R2     | All MCs      | 3                            | 0.0                       | 3                            | 0.0                        | 0.090               | 4.0                   | LOS A               | 0.0                       | 0.2                       | 0.01           | 0.02                 | 0.01                      | 20.4                   |
| Appro     | bach   |              | 173                          | 0.6                       | 173                          | 0.6                        | 0.090               | 0.2                   | NA                  | 0.0                       | 0.2                       | 0.01           | 0.02                 | 0.01                      | 39.1                   |
| All Ve    | hicles |              | 271                          | 1.9                       | 271                          | 1.9                        | 0.090               | 0.3                   | NA                  | 0.1                       | 0.8                       | 0.04           | 0.06                 | 0.04                      | 38.4                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:07 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

## V Site: CST07 [CST07 Clarke St / Willoughby Rd (Site Folder: Block 4 Model - 2024 AM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA Site Category: (None) Give-Way (Two-Way)

| Vehic     | le M    | ovemen       | t Performa                                 | nce                                         |                     |                       |                     |                              |                                |              |                      |                           |                        |
|-----------|---------|--------------|--------------------------------------------|---------------------------------------------|---------------------|-----------------------|---------------------|------------------------------|--------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn    | Mov<br>Class | Demand<br>Flows<br>[ Total HV ]<br>veh/h % | Arrival<br>Flows<br>[ Total HV ]<br>veh/h % | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% E<br>Qu<br>[ Veh.<br>veh | Back Of<br>ieue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Willo | oughby R     | d (S)                                      |                                             |                     |                       |                     |                              |                                |              |                      |                           |                        |
| 1         | L2      | All MCs      | 108 2.9                                    | 108 2.9                                     | 0.177               | 5.2                   | LOS A               | 0.8                          | 6.1                            | 0.43         | 0.47                 | 0.43                      | 29.3                   |
| 2         | T1      | All MCs      | 55 28.8                                    | 55 28.8                                     | 0.177               | 1.8                   | LOS A               | 0.8                          | 6.1                            | 0.43         | 0.47                 | 0.43                      | 34.5                   |
| Appro     | ach     |              | 163 11.6                                   | 163 11.6                                    | 0.177               | 4.1                   | NA                  | 0.8                          | 6.1                            | 0.43         | 0.47                 | 0.43                      | 31.6                   |
| North:    | Willo   | ughby Ro     | d (N)                                      |                                             |                     |                       |                     |                              |                                |              |                      |                           |                        |
| 8         | T1      | All MCs      | 21 60.0                                    | 21 60.0                                     | 0.065               | 2.1                   | LOS A               | 0.2                          | 2.1                            | 0.42         | 0.44                 | 0.42                      | 32.7                   |
| 9         | R2      | All MCs      | 23 9.1                                     | 23 9.1                                      | 0.065               | 8.1                   | LOS A               | 0.2                          | 2.1                            | 0.42         | 0.44                 | 0.42                      | 32.4                   |
| Appro     | ach     |              | 44 33.3                                    | 44 33.3                                     | 0.065               | 5.3                   | NA                  | 0.2                          | 2.1                            | 0.42         | 0.44                 | 0.42                      | 32.5                   |
| West:     | Clark   | e St (W)     |                                            |                                             |                     |                       |                     |                              |                                |              |                      |                           |                        |
| 10        | L2      | All MCs      | 33 0.0                                     | 33 0.0                                      | 0.154               | 6.3                   | LOS A               | 0.5                          | 3.8                            | 0.50         | 0.70                 | 0.50                      | 32.4                   |
| 12        | R2      | All MCs      | 87 2.4                                     | 87 2.4                                      | 0.154               | 6.3                   | LOS A               | 0.5                          | 3.8                            | 0.50         | 0.70                 | 0.50                      | 26.2                   |
| Appro     | ach     |              | 120 1.8                                    | 120 1.8                                     | 0.154               | 6.3                   | LOS A               | 0.5                          | 3.8                            | 0.50         | 0.70                 | 0.50                      | 28.6                   |
| All Ve    | hicles  |              | 327 10.9                                   | 327 10.9                                    | 0.177               | 5.0                   | NA                  | 0.8                          | 6.1                            | 0.45         | 0.55                 | 0.45                      | 30.7                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 8:52:19 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

## Site: CST08 [CST08 Albany St / Willoughby Rd (Site Folder: Block 4 Model - 2024 AM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TCS 516

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 65 seconds (Site User-Given Phase Times)

| Vehic  | le M    | ovement   | t Perfo       | rma         | nce              |            |         |       |          |            |                |       |              |        |       |
|--------|---------|-----------|---------------|-------------|------------------|------------|---------|-------|----------|------------|----------------|-------|--------------|--------|-------|
| Mov    | Turn    | Mov       | Dem           | nand        | Arriv            | val        | Deg.    | Aver. | Level of | 95%        | Back Of        | Prop. | Eff.         | Aver.  | Aver. |
| TD     |         | Class     | FI<br>[ Total | OWS<br>HV/1 | Flo <sup>v</sup> | WS<br>\/1_ | Satn    | Delay | Service  | Q<br>[\/eb | ueue<br>Dist-1 | Que   | Stop<br>Rate | No. of | Speed |
|        |         |           | veh/h         | %           | veh/h            | v ]<br>%   | v/c     | sec   |          | veh        | m              |       | Nate         | Cycles | km/h  |
| South  | : Willo | oughby Ro | d (S)         |             |                  |            |         |       |          |            |                |       |              |        |       |
| 1      | L2      | All MCs   | 7             | 100.<br>0   | 7 10             | 00.<br>0   | 0.038   | 26.7  | LOS B    | 0.2        | 2.5            | 0.82  | 0.64         | 0.82   | 22.8  |
| 2      | T1      | All MCs   | 8             | 100.<br>0   | <sub>8</sub> 10  | 00.<br>0   | 0.035   | 20.1  | LOS B    | 0.2        | 2.8            | 0.75  | 0.54         | 0.75   | 27.5  |
| 3      | R2      | All MCs   | 1             | 0.0         | 1 (              | 0.0        | 0.035   | 24.8  | LOS B    | 0.2        | 2.8            | 0.75  | 0.54         | 0.75   | 26.1  |
| Appro  | ach     |           | 17 9          | 93.8        | 17 93            | 3.8        | 0.038   | 23.3  | LOS B    | 0.2        | 2.8            | 0.78  | 0.59         | 0.78   | 25.2  |
| East:  | Alban   | y St (E)  |               |             |                  |            |         |       |          |            |                |       |              |        |       |
| 4      | L2      | All MCs   | 1             | 0.0         | 1 (              | 0.0        | 0.261   | 13.1  | LOS A    | 4.6        | 32.5           | 0.57  | 0.48         | 0.57   | 29.3  |
| 5      | T1      | All MCs   | 368           | 1.4         | 368 2            | 1.4        | 0.521   | 9.4   | LOS A    | 6.6        | 46.9           | 0.65  | 0.56         | 0.65   | 33.5  |
| 6      | R2      | All MCs   | 177           | 2.4         | 177 2            | 2.4        | * 0.521 | 21.8  | LOS B    | 6.6        | 46.9           | 0.85  | 0.76         | 0.85   | 27.5  |
| Appro  | ach     |           | 546           | 1.7         | 546 ´            | 1.7        | 0.521   | 13.5  | LOS A    | 6.6        | 46.9           | 0.71  | 0.63         | 0.71   | 31.2  |
| North  | Willo   | ughby Ro  | 1 (N)         |             |                  |            |         |       |          |            |                |       |              |        |       |
| 7      | L2      | All MCs   | 206           | 0.5         | 206 (            | ).5        | 0.242   | 16.0  | LOS B    | 4.0        | 28.0           | 0.64  | 0.72         | 0.64   | 28.7  |
| 8      | T1      | All MCs   | 7             | 100.<br>0   | 7 10             | 00.<br>0   | *0.270  | 21.4  | LOS B    | 2.4        | 18.0           | 0.86  | 0.75         | 0.86   | 24.2  |
| 9      | R2      | All MCs   | 80            | 1.3         | 80 -             | 1.3        | 0.270   | 28.0  | LOS B    | 2.4        | 18.0           | 0.86  | 0.75         | 0.86   | 22.6  |
| Appro  | ach     |           | 294           | 3.2         | 294 3            | 3.2        | 0.270   | 19.4  | LOS B    | 4.0        | 28.0           | 0.71  | 0.73         | 0.71   | 26.6  |
| West:  | Albar   | ny St (W) |               |             |                  |            |         |       |          |            |                |       |              |        |       |
| 10     | L2      | All MCs   | 132           | 2.4         | 132 2            | 2.4        | 0.236   | 23.0  | LOS B    | 3.2        | 22.7           | 0.79  | 0.75         | 0.79   | 24.6  |
| 11     | T1      | All MCs   | 309           | 3.1         | 309 3            | 3.1        | *0.462  | 17.8  | LOS B    | 7.7        | 55.5           | 0.82  | 0.70         | 0.82   | 28.1  |
| Appro  | ach     |           | 441           | 2.9         | 441 2            | 2.9        | 0.462   | 19.3  | LOS B    | 7.7        | 55.5           | 0.81  | 0.71         | 0.81   | 26.9  |
| All Ve | hicles  |           | 1298          | 3.6         | 1298 3           | 3.6        | 0.521   | 16.9  | LOS B    | 7.7        | 55.5           | 0.74  | 0.68         | 0.74   | 28.4  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian     | Movem   | ent Perf | ormano | e        |         |         |       |      |        |        |       |
|----------------|---------|----------|--------|----------|---------|---------|-------|------|--------|--------|-------|
| Mov            | Input   | Dem.     | Aver.  | Level of | AVERAGE | BACK OF | Prop. | Eff. | Travel | Travel | Aver. |
| ID Crossing    | Vol.    | Flow     | Delay  | Service  | QUI     | EUE     | Que   | Stop | Time   | Dist.  | Speed |
|                |         |          |        |          | [Ped    | Dist ]  |       | Rate |        |        |       |
|                | ped/h   | ped/h    | sec    |          | ped     | m       |       |      | sec    | m      | m/sec |
| South: Willoug | ghby Rd | (S)      |        |          |         |         |       |      |        |        |       |
| P1 Full        | 133     | 140      | 26.0   | LOS C    | 0.2     | 0.2     | 0.90  | 0.90 | 42.7   | 20.0   | 0.47  |

| East: Albany S     | t (E)      |     |      |       |     |     |      |      |      |      |      |
|--------------------|------------|-----|------|-------|-----|-----|------|------|------|------|------|
| P2 Full            | 151        | 159 | 26.0 | LOS C | 0.3 | 0.3 | 0.90 | 0.90 | 42.7 | 20.0 | 0.47 |
| North: Willough    | nby Rd (N) | )   |      |       |     |     |      |      |      |      |      |
| P3 Full            | 78         | 82  | 26.0 | LOS C | 0.1 | 0.1 | 0.90 | 0.90 | 42.6 | 20.0 | 0.47 |
| West: Albany S     | St (W)     |     |      |       |     |     |      |      |      |      |      |
| P4 Full            | 157        | 165 | 26.1 | LOS C | 0.3 | 0.3 | 0.90 | 0.90 | 42.7 | 20.0 | 0.47 |
| All<br>Pedestrians | 519        | 546 | 26.0 | LOS C | 0.3 | 0.3 | 0.90 | 0.90 | 42.7 | 20.0 | 0.47 |

### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 8:52:20 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

V Site: CST09 [CST09 Albany St / Oxley St (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

■ Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

NA Site Category: (None) Roundabout

| Vehic   | le M   | ovemen     | t Perfo      | orma         | nce        |               |       |       |          |          |          |       |              |        |       |
|---------|--------|------------|--------------|--------------|------------|---------------|-------|-------|----------|----------|----------|-------|--------------|--------|-------|
| Mov     | Turn   | Mov        | Dem          | nand         | Ar         | rival         | Deg.  | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff.         | Aver.  | Aver. |
| ID      |        | Class      | H<br>Intel I | lows<br>山い 1 | H<br>Intal | lows<br>山\/ 1 | Satn  | Delay | Service  | [\/eh    | Diet 1   | Que   | Stop<br>Rate | NO. Of | Speed |
|         |        |            | veh/h        | · · v ]<br>% | veh/h      | %             | v/c   | sec   |          | veh      | m        |       | Tale         | Cycles | km/h  |
| South   | : Oxle | ey St (S)  |              |              |            |               |       |       |          |          |          |       |              |        |       |
| 1       | L2     | All MCs    | 44           | 7.1          | 44         | 7.1           | 0.236 | 8.0   | LOS A    | 1.6      | 11.2     | 0.70  | 0.66         | 0.70   | 21.7  |
| 2       | T1     | All MCs    | 63           | 3.3          | 63         | 3.3           | 0.236 | 7.6   | LOS A    | 1.6      | 11.2     | 0.70  | 0.66         | 0.70   | 32.7  |
| 3       | R2     | All MCs    | 67           | 0.0          | 67         | 0.0           | 0.236 | 10.4  | LOS A    | 1.6      | 11.2     | 0.70  | 0.66         | 0.70   | 30.9  |
| 3u      | U      | All MCs    | 1            | 0.0          | 1          | 0.0           | 0.236 | 11.8  | LOS A    | 1.6      | 11.2     | 0.70  | 0.66         | 0.70   | 21.7  |
| Appro   | ach    |            | 176          | 3.0          | 176        | 3.0           | 0.236 | 8.8   | LOS A    | 1.6      | 11.2     | 0.70  | 0.66         | 0.70   | 30.2  |
| East: / | Alban  | y St (E)   |              |              |            |               |       |       |          |          |          |       |              |        |       |
| 4       | L2     | All MCs    | 52           | 2.0          | 52         | 2.0           | 0.528 | 7.9   | LOSA     | 3.7      | 26.4     | 0.61  | 0.71         | 0.65   | 30.4  |
| 5       | T1     | All MCs    | 328          | 3.5          | 328        | 3.5           | 0.528 | 7.7   | LOSA     | 3.7      | 26.4     | 0.61  | 0.71         | 0.65   | 30.4  |
| 6       | R2     | All MCs    | 38           | 2.8          | 38         | 2.8           | 0.528 | 10.6  | LOSA     | 3.7      | 26.4     | 0.61  | 0.71         | 0.65   | 35.5  |
| 6u      | U      | All MCs    | 1            | 0.0          | 1          | 0.0           | 0.528 | 11.9  | LOSA     | 3.7      | 26.4     | 0.61  | 0.71         | 0.65   | 34.9  |
| Appro   | ach    |            | 419          | 3.3          | 419        | 3.3           | 0.528 | 8.0   | LOS A    | 3.7      | 26.4     | 0.61  | 0.71         | 0.65   | 31.2  |
| North:  | Oxle   | v St (N)   |              |              |            |               |       |       |          |          |          |       |              |        |       |
| 7       | 12     |            | 24           | 0.0          | 24         | 0.0           | 0.356 | 8.0   | LOSA     | 24       | 17.2     | 0 74  | 0.68         | 0 74   | 35.1  |
| ,<br>8  | T1     |            | 157          | 13           | 157        | 13            | 0.000 | 7.0   |          | 2.4      | 17.2     | 0.74  | 0.00         | 0.74   | 30.6  |
| g       | R2     |            | Q1           | 0.0          | Q1         | 0.0           | 0.356 | 10.7  |          | 2.4      | 17.2     | 0.74  | 0.00         | 0.74   | 30.6  |
| Qu      | 11     |            | 1            | 0.0          | 1          | 0.0           | 0.356 | 10.7  |          | 2.4      | 17.2     | 0.74  | 0.00         | 0.74   | 35.3  |
| Annro   | ach    | 7 11 11/00 | 273          | 0.0          | 273        | 0.8           | 0.356 | 8.8   | LOSA     | 2.4      | 17.2     | 0.74  | 0.68         | 0.74   | 31.3  |
| 7.000   | uon    |            | 210          | 0.0          | 210        | 0.0           | 0.000 | 0.0   | LOOM     | 2.7      | 17.2     | 0.74  | 0.00         | 0.14   | 01.0  |
| West:   | Albar  | ny St (W)  |              |              |            |               |       |       |          |          |          |       |              |        |       |
| 10      | L2     | All MCs    | 92           | 3.4          | 92         | 3.4           | 0.479 | 5.7   | LOS A    | 3.9      | 27.6     | 0.59  | 0.53         | 0.59   | 35.2  |
| 11      | T1     | All MCs    | 313          | 1.0          | 313        | 1.0           | 0.479 | 5.5   | LOS A    | 3.9      | 27.6     | 0.59  | 0.53         | 0.59   | 35.1  |
| 12      | R2     | All MCs    | 78           | 2.7          | 78         | 2.7           | 0.479 | 8.4   | LOS A    | 3.9      | 27.6     | 0.59  | 0.53         | 0.59   | 27.2  |
| 12u     | U      | All MCs    | 1            | 0.0          | 1          | 0.0           | 0.479 | 9.7   | LOS A    | 3.9      | 27.6     | 0.59  | 0.53         | 0.59   | 27.2  |
| Appro   | ach    |            | 483          | 1.7          | 483        | 1.7           | 0.479 | 6.0   | LOS A    | 3.9      | 27.6     | 0.59  | 0.53         | 0.59   | 34.4  |
| All Ve  | hicles |            | 1351         | 2.2          | 1351       | 2.2           | 0.528 | 7.6   | LOS A    | 3.9      | 27.6     | 0.64  | 0.63         | 0.65   | 32.3  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:07 PM Project: C:Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

V Site: CST10 [CST10 Albany St / Clarke Ln (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

NA Site Category: (None) Give-Way (Two-Way)

| Vehio     | cle M  | ovemen       | t Perfo                      | orma                      | ince                         |                            |                     |                       |                     |                           |                          |                |                      |                           |                        |
|-----------|--------|--------------|------------------------------|---------------------------|------------------------------|----------------------------|---------------------|-----------------------|---------------------|---------------------------|--------------------------|----------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F<br>[ Total<br>veh/h | nand<br>lows<br>HV ]<br>% | Ar<br>Fl<br>[ Total<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Bacł<br>[ Veh.<br>veh | COf Queue<br>Dist ]<br>m | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | East:  | Clarke Li    | n (SE)                       |                           |                              |                            |                     |                       |                     |                           |                          |                |                      |                           |                        |
| 21a       | L1     | All MCs      | 22                           | 0.0                       | 22                           | 0.0                        | 0.062               | 4.2                   | LOS A               | 3.9                       | 27.5                     | 0.22           | 0.50                 | 0.22                      | 29.5                   |
| 23b       | R3     | All MCs      | 8                            | 0.0                       | 8                            | 0.0                        | 0.062               | 13.6                  | LOS A               | 3.9                       | 27.5                     | 0.22           | 0.50                 | 0.22                      | 29.5                   |
| Appro     | ach    |              | 31                           | 0.0                       | 31                           | 0.0                        | 0.062               | 6.8                   | LOS A               | 3.9                       | 27.5                     | 0.22           | 0.50                 | 0.22                      | 29.5                   |
| East:     | Alban  | y St (E)     |                              |                           |                              |                            |                     |                       |                     |                           |                          |                |                      |                           |                        |
| 5         | T1     | All MCs      | 469                          | 3.1                       | 469                          | 3.1                        | 0.226               | 0.0                   | LOS A               | 9.2                       | 65.9                     | 0.00           | 0.00                 | 0.00                      | 49.9                   |
| Appro     | ach    |              | 469                          | 3.1                       | 469                          | 3.1                        | 0.226               | 0.0                   | NA                  | 9.2                       | 65.9                     | 0.00           | 0.00                 | 0.00                      | 49.9                   |
| West:     | Albar  | ny St (W)    |                              |                           |                              |                            |                     |                       |                     |                           |                          |                |                      |                           |                        |
| 11        | T1     | All MCs      | 480                          | 1.8                       | 480                          | 1.8                        | 0.250               | 0.0                   | LOS A               | 0.0                       | 0.0                      | 0.00           | 0.00                 | 0.00                      | 49.9                   |
| Appro     | ach    |              | 480                          | 1.8                       | 480                          | 1.8                        | 0.250               | 0.0                   | NA                  | 0.0                       | 0.0                      | 0.00           | 0.00                 | 0.00                      | 49.9                   |
| All Ve    | hicles |              | 980                          | 2.4                       | 980                          | 2.4                        | 0.250               | 0.2                   | NA                  | 9.2                       | 65.9                     | 0.01           | 0.02                 | 0.01                      | 48.0                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:07 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

Site: CST11 [CST11 Oxley St / Clarke Ln (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

■ Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

NA Site Category: (None) Stop (Two-Way)

| Vehio     | cle M  | ovemen       | t Perfo   | orma         | nce         |             |              |                |                     |         |            |                |              |                 |                |
|-----------|--------|--------------|-----------|--------------|-------------|-------------|--------------|----------------|---------------------|---------|------------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl | nand<br>lows | Arri<br>Flo | ival<br>ows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Bad | ck Of Queu | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total   | HV]          | [Total H    | IV]         |              |                |                     | [Veh.   | Dist ]     |                | Rate         | Cycles          | km/b           |
| South     | East:  | Clarke Li    | n (SE)    | 70           | ven/n       | 70          | V/C          | sec            | _                   | ven     | 111        | _              | _            | _               | K[1]/11        |
| 1         | 12     | All MCs      | 1         | 0.0          | 1           | 0.0         | 0.007        | 7.7            | LOSA                | 0.0     | 0.2        | 0.36           | 0.84         | 0.36            | 26.5           |
| 2         | <br>T1 | All MCs      | 1         | 0.0          | 1           | 0.0         | 0.007        | 8.9            | LOSA                | 0.0     | 0.2        | 0.36           | 0.84         | 0.36            | 26.5           |
| 3         | R2     | All MCs      | 2         | 50.0         | 25          | 0.0         | 0.007        | 12.1           | LOS A               | 0.0     | 0.2        | 0.36           | 0.84         | 0.36            | 26.5           |
| Appro     | ach    |              | 4         | 25.0         | 42          | 5.0         | 0.007        | 10.2           | LOS A               | 0.0     | 0.2        | 0.36           | 0.84         | 0.36            | 26.5           |
| North     | East:  | Oxley St     | (NE)      |              |             |             |              |                |                     |         |            |                |              |                 |                |
| 5         | T1     | All MCs      | 184       | 3.4          | 184         | 3.4         | 0.170        | 0.0            | LOS A               | 0.0     | 0.3        | 0.02           | 0.02         | 0.02            | 47.8           |
| 6         | R2     | All MCs      | 5         | 0.0          | 5           | 0.0         | 0.170        | 3.5            | LOS A               | 0.0     | 0.3        | 0.02           | 0.02         | 0.02            | 47.8           |
| Appro     | ach    |              | 189       | 3.3          | 189         | 3.3         | 0.170        | 0.1            | NA                  | 0.0     | 0.3        | 0.02           | 0.02         | 0.02            | 47.8           |
| North     | West:  | Clarke L     | n (NW)    |              |             |             |              |                |                     |         |            |                |              |                 |                |
| 7         | L2     | All MCs      | 17        | 0.0          | 17          | 0.0         | 0.023        | 5.0            | LOS A               | 0.1     | 0.5        | 0.28           | 0.52         | 0.28            | 25.2           |
| 9         | R2     | All MCs      | 6         | 0.0          | 6           | 0.0         | 0.023        | 6.3            | LOS A               | 0.1     | 0.5        | 0.28           | 0.52         | 0.28            | 25.2           |
| Appro     | ach    |              | 23        | 0.0          | 23          | 0.0         | 0.023        | 5.3            | LOS A               | 0.1     | 0.5        | 0.28           | 0.52         | 0.28            | 25.2           |
| South     | West   | Oxley St     | : (SW)    |              |             |             |              |                |                     |         |            |                |              |                 |                |
| 10        | L2     | All MCs      | 11        | 0.0          | 11          | 0.0         | 0.088        | 2.8            | LOS A               | 0.0     | 0.0        | 0.00           | 0.03         | 0.00            | 46.8           |
| 11        | T1     | All MCs      | 160       | 0.0          | 160         | 0.0         | 0.088        | 0.0            | LOS A               | 0.0     | 0.0        | 0.00           | 0.03         | 0.00            | 46.8           |
| Appro     | ach    |              | 171       | 0.0          | 171         | 0.0         | 0.088        | 0.2            | NA                  | 0.0     | 0.0        | 0.00           | 0.03         | 0.00            | 46.8           |
| All Ve    | hicles |              | 387       | 1.9          | 387         | 1.9         | 0.170        | 0.6            | NA                  | 0.1     | 0.5        | 0.03           | 0.07         | 0.03            | 41.9           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:07 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

Site: CST13 [CST13 Pacific Hwy / Alexander St (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

■ Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

TCS 763

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 135 seconds (Network Site User-Given Phase Times)

| Vehic     | le M     | ovemen       | t Perfc              | orma                 | nce                 |                       |              |                |                     |                    |                    |              |                      |                           |                |
|-----------|----------|--------------|----------------------|----------------------|---------------------|-----------------------|--------------|----------------|---------------------|--------------------|--------------------|--------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn     | Mov<br>Class | Dem<br>Fl<br>[ Total | hand<br>lows<br>HV ] | Ar<br>Fl<br>[ Total | rival<br>lows<br>HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh. | Of Queue<br>Dist ] | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| Cauth     | C. a. t. | Desifie Ll   | veh/h                | %<br>\               | veh/h               | %                     | V/C          | sec            | _                   | veh                | m                  | _            | _                    | _                         | km/h           |
| South     | East:    | Pacific H    | wy (SE               | )                    |                     |                       |              |                |                     |                    |                    |              |                      |                           |                |
| 2         | T1       | All MCs      | 1087                 | 5.6                  | 1087                | 5.6                   | 0.462        | 6.9            | LOS A               | 10.2               | 74.9               | 0.55         | 0.49                 | 0.55                      | 38.2           |
| 3a        | R1       | All MCs      | 303                  | 6.6                  | 303                 | 6.6                   | 0.545        | 19.7           | LOS B               | 8.5                | 62.6               | 0.65         | 0.77                 | 0.65                      | 23.4           |
| Appro     | ach      |              | 1391                 | 5.8                  | 1391                | 5.8                   | 0.545        | 9.7            | LOS A               | 10.2               | 74.9               | 0.57         | 0.55                 | 0.57                      | 33.4           |
| North:    | Alexa    | ander St (   | N)                   |                      |                     |                       |              |                |                     |                    |                    |              |                      |                           |                |
| 24a       | L1       | All MCs      | 275                  | 5.4                  | 275                 | 5.4                   | * 0.500      | 35.1           | LOS C               | 12.0               | 88.1               | 1.00         | 0.81                 | 1.00                      | 18.5           |
| 26b       | R3       | All MCs      | 96                   | 6.6                  | 96                  | 6.6                   | 0.707        | 76.2           | LOS F               | 6.6                | 48.9               | 1.00         | 0.85                 | 1.09                      | 4.6            |
| Appro     | ach      |              | 371                  | 5.7                  | 371                 | 5.7                   | 0.707        | 45.7           | LOS D               | 12.0               | 88.1               | 1.00         | 0.82                 | 1.02                      | 13.7           |
| North     | Nest:    | Pacific H    | wy (NV               | V)                   |                     |                       |              |                |                     |                    |                    |              |                      |                           |                |
| 7b        | L3       | All MCs      | 7                    | 0.0                  | 7                   | 0.0                   | 0.089        | 13.8           | LOS A               | 0.1                | 1.1                | 0.05         | 0.14                 | 0.05                      | 48.7           |
| 8         | T1       | All MCs      | 1319                 | 4.2                  | 1319                | 4.2                   | *0.679       | 12.0           | LOS A               | 17.8               | 126.1              | 0.50         | 0.50                 | 0.50                      | 41.2           |
| Appro     | ach      |              | 1326                 | 4.2                  | 1326                | 4.2                   | 0.679        | 12.0           | LOS A               | 17.8               | 126.1              | 0.49         | 0.50                 | 0.49                      | 41.2           |
| All Ve    | hicles   |              | 3087                 | 5.1                  | 3087                | 5.1                   | 0.707        | 15.0           | LOS B               | 17.8               | 126.1              | 0.59         | 0.56                 | 0.59                      | 31.5           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov    | vement   | Perforr | nance    |              |              |       |              |        |        |       |
|-------------------|----------|---------|----------|--------------|--------------|-------|--------------|--------|--------|-------|
| Mov               | Dem.     | Aver.   | Level of | AVERAGE      | BACK OF      | Prop. | Eff.         | Travel | Travel | Aver. |
| ID Crossing       | Flow     | Delay   | Service  | QUE<br>[ Ped | UE<br>Dist ] | Que   | Stop<br>Rate | Time   | Dist.  | Speed |
|                   | ped/h    | sec     |          | ped          | m            |       |              | sec    | m      | m/sec |
| North: Alexander  | St (N)   |         |          |              |              |       |              |        |        |       |
| P6 Full           | 161      | 22.7    | LOS C    | 0.3          | 0.3          | 0.81  | 0.81         | 39.4   | 20.0   | 0.51  |
| NorthWest: Pacifi | c Hwy (N | W)      |          |              |              |       |              |        |        |       |
| P3 Full           | 61       | 55.3    | LOS E    | 0.2          | 0.2          | 0.91  | 0.91         | 71.9   | 20.0   | 0.28  |
| All Pedestrians   | 222      | 31.6    | LOS D    | 0.3          | 0.3          | 0.84  | 0.84         | 48.3   | 20.0   | 0.41  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:07 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

Site: CST14 [CST14 Falcon St / Alexander St (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

TCS 764

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 135 seconds (Network Site User-Given Phase Times)

| Vehic  | le M   | ovemen     | t Perfo        | orma      | nce              |           |        |       |          |          |          |       |      |        |       |
|--------|--------|------------|----------------|-----------|------------------|-----------|--------|-------|----------|----------|----------|-------|------|--------|-------|
| Mov    | Turn   | Mov        | Dem            | hand      | Ar               | rival     | Deg.   | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff. | Aver.  | Aver. |
| שו     |        | Class      | ٦<br>[ Total ] | HV]       | ا ت<br>Total I ] | HV ]      | Saur   | Delay | Service  | [Veh.    | Dist ]   | Que   | Rate | Cycles | Speed |
|        |        |            | veh/h          | %         | veh/h            | %         | v/c    | sec   |          | veh      | m        |       |      |        | km/h  |
| South  | Alex   | ander St   | (S)            |           |                  |           |        |       |          |          |          |       |      |        |       |
| 1      | L2     | All MCs    | 1              | 100.<br>0 | 1                | 100.<br>0 | *0.475 | 75.4  | LOS F    | 13.4     | 98.9     | 1.00  | 0.86 | 1.00   | 5.3   |
| 2      | T1     | All MCs    | 242            | 6.1       | 242              | 6.1       | 0.528  | 61.0  | LOS E    | 13.4     | 98.9     | 1.00  | 0.86 | 1.00   | 9.0   |
| 3      | R2     | All MCs    | 67             | 6.3       | 67               | 6.3       | 0.528  | 77.3  | LOS F    | 7.2      | 52.7     | 1.00  | 0.84 | 1.00   | 17.2  |
| Appro  | ach    |            | 311            | 6.4       | 311              | 6.4       | 0.528  | 64.6  | LOS E    | 13.4     | 98.9     | 1.00  | 0.85 | 1.00   | 11.2  |
| East:  | Falco  | n St (E)   |                |           |                  |           |        |       |          |          |          |       |      |        |       |
| 4      | L2     | All MCs    | 28             | 0.0       | 28               | 0.0       | 0.429  | 20.2  | LOS B    | 12.5     | 90.1     | 0.51  | 0.47 | 0.51   | 37.4  |
| 5      | T1     | All MCs    | 712            | 3.8       | 712              | 3.8       | 0.429  | 14.6  | LOS B    | 12.5     | 90.1     | 0.51  | 0.46 | 0.51   | 37.7  |
| 6      | R2     | All MCs    | 12             | 63.6      | 126              | 63.6      | 0.429  | 20.6  | LOS B    | 10.6     | 77.6     | 0.50  | 0.45 | 0.50   | 37.6  |
| Appro  | ach    |            | 752            | 4.6       | 752              | 4.6       | 0.429  | 14.9  | LOS B    | 12.5     | 90.1     | 0.51  | 0.46 | 0.51   | 37.7  |
| North: | Alexa  | ander St ( | N)             |           |                  |           |        |       |          |          |          |       |      |        |       |
| 7      | L2     | All MCs    | 29             | 0.0       | 29               | 0.0       | 0.454  | 54.6  | LOS D    | 10.3     | 74.9     | 0.91  | 0.76 | 0.91   | 22.0  |
| 8      | T1     | All MCs    | 349            | 6.0       | 349              | 6.0       | 0.454  | 47.4  | LOS D    | 11.2     | 82.3     | 0.91  | 0.76 | 0.91   | 6.9   |
| Appro  | ach    |            | 379            | 5.6       | 379              | 5.6       | 0.454  | 47.9  | LOS D    | 11.2     | 82.3     | 0.91  | 0.76 | 0.91   | 8.6   |
| West:  | Falco  | on St (W)  |                |           |                  |           |        |       |          |          |          |       |      |        |       |
| 10     | L2     | All MCs    | 143            | 3.7       | 143              | 3.7       | *0.364 | 10.1  | LOS A    | 5.9      | 42.6     | 0.23  | 0.38 | 0.23   | 32.0  |
| 11     | T1     | All MCs    | 749            | 4.5       | 749              | 4.5       | 0.364  | 3.1   | LOS A    | 5.9      | 42.6     | 0.19  | 0.24 | 0.19   | 52.6  |
| Appro  | ach    |            | 893            | 4.4       | 893              | 4.4       | 0.364  | 4.2   | LOS A    | 5.9      | 42.6     | 0.19  | 0.26 | 0.19   | 50.4  |
| All Ve | hicles |            | 2334           | 4.9       | 2334             | 4.9       | 0.528  | 22.8  | LOS B    | 13.4     | 98.9     | 0.52  | 0.48 | 0.52   | 28.7  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian M       | lovement     | Perform        | nance               |                |                |              |              |                |                 |                |
|--------------------|--------------|----------------|---------------------|----------------|----------------|--------------|--------------|----------------|-----------------|----------------|
| Mov<br>ID Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>EUE | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|                    | nod/h        | -              |                     | [Ped           | Dist ]         |              | Rate         | 200            | m               | mlsoc          |
| South: Alexand     | der St (S)   | Sec            | _                   | ped            |                | _            | _            | 580            | 111             | m/sec          |
| P1 Full            | 85           | 57.2           | LOS E               | 0.3            | 0.3            | 0.92         | 0.92         | 73.8           | 20.0            | 0.27           |

| East: Falcon St (E) | )      |      |       |     |     |      |      |      |      |      |
|---------------------|--------|------|-------|-----|-----|------|------|------|------|------|
| P2 Full             | 45     | 57.1 | LOS E | 0.2 | 0.2 | 0.92 | 0.92 | 73.7 | 20.0 | 0.27 |
| North: Alexander S  | St (N) |      |       |     |     |      |      |      |      |      |
| P3 Full             | 105    | 57.2 | LOS E | 0.4 | 0.4 | 0.92 | 0.92 | 73.9 | 20.0 | 0.27 |
| West: Falcon St (W  | V)     |      |       |     |     |      |      |      |      |      |
| P4 Full             | 226    | 57.5 | LOS E | 0.8 | 0.8 | 0.93 | 0.93 | 74.2 | 20.0 | 0.27 |
| All Pedestrians     | 462    | 57.3 | LOS E | 0.8 | 0.8 | 0.92 | 0.92 | 74.0 | 20.0 | 0.27 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:07 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

Site: CST01 [CST01 Pacific Hwy / Albany St (Site Folder: Block 4 Model - 2024 PM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

■ Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

### TCS 768

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 125 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfo                      | orma                      | nce                            |                           |                |                       |                     |                           |                         |              |                      |                           |                        |
|-----------|--------|--------------|------------------------------|---------------------------|--------------------------------|---------------------------|----------------|-----------------------|---------------------|---------------------------|-------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F<br>[ Total<br>veh/h | nand<br>lows<br>HV ]<br>% | Ar<br>Fl<br>[ Total ]<br>veh/h | rival<br>ows<br>HV ]<br>% | Deg.<br>Satn   | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | East:  | Pacific H    | wy (SE                       | )                         |                                |                           |                |                       |                     |                           |                         |              |                      |                           |                        |
| 22        | T1     | All MCs      | 1154                         | 4.1                       | 1154                           | 4.1                       | 0.447          | 12.0                  | LOS A               | 19.4                      | 140.3                   | 0.55         | 0.43                 | 0.55                      | 38.2                   |
| 23b       | R3     | All MCs      | 135                          | 0.0                       | 135                            | 0.0                       | *0.864         | 80.5                  | LOS F               | 9.0                       | 62.7                    | 1.00         | 0.91                 | 1.19                      | 6.5                    |
| Appro     | ach    |              | 1288                         | 3.7                       | 1288                           | 3.7                       | 0.864          | 19.1                  | LOS B               | 19.4                      | 140.3                   | 0.60         | 0.48                 | 0.62                      | 29.9                   |
| East:     | Alban  | y St (E)     |                              |                           |                                |                           |                |                       |                     |                           |                         |              |                      |                           |                        |
| 4b        | L3     | All MCs      | 26                           | 4.0                       | 26                             | 4.0                       | <b>*</b> 0.738 | 67.7                  | LOS E               | 6.9                       | 49.0                    | 1.00         | 0.87                 | 1.07                      | 2.7                    |
| 6a        | R1     | All MCs      | 472                          | 2.2                       | 472                            | 2.2                       | 0.738          | 55.8                  | LOS D               | 6.9                       | 49.0                    | 1.00         | 0.87                 | 1.06                      | 10.1                   |
| Appro     | ach    |              | 498                          | 2.3                       | 498                            | 2.3                       | 0.738          | 56.4                  | LOS D               | 6.9                       | 49.0                    | 1.00         | 0.87                 | 1.06                      | 9.8                    |
| North     | Nest:  | Pacific H    | wy (NV                       | V)                        |                                |                           |                |                       |                     |                           |                         |              |                      |                           |                        |
| 27a       | L1     | All MCs      | 393                          | 0.0                       | 393                            | 0.0                       | 0.419          | 14.8                  | LOS B               | 10.3                      | 72.2                    | 0.44         | 0.68                 | 0.44                      | 24.1                   |
| 28        | T1     | All MCs      | 912                          | 3.6                       | 912                            | 3.6                       | *0.419         | 9.0                   | LOS A               | 10.3                      | 72.2                    | 0.40         | 0.36                 | 0.40                      | 31.6                   |
| Appro     | ach    |              | 1304                         | 2.5                       | 1304                           | 2.5                       | 0.419          | 10.7                  | LOS A               | 10.3                      | 72.2                    | 0.41         | 0.46                 | 0.41                      | 28.9                   |
| All Ve    | hicles |              | 3091                         | 3.0                       | 3091                           | 3.0                       | 0.864          | 21.6                  | LOS B               | 19.4                      | 140.3                   | 0.58         | 0.53                 | 0.60                      | 23.0                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov     | ement  | Perforr | nance    |              |              |       |              |        |        |       |
|--------------------|--------|---------|----------|--------------|--------------|-------|--------------|--------|--------|-------|
| Mov                | Dem.   | Aver.   | Level of | AVERAGE      | BACK OF      | Prop. | Eff.         | Travel | Travel | Aver. |
| ID Crossing        | Flow   | Delay   | Service  | QUE<br>[ Ped | UE<br>Dist ] | Que   | Stop<br>Rate | Time   | Dist.  | Speed |
|                    | ped/h  | sec     |          | ped          | m            |       |              | sec    | m      | m/sec |
| SouthEast: Pacific | Hwy (S | E)      |          |              |              |       |              |        |        |       |
| P5 Full            | 278    | 50.8    | LOS E    | 0.9          | 0.9          | 0.91  | 0.91         | 217.4  | 200.0  | 0.92  |
| East: Albany St (E | )      |         |          |              |              |       |              |        |        |       |
| P2 Full            | 443    | 51.1    | LOS E    | 1.4          | 1.4          | 0.91  | 0.91         | 67.8   | 20.0   | 0.30  |
| All Pedestrians    | 721    | 51.0    | LOS E    | 1.4          | 1.4          | 0.91  | 0.91         | 125.5  | 89.4   | 0.71  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:19 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

Site: CST02 [CST02 Pacific Hwy / Oxley St (Site Folder: Block 4 Model - 2024 PM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

■ Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

### TCS 767

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 125 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfo  | orma         | nce      |               |              |                |                     |          |          |                |              |                 |                |
|-----------|--------|--------------|----------|--------------|----------|---------------|--------------|----------------|---------------------|----------|----------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Den<br>F | nand<br>Iows | Ar<br>Fl | rival<br>lows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back | Of Queue | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total  | HV ]         | [ Total  | HV ]          | NIC          | 500            |                     | [Veh.    | Dist ]   |                | Rate         | Cycles          | km/b           |
| South     | East:  | Pacific H    | wy (SE   | )            |          | /0            | v/C          | 360            |                     | VEIT     | 111      | _              | _            |                 | KI11/11        |
| 1         | L2     | All MCs      | 143      | ,<br>0.0     | 143      | 0.0           | 0.137        | 7.6            | LOS A               | 0.9      | 6.0      | 0.10           | 0.56         | 0.10            | 24.1           |
| 2         | T1     | All MCs      | 1104     | 4.2          | 1104     | 4.2           | *0.447       | 3.3            | LOS A               | 7.4      | 53.4     | 0.23           | 0.21         | 0.23            | 41.5           |
| Appro     | ach    |              | 1247     | 3.7          | 1247     | 3.7           | 0.447        | 3.8            | LOS A               | 7.4      | 53.4     | 0.21           | 0.25         | 0.21            | 37.0           |
| North     | East:  | Oxley St     | (NE)     |              |          |               |              |                |                     |          |          |                |              |                 |                |
| 4         | L2     | All MCs      | 79       | 0.0          | 79       | 0.0           | 0.204        | 46.7           | LOS D               | 4.0      | 28.0     | 0.87           | 0.74         | 0.87            | 2.9            |
| 5         | T1     | All MCs      | 97       | 0.0          | 97       | 0.0           | 0.239        | 44.5           | LOS D               | 4.9      | 34.5     | 0.88           | 0.69         | 0.88            | 8.2            |
| Appro     | ach    |              | 176      | 0.0          | 176      | 0.0           | 0.239        | 45.5           | LOS D               | 4.9      | 34.5     | 0.87           | 0.71         | 0.87            | 5.9            |
| North     | West:  | Pacific H    | wy (NV   | V)           |          |               |              |                |                     |          |          |                |              |                 |                |
| 7         | L2     | All MCs      | 69       | 0.0          | 69       | 0.0           | 0.252        | 25.0           | LOS B               | 9.5      | 67.9     | 0.58           | 0.50         | 0.58            | 22.8           |
| 8         | T1     | All MCs      | 868      | 3.9          | 868      | 3.9           | 0.252        | 11.0           | LOS A               | 9.5      | 69.0     | 0.55           | 0.41         | 0.55            | 26.1           |
| Appro     | ach    |              | 938      | 3.6          | 938      | 3.6           | 0.252        | 12.0           | LOS A               | 9.5      | 69.0     | 0.55           | 0.42         | 0.55            | 25.8           |
| South     | West   | : Oxley St   | (SW)     |              |          |               |              |                |                     |          |          |                |              |                 |                |
| 10        | L2     | All MCs      | 183      | 0.6          | 183      | 0.6           | *0.754       | 70.8           | LOS F               | 11.3     | 79.7     | 1.00           | 0.88         | 1.11            | 4.7            |
| 11        | T1     | All MCs      | 168      | 0.0          | 168      | 0.0           | 0.424        | 56.2           | LOS D               | 9.0      | 62.9     | 0.92           | 0.77         | 0.92            | 6.5            |
| 12        | R2     | All MCs      | 139      | 0.0          | 139      | 0.0           | 0.602        | 58.1           | LOS E               | 8.1      | 56.7     | 0.98           | 0.81         | 0.98            | 5.1            |
| Appro     | ach    |              | 491      | 0.2          | 491      | 0.2           | 0.754        | 62.2           | LOS E               | 11.3     | 79.7     | 0.96           | 0.82         | 1.01            | 5.4            |
| All Ve    | hicles | ;            | 2852     | 2.8          | 2852     | 2.8           | 0.754        | 19.1           | LOS B               | 11.3     | 79.7     | 0.49           | 0.43         | 0.50            | 17.5           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Critical Movement (Signal Timing)

| Peo       | destrian Mov   | /ement   | Perfor | nance    |              |               |       |              |        |        |       |
|-----------|----------------|----------|--------|----------|--------------|---------------|-------|--------------|--------|--------|-------|
| Mov       | Crossing       | Dem.     | Aver.  | Level of | AVERAGE      | BACK OF       | Prop. | Eff.         | Travel | Travel | Aver. |
| <b>חו</b> | Crossing       | Flow     | Delay  | Service  | QUE<br>[ Ped | :UE<br>Dist 1 | Que   | Stop<br>Rate | Time   | Dist.  | Speed |
|           |                | ped/h    | sec    |          | ped          | m             |       | rtato        | sec    | m      | m/sec |
| Sou       | thEast: Pacifi | c Hwy (S | SE)    |          |              |               |       |              |        |        |       |
| P1        | Full           | 1        | 50.2   | LOS E    | 0.0          | 0.0           | 0.90  | 0.90         | 66.8   | 20.0   | 0.30  |
| Nor       | thEast: Oxley  | St (NE)  |        |          |              |               |       |              |        |        |       |

| P2 Full            | 883      | 52.1 | LOS E | 2.9 | 2.9 | 0.93 | 0.93 | 68.8 | 20.0 | 0.29 |
|--------------------|----------|------|-------|-----|-----|------|------|------|------|------|
| NorthWest: Pacific | c Hwy (N | W)   |       |     |     |      |      |      |      |      |
| P3 Full            | 321      | 50.9 | LOS E | 1.0 | 1.0 | 0.91 | 0.91 | 67.5 | 20.0 | 0.30 |
| SouthWest: Oxley   | st (SW)  |      |       |     |     |      |      |      |      |      |
| P4 Full            | 213      | 50.6 | LOS E | 0.7 | 0.7 | 0.90 | 0.90 | 67.3 | 20.0 | 0.30 |
| All Pedestrians    | 1418     | 51.6 | LOS E | 2.9 | 2.9 | 0.92 | 0.92 | 68.3 | 20.0 | 0.29 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:19 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

Site: CST03 [CST03 Pacific Hwy / Hume St (Site Folder: Block 4 Model - 2024 PM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

■ Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

## TCS 766

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 125 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfo  | orma         | nce      |               |              |                |                     |          |          |                |              |                 |                |
|-----------|--------|--------------|----------|--------------|----------|---------------|--------------|----------------|---------------------|----------|----------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Den<br>F | nand<br>Iows | Ar<br>Fl | rival<br>Iows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back | Of Queue | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total  | HV ]<br>%    | [ Total  | HV ]          | v/c          | 880            |                     | [Veh.    | Dist ]   |                | Rate         | Cycles          | km/h           |
| South     | East:  | Pacific H    | wy (SE   | )            | VCH/H    | 70            | V/C          | 300            |                     | VCIT     |          | _              | _            |                 | N11//11        |
| 1         | L2     | All MCs      | 51       | 0.0          | 51       | 0.0           | 0.294        | 11.7           | LOS A               | 8.3      | 59.6     | 0.37           | 0.38         | 0.37            | 30.7           |
| 2         | T1     | All MCs      | 1153     | 4.0          | 1153     | 4.0           | 0.294        | 6.2            | LOS A               | 8.3      | 59.6     | 0.37           | 0.35         | 0.37            | 39.9           |
| Appro     | ach    |              | 1203     | 3.8          | 1203     | 3.8           | 0.294        | 6.4            | LOS A               | 8.3      | 59.8     | 0.37           | 0.35         | 0.37            | 39.3           |
| North     | East:  | Hume St      | (NE)     |              |          |               |              |                |                     |          |          |                |              |                 |                |
| 24        | L2     | All MCs      | 19       | 0.0          | 19       | 0.0           | 0.139        | 55.5           | LOS D               | 2.0      | 13.9     | 0.91           | 0.70         | 0.91            | 2.9            |
| 25        | T1     | All MCs      | 19       | 0.0          | 19       | 0.0           | *0.139       | 48.7           | LOS D               | 2.0      | 13.9     | 0.91           | 0.69         | 0.91            | 6.7            |
| 26        | R2     | All MCs      | 17       | 0.0          | 17       | 0.0           | 0.114        | 59.9           | LOS E               | 1.0      | 6.8      | 0.94           | 0.69         | 0.94            | 2.4            |
| Appro     | ach    |              | 55       | 0.0          | 55       | 0.0           | 0.139        | 54.5           | LOS D               | 2.0      | 13.9     | 0.92           | 0.69         | 0.92            | 4.1            |
| North     | Nest:  | Pacific H    | wy (NV   | V)           |          |               |              |                |                     |          |          |                |              |                 |                |
| 8         | T1     | All MCs      | 1086     | 3.1          | 1086     | 3.1           | *0.359       | 6.5            | LOS A               | 10.8     | 77.8     | 0.39           | 0.35         | 0.39            | 32.6           |
| Appro     | ach    |              | 1086     | 3.1          | 1086     | 3.1           | 0.359        | 6.5            | LOS A               | 10.8     | 77.8     | 0.39           | 0.35         | 0.39            | 32.6           |
| South     | West   | Hume St      | t (SW)   |              |          |               |              |                |                     |          |          |                |              |                 |                |
| 10        | L2     | All MCs      | 78       | 0.0          | 78       | 0.0           | 0.328        | 59.2           | LOS E               | 4.4      | 31.0     | 0.95           | 0.76         | 0.95            | 4.7            |
| 31        | T1     | All MCs      | 1        | 0.0          | 1        | 0.0           | 0.011        | 66.0           | LOS E               | 0.1      | 0.2      | 1.00           | 0.55         | 1.00            | 5.3            |
| 12        | R2     | All MCs      | 22       | 0.0          | 22       | 0.0           | 0.109        | 57.5           | LOS E               | 1.2      | 8.5      | 0.92           | 0.71         | 0.92            | 5.0            |
| Appro     | ach    |              | 101      | 0.0          | 101      | 0.0           | 0.328        | 58.9           | LOS E               | 4.4      | 31.0     | 0.94           | 0.75         | 0.94            | 4.8            |
| All Ve    | hicles |              | 2445     | 3.3          | 2445     | 3.3           | 0.359        | 9.7            | LOS A               | 10.8     | 77.8     | 0.42           | 0.37         | 0.42            | 30.2           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Critical Movement (Signal Timing)

| Peo | destrian Mov   | /ement   | Perform | nance    |         |         |       |      |        |        |       |
|-----|----------------|----------|---------|----------|---------|---------|-------|------|--------|--------|-------|
| Mo  |                | Dem.     | Aver.   | Level of | AVERAGE | BACK OF | Prop. | Eff. | Travel | Travel | Aver. |
| ID  | Crossing       | Flow     | Delay   | Service  | QUE     | UE      | Que   | Stop | Time   | Dist.  | Speed |
|     |                |          |         |          | [Ped    | Dist ]  |       | Rate |        |        |       |
|     |                | ped/h    | sec     |          | ped     | m       |       |      | sec    | m      | m/sec |
| Sou | thEast: Pacifi | c Hwy (S | SE)     |          |         |         |       |      |        |        |       |
| P1  | Full           | 1        | 50.2    | LOS E    | 0.0     | 0.0     | 0.90  | 0.90 | 66.8   | 20.0   | 0.30  |
| Nor | thEast: Hume   | St (NE)  |         |          |         |         |       |      |        |        |       |

| P6 Full            | 286     | 53.5 | LOS E | 0.9 | 0.9 | 0.93 | 0.93 | 70.2 | 20.0 | 0.28 |
|--------------------|---------|------|-------|-----|-----|------|------|------|------|------|
| NorthWest: Pacific | Hwy (N  | W)   |       |     |     |      |      |      |      |      |
| P3 Full            | 189     | 50.6 | LOS E | 0.6 | 0.6 | 0.90 | 0.90 | 67.2 | 20.0 | 0.30 |
| SouthWest: Hume    | St (SW) |      |       |     |     |      |      |      |      |      |
| P4 Full            | 142     | 53.2 | LOS E | 0.5 | 0.5 | 0.93 | 0.93 | 69.9 | 20.0 | 0.29 |
| All Pedestrians    | 619     | 52.6 | LOS E | 0.9 | 0.9 | 0.92 | 0.92 | 69.2 | 20.0 | 0.29 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:19 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

Site: CST04 [CST04 Pacific Hwy / Falcon St / Shirley Rd (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

TCS 765

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 125 seconds (Network Site User-Given Phase Times)

| Vehic  | le M   | ovement   | t Perfo    | orma   | nce          |       |        |       |          |          |          |       |              |                  |       |
|--------|--------|-----------|------------|--------|--------------|-------|--------|-------|----------|----------|----------|-------|--------------|------------------|-------|
| Mov    | Turn   | Mov       | Dem        | nand   | Ar           | rival | Deg.   | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff.         | Aver.            | Aver. |
| ID     |        | Class     | H<br>Total | IOWS   | H<br>I Total | OWS   | Satn   | Delay | Service  | [ \/eh   | Dist 1   | Que   | Stop<br>Rate | No. of<br>Cycles | Speed |
|        |        |           | veh/h      | "<br>% | veh/h        | %     | v/c    | sec   |          | veh      | m        |       | Trate        | Cycles           | km/h  |
| South  | East:  | Pacific H | wy (SE     | )      |              |       |        |       |          |          |          |       |              |                  |       |
| 1      | L2     | All MCs   | 352        | 1.5    | 352          | 1.5   | 0.359  | 18.6  | LOS B    | 9.8      | 69.3     | 0.50  | 0.72         | 0.50             | 28.3  |
| 2      | T1     | All MCs   | 793        | 4.2    | 793          | 4.2   | 0.779  | 40.0  | LOS C    | 22.2     | 161.3    | 0.94  | 0.85         | 0.98             | 10.2  |
| Appro  | ach    |           | 1144       | 3.4    | 1144         | 3.4   | 0.779  | 33.4  | LOS C    | 22.2     | 161.3    | 0.80  | 0.81         | 0.83             | 15.4  |
| East:  | Falco  | n St (E)  |            |        |              |       |        |       |          |          |          |       |              |                  |       |
| 21b    | L3     | All MCs   | 22         | 4.8    | 22           | 4.8   | 0.878  | 19.1  | LOS B    | 18.4     | 130.6    | 0.94  | 0.93         | 1.04             | 7.4   |
| 21a    | L1     | All MCs   | 423        | 1.2    | 423          | 1.2   | *0.878 | 44.6  | LOS D    | 18.4     | 130.6    | 0.94  | 0.93         | 1.04             | 17.0  |
| 23a    | R1     | All MCs   | 336        | 3.4    | 336          | 3.4   | 0.599  | 31.3  | LOS C    | 14.5     | 104.5    | 0.76  | 0.77         | 0.76             | 9.4   |
| Appro  | ach    |           | 781        | 2.3    | 781          | 2.3   | 0.878  | 38.1  | LOS C    | 18.4     | 130.6    | 0.86  | 0.86         | 0.92             | 14.4  |
| North: | Willo  | ughby Ro  | l (N)      |        |              |       |        |       |          |          |          |       |              |                  |       |
| 7      | L2     | All MCs   | 76         | 0.0    | 76           | 0.0   | 0.050  | 3.8   | LOS A    | 0.4      | 2.6      | 0.09  | 0.49         | 0.09             | 36.9  |
| Appro  | ach    |           | 76         | 0.0    | 76           | 0.0   | 0.050  | 3.8   | LOS A    | 0.4      | 2.6      | 0.09  | 0.49         | 0.09             | 36.9  |
| North\ | Nest:  | Pacific H | wy (NV     | V)     |              |       |        |       |          |          |          |       |              |                  |       |
| 7a     | L1     | All MCs   | 436        | 3.9    | 436          | 3.9   | *0.593 | 20.2  | LOS B    | 12.4     | 89.3     | 0.81  | 0.81         | 0.81             | 22.8  |
| 8      | T1     | All MCs   | 692        | 2.4    | 692          | 2.4   | 0.668  | 57.8  | LOS E    | 20.9     | 149.2    | 1.00  | 0.89         | 1.00             | 10.8  |
| Appro  | ach    |           | 1127       | 3.0    | 1127         | 3.0   | 0.668  | 43.2  | LOS D    | 20.9     | 149.2    | 0.93  | 0.86         | 0.93             | 13.5  |
| South  | West   | Shirley R | Rd (SW     | )      |              |       |        |       |          |          |          |       |              |                  |       |
| 10     | L2     | All MCs   | 75         | 1.4    | 75           | 1.4   | *0.534 | 53.3  | LOS D    | 17.6     | 124.2    | 0.93  | 0.81         | 0.93             | 13.0  |
| 12a    | R1     | All MCs   | 455        | 1.2    | 455          | 1.2   | 0.534  | 45.6  | LOS D    | 18.4     | 131.2    | 0.92  | 0.81         | 0.92             | 13.1  |
| 12     | R2     | All MCs   | 156        | 3.4    | 156          | 3.4   | 0.534  | 47.4  | LOS D    | 18.4     | 131.2    | 0.92  | 0.81         | 0.92             | 13.2  |
| Appro  | ach    |           | 685        | 1.7    | 685          | 1.7   | 0.534  | 46.8  | LOS D    | 18.4     | 131.2    | 0.92  | 0.81         | 0.92             | 13.1  |
| All Ve | hicles | i.        | 3814       | 2.7    | 3814         | 2.7   | 0.878  | 39.1  | LOS C    | 22.2     | 161.3    | 0.86  | 0.83         | 0.88             | 14.5  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov     | vement       | Perform        | nance               |                            |                         |              |                      |                |                 |                |
|--------------------|--------------|----------------|---------------------|----------------------------|-------------------------|--------------|----------------------|----------------|-----------------|----------------|
| Mov<br>ID Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE E<br>QUEL<br>[ Ped | BACK OF<br>JE<br>Dist ] | Prop.<br>Que | Eff.<br>Stop<br>Rate | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |

|          | ped/h              | sec  |       | ped | m   |      |      | sec  | m    | m/sec |
|----------|--------------------|------|-------|-----|-----|------|------|------|------|-------|
| SouthEa  | ast: Pacific Hwy ( | SE)  |       |     |     |      |      |      |      |       |
| P1 Ful   | 96                 | 49.5 | LOS E | 0.3 | 0.3 | 0.89 | 0.89 | 66.1 | 20.0 | 0.30  |
| East: Fa | lcon St (E)        |      |       |     |     |      |      |      |      |       |
| P5 Ful   | 231                | 53.4 | LOS E | 0.8 | 0.8 | 0.93 | 0.93 | 70.1 | 20.0 | 0.29  |
| NorthWe  | est: Pacific Hwy ( | NW)  |       |     |     |      |      |      |      |       |
| P3 Ful   | 379                | 50.1 | LOS E | 1.2 | 1.2 | 0.90 | 0.90 | 66.7 | 20.0 | 0.30  |
| SouthW   | est: Shirley Rd (S | SW)  |       |     |     |      |      |      |      |       |
| P4 Ful   | 149                | 53.2 | LOS E | 0.5 | 0.5 | 0.93 | 0.93 | 69.9 | 20.0 | 0.29  |
| All Pede | strians 855        | 51.5 | LOS E | 1.2 | 1.2 | 0.91 | 0.91 | 68.1 | 20.0 | 0.29  |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:19 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

V Site: CST05 [CST05 Clarke St / Oxley St (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

NA Site Category: (None) Give-Way (Two-Way)

| Vehic     | le M   | ovemen       | t Perfo             | orma                 | nce                 |                       |              |                |                     |                    |                      |                |                      |                           |                |
|-----------|--------|--------------|---------------------|----------------------|---------------------|-----------------------|--------------|----------------|---------------------|--------------------|----------------------|----------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F<br>[ Total | nand<br>lows<br>HV ] | Ar<br>Fl<br>[ Total | rival<br>lows<br>HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Bacl<br>[ Veh. | k Of Queue<br>Dist ] | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| South     | East:  | Clarke S     | t (SE)              | /0                   | Ven/m               | /0                    | v/C          | 360            | _                   | ven                |                      | _              | _                    | _                         | NIII/11        |
| 1         | L2     | All MCs      | 49                  | 0.0                  | 49                  | 0.0                   | 0.068        | 4.9            | LOS A               | 0.2                | 1.7                  | 0.27           | 0.53                 | 0.27                      | 32.7           |
| 3a        | R1     | All MCs      | 29                  | 0.0                  | 29                  | 0.0                   | 0.068        | 5.9            | LOS A               | 0.2                | 1.7                  | 0.27           | 0.53                 | 0.27                      | 32.7           |
| Appro     | ach    |              | 79                  | 0.0                  | 79                  | 0.0                   | 0.068        | 5.3            | LOS A               | 0.2                | 1.7                  | 0.27           | 0.53                 | 0.27                      | 32.7           |
| North:    | Oxle   | y St (N)     |                     |                      |                     |                       |              |                |                     |                    |                      |                |                      |                           |                |
| 24a       | L1     | All MCs      | 137                 | 0.0                  | 137                 | 0.0                   | 0.136        | 4.4            | LOS A               | 0.0                | 0.0                  | 0.00           | 0.53                 | 0.00                      | 29.5           |
| 26a       | R1     | All MCs      | 123                 | 0.0                  | 123                 | 0.0                   | 0.136        | 4.1            | LOS A               | 0.0                | 0.0                  | 0.00           | 0.53                 | 0.00                      | 29.5           |
| Appro     | ach    |              | 260                 | 0.0                  | 260                 | 0.0                   | 0.136        | 4.3            | NA                  | 0.0                | 0.0                  | 0.00           | 0.53                 | 0.00                      | 29.5           |
| South     | West   | Oxley St     | t (SW)              |                      |                     |                       |              |                |                     |                    |                      |                |                      |                           |                |
| 10a       | L1     | All MCs      | 176                 | 0.0                  | 176                 | 0.0                   | 0.139        | 2.8            | LOS A               | 0.5                | 3.3                  | 0.22           | 0.54                 | 0.22                      | 23.0           |
| 12        | R2     | All MCs      | 66                  | 0.0                  | 66                  | 0.0                   | 0.139        | 4.9            | LOS A               | 0.5                | 3.3                  | 0.22           | 0.54                 | 0.22                      | 23.0           |
| Appro     | ach    |              | 242                 | 0.0                  | 242                 | 0.0                   | 0.139        | 3.3            | NA                  | 0.5                | 3.3                  | 0.22           | 0.54                 | 0.22                      | 23.0           |
| All Ve    | hicles |              | 581                 | 0.0                  | 581                 | 0.0                   | 0.139        | 4.0            | NA                  | 0.5                | 3.3                  | 0.13           | 0.53                 | 0.13                      | 28.4           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:19 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

V Site: CST06 [CST06 Clarke St / Hume St (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

NA Site Category: (None) Give-Way (Two-Way)

| Vehi      | cle M  | ovemen       | t Perfo                       | orma                      | ince                         |                            |                     |                       |                     |                           |                           |                |                      |                           |                        |
|-----------|--------|--------------|-------------------------------|---------------------------|------------------------------|----------------------------|---------------------|-----------------------|---------------------|---------------------------|---------------------------|----------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Derr<br>F<br>[ Total<br>veh/h | nand<br>Iows<br>HV ]<br>% | Ar<br>Fl<br>[ Total<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | c Of Queue<br>Dist ]<br>m | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | East:  | Clarke S     | t (SE)                        |                           |                              |                            |                     |                       |                     |                           |                           |                |                      |                           |                        |
| 1         | L2     | All MCs      | 29                            | 0.0                       | 29                           | 0.0                        | 0.201               | 5.5                   | LOS A               | 0.9                       | 6.3                       | 0.58           | 0.54                 | 0.58                      | 25.8                   |
| 2         | T1     | All MCs      | 78                            | 0.0                       | 78                           | 0.0                        | 0.201               | 6.5                   | LOS A               | 0.9                       | 6.3                       | 0.58           | 0.54                 | 0.58                      | 25.8                   |
| 23a       | R1     | All MCs      | 31                            | 0.0                       | 31                           | 0.0                        | 0.201               | 3.2                   | LOS A               | 0.9                       | 6.3                       | 0.58           | 0.54                 | 0.58                      | 32.3                   |
| Appro     | bach   |              | 138                           | 0.0                       | 138                          | 0.0                        | 0.201               | 5.5                   | NA                  | 0.9                       | 6.3                       | 0.58           | 0.54                 | 0.58                      | 28.2                   |
| North     | West:  | Clarke S     | t (NW)                        |                           |                              |                            |                     |                       |                     |                           |                           |                |                      |                           |                        |
| 27b       | L3     | All MCs      | 8                             | 0.0                       | 8                            | 0.0                        | 0.413               | 9.4                   | LOS A               | 2.4                       | 16.7                      | 0.73           | 0.85                 | 1.00                      | 29.1                   |
| 8         | T1     | All MCs      | 177                           | 0.0                       | 177                          | 0.0                        | 0.413               | 8.7                   | LOS A               | 2.4                       | 16.7                      | 0.73           | 0.85                 | 1.00                      | 27.5                   |
| 9         | R2     | All MCs      | 18                            | 0.0                       | 18                           | 0.0                        | 0.413               | 21.1                  | LOS B               | 2.4                       | 16.7                      | 0.73           | 0.85                 | 1.00                      | 22.5                   |
| Appro     | bach   |              | 203                           | 0.0                       | 203                          | 0.0                        | 0.413               | 9.9                   | NA                  | 2.4                       | 16.7                      | 0.73           | 0.85                 | 1.00                      | 27.3                   |
| All Ve    | hicles | ;            | 341                           | 0.0                       | 341                          | 0.0                        | 0.413               | 8.1                   | NA                  | 2.4                       | 16.7                      | 0.67           | 0.73                 | 0.83                      | 27.5                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:19 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

## V Site: CST07 [CST07 Clarke St / Willoughby Rd (Site Folder: Block 4 Model - 2024 PM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA Site Category: (None) Give-Way (Two-Way)

| Vehic     | le M    | ovemen       | t Perfo                      | rma                       | nce                         |                            |                     |                       |                     |                           |                                |              |                      |                           |                        |
|-----------|---------|--------------|------------------------------|---------------------------|-----------------------------|----------------------------|---------------------|-----------------------|---------------------|---------------------------|--------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn    | Mov<br>Class | Dem<br>F<br>[ Total<br>veh/h | nand<br>lows<br>HV ]<br>% | Ar<br>F<br>[ Total<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95%<br>Q<br>[ Veh.<br>veh | Back Of<br>ueue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Willc | ughby R      | d (S)                        |                           |                             |                            |                     |                       |                     |                           |                                |              |                      |                           |                        |
| 1         | L2      | All MCs      | 95                           | 0.0                       | 95                          | 0.0                        | 0.192               | 5.6                   | LOS A               | 0.9                       | 6.7                            | 0.37         | 0.37                 | 0.37                      | 30.6                   |
| 2         | T1      | All MCs      | 91                           | 12.8                      | 91                          | 12.8                       | 0.192               | 1.0                   | LOS A               | 0.9                       | 6.7                            | 0.37         | 0.37                 | 0.37                      | 35.5                   |
| Appro     | ach     |              | 185                          | 6.2                       | 185                         | 6.2                        | 0.192               | 3.3                   | NA                  | 0.9                       | 6.7                            | 0.37         | 0.37                 | 0.37                      | 33.5                   |
| North:    | Willo   | ughby Ro     | d (N)                        |                           |                             |                            |                     |                       |                     |                           |                                |              |                      |                           |                        |
| 8         | T1      | All MCs      | 118                          | 4.5                       | 118                         | 4.5                        | 0.176               | 0.9                   | LOS A               | 0.7                       | 5.4                            | 0.31         | 0.27                 | 0.31                      | 36.0                   |
| 9         | R2      | All MCs      | 43                           | 2.4                       | 43                          | 2.4                        | 0.176               | 8.5                   | LOS A               | 0.7                       | 5.4                            | 0.31         | 0.27                 | 0.31                      | 35.1                   |
| Appro     | ach     |              | 161                          | 3.9                       | 161                         | 3.9                        | 0.176               | 2.9                   | NA                  | 0.7                       | 5.4                            | 0.31         | 0.27                 | 0.31                      | 35.8                   |
| West:     | Clark   | e St (W)     |                              |                           |                             |                            |                     |                       |                     |                           |                                |              |                      |                           |                        |
| 10        | L2      | All MCs      | 85                           | 0.0                       | 85                          | 0.0                        | 0.233               | 6.8                   | LOS A               | 0.9                       | 6.1                            | 0.57         | 0.78                 | 0.59                      | 31.6                   |
| 12        | R2      | All MCs      | 82                           | 0.0                       | 82                          | 0.0                        | 0.233               | 7.7                   | LOS A               | 0.9                       | 6.1                            | 0.57         | 0.78                 | 0.59                      | 25.2                   |
| Appro     | ach     |              | 167                          | 0.0                       | 167                         | 0.0                        | 0.233               | 7.2                   | LOS A               | 0.9                       | 6.1                            | 0.57         | 0.78                 | 0.59                      | 29.3                   |
| All Ve    | hicles  |              | 514                          | 3.5                       | 514                         | 3.5                        | 0.233               | 4.5                   | NA                  | 0.9                       | 6.7                            | 0.42         | 0.47                 | 0.43                      | 32.8                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 8:52:29 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

## Site: CST08 [CST08 Albany St / Willoughby Rd (Site Folder: Block 4 Model - 2024 PM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TCS 516

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site User-Given Phase Times)

| Vehic  | le Mo   | ovement  | t Perfo      | rma          | nce           |             |        |       |          |           |                |       |              |                  |       |
|--------|---------|----------|--------------|--------------|---------------|-------------|--------|-------|----------|-----------|----------------|-------|--------------|------------------|-------|
| Mov    | Turn    | Mov      | Dem          | nand         | Ar            | rival       | Deg.   | Aver. | Level of | 95%       | Back Of        | Prop. | Eff.         | Aver.            | Aver. |
| U      |         | Class    | ۲<br>Total آ | IOWS<br>HV 1 | ۲۱<br>Total آ | ows<br>HV 1 | Sath   | Delay | Service  | ي<br>Veh. | ueue<br>Dist 1 | Que   | Stop<br>Rate | NO. OT<br>Cvcles | Speed |
|        |         |          | veh/h        | %            | veh/h         | %           | v/c    | sec   |          | veh       | m              |       |              | - ,              | km/h  |
| South  | : Willo | ughby Ro | d (S)        |              |               |             |        |       |          |           |                |       |              |                  |       |
| 1      | L2      | All MCs  | 56           | 13.2         | 56            | 13.2        | 0.150  | 28.7  | LOS C    | 1.6       | 12.2           | 0.83  | 0.71         | 0.83             | 22.8  |
| 2      | T1      | All MCs  | 94           | 6.7          | 94            | 6.7         | 0.207  | 21.5  | LOS B    | 2.6       | 19.3           | 0.78  | 0.63         | 0.78             | 27.2  |
| 3      | R2      | All MCs  | 7            | 0.0          | 7             | 0.0         | 0.207  | 29.6  | LOS C    | 2.6       | 19.3           | 0.78  | 0.63         | 0.78             | 25.7  |
| Appro  | ach     |          | 157          | 8.7          | 157           | 8.7         | 0.207  | 24.4  | LOS B    | 2.6       | 19.3           | 0.80  | 0.66         | 0.80             | 24.8  |
| East:  | Alban   | y St (E) |              |              |               |             |        |       |          |           |                |       |              |                  |       |
| 4      | L2      | All MCs  | 18           | 0.0          | 18            | 0.0         | 0.223  | 16.2  | LOS B    | 4.1       | 28.8           | 0.57  | 0.50         | 0.57             | 32.7  |
| 5      | T1      | All MCs  | 276          | 0.8          | 276           | 0.8         | 0.447  | 10.1  | LOS A    | 5.6       | 39.6           | 0.63  | 0.56         | 0.63             | 32.4  |
| 6      | R2      | All MCs  | 153          | 0.0          | 153           | 0.0         | *0.447 | 23.6  | LOS B    | 5.6       | 39.6           | 0.83  | 0.75         | 0.83             | 26.3  |
| Appro  | ach     |          | 446          | 0.5          | 446           | 0.5         | 0.447  | 15.0  | LOS B    | 5.6       | 39.6           | 0.70  | 0.62         | 0.70             | 30.0  |
| North: | Willo   | ughby Ro | I (N)        |              |               |             |        |       |          |           |                |       |              |                  |       |
| 7      | L2      | All MCs  | 105          | 0.0          | 105           | 0.0         | 0.120  | 15.7  | LOS B    | 2.0       | 14.1           | 0.59  | 0.69         | 0.59             | 29.0  |
| 8      | T1      | All MCs  | 118          | 6.3          | 118           | 6.3         | 0.437  | 23.6  | LOS B    | 5.3       | 38.3           | 0.88  | 0.77         | 0.88             | 24.5  |
| 9      | R2      | All MCs  | 60           | 1.8          | 60            | 1.8         | *0.437 | 32.7  | LOS C    | 5.3       | 38.3           | 0.88  | 0.77         | 0.88             | 22.9  |
| Appro  | ach     |          | 283          | 3.0          | 283           | 3.0         | 0.437  | 22.6  | LOS B    | 5.3       | 38.3           | 0.77  | 0.74         | 0.77             | 25.5  |
| West:  | Alban   | y St (W) |              |              |               |             |        |       |          |           |                |       |              |                  |       |
| 10     | L2      | All MCs  | 97           | 0.0          | 97            | 0.0         | 0.174  | 24.3  | LOS B    | 2.5       | 17.3           | 0.77  | 0.73         | 0.77             | 24.0  |
| 11     | T1      | All MCs  | 343          | 0.0          | 343           | 0.0         | *0.493 | 19.2  | LOS B    | 9.3       | 64.9           | 0.83  | 0.71         | 0.83             | 27.2  |
| Appro  | ach     |          | 440          | 0.0          | 440           | 0.0         | 0.493  | 20.3  | LOS B    | 9.3       | 64.9           | 0.82  | 0.71         | 0.82             | 26.4  |
| All Ve | hicles  |          | 1326         | 1.8          | 1326          | 1.8         | 0.493  | 19.5  | LOS B    | 9.3       | 64.9           | 0.77  | 0.68         | 0.77             | 27.0  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian I   | Moveme  | ent Perf | ormand | e        |             |               |       |              |        |         |       |
|----------------|---------|----------|--------|----------|-------------|---------------|-------|--------------|--------|---------|-------|
| Mov            | Input   | Dem.     | Aver.  | Level of | AVERAGE     | BACK OF       | Prop. | Eff.         | Travel | Travel  | Aver. |
| D Clossing     | Vol.    | Flow     | Delay  | Service  | QUE<br>[Ped | EUE<br>Dist ] | Que   | Stop<br>Rate | lime   | Dist. S | Speed |
|                | ped/h   | ped/h    | sec    |          | ped         | m             |       |              | sec    | m       | m/sec |
| South: Willoug | ghby Rd | (S)      |        |          |             |               |       |              |        |         |       |
| P1 Full        | 158     | 166      | 28.5   | LOS C    | 0.3         | 0.3           | 0.91  | 0.91         | 45.2   | 20.0    | 0.44  |
| East: Albany S | St (E)  |          |        |          |             |               |       |              |        |         |       |
| P2 Full        | 394     | 415      | 28.8   | LOS C    | 0.8         | 0.8           | 0.92  | 0.92         | 45.5   | 20.0    | 0.44  |

| North: Willoug     | hby Rd (I | N)   |      |       |     |     |      |      |      |      |      |
|--------------------|-----------|------|------|-------|-----|-----|------|------|------|------|------|
| P3 Full            | 153       | 161  | 28.5 | LOS C | 0.3 | 0.3 | 0.91 | 0.91 | 45.2 | 20.0 | 0.44 |
| West: Albany S     | St (W)    |      |      |       |     |     |      |      |      |      |      |
| P4 Full            | 292       | 307  | 28.7 | LOS C | 0.6 | 0.6 | 0.91 | 0.91 | 45.4 | 20.0 | 0.44 |
| All<br>Pedestrians | 997       | 1049 | 28.7 | LOS C | 0.8 | 0.8 | 0.91 | 0.91 | 45.4 | 20.0 | 0.44 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 8:52:30 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

V Site: CST09 [CST09 Albany St / Oxley St (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

■ Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

NA Site Category: (None) Roundabout

| Vehic  | le M   | ovemen    | t Perfo      | orma         | nce         |              |       |       |          |          |          |       |              |        |       |
|--------|--------|-----------|--------------|--------------|-------------|--------------|-------|-------|----------|----------|----------|-------|--------------|--------|-------|
| Mov    | Turn   | Mov       | Dem          | nand         | Ar          | rival        | Deg.  | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff.         | Aver.  | Aver. |
| ID     |        | Class     | H<br>Intel I | lows<br>µ\/1 | <br>  Total | lows<br>µ\/1 | Satn  | Delay | Service  | [ \/eh   | Diet 1   | Que   | Stop<br>Rate | No. of | Speed |
|        |        |           | veh/h        | · · v ]<br>% | veh/h       | %            | v/c   | sec   |          | veh      | m        |       | Trate        | Cycles | km/h  |
| South  | : Oxle | ey St (S) |              |              |             |              |       |       |          |          |          |       |              |        |       |
| 1      | L2     | All MCs   | 60           | 0.0          | 60          | 0.0          | 0.443 | 8.6   | LOS A    | 3.0      | 21.5     | 0.81  | 0.70         | 0.84   | 21.0  |
| 2      | T1     | All MCs   | 155          | 2.0          | 155         | 2.0          | 0.443 | 8.5   | LOS A    | 3.0      | 21.5     | 0.81  | 0.70         | 0.84   | 32.2  |
| 3      | R2     | All MCs   | 74           | 0.0          | 74          | 0.0          | 0.443 | 11.3  | LOS A    | 3.0      | 21.5     | 0.81  | 0.70         | 0.84   | 30.4  |
| 3u     | U      | All MCs   | 1            | 0.0          | 1           | 0.0          | 0.443 | 12.7  | LOS A    | 3.0      | 21.5     | 0.81  | 0.70         | 0.84   | 21.0  |
| Appro  | ach    |           | 289          | 1.1          | 289         | 1.1          | 0.443 | 9.2   | LOS A    | 3.0      | 21.5     | 0.81  | 0.70         | 0.84   | 30.3  |
| East:  | Alban  | y St (E)  |              |              |             |              |       |       |          |          |          |       |              |        |       |
| 4      | L2     | All MCs   | 72           | 0.0          | 72          | 0.0          | 0.824 | 12.3  | LOSA     | 6.8      | 48.6     | 0.86  | 0.93         | 1.12   | 24.9  |
| 5      | T1     | All MCs   | 308          | 3.4          | 308         | 3.4          | 0.824 | 12.3  | LOSA     | 6.8      | 48.6     | 0.86  | 0.93         | 1.12   | 24.9  |
| 6      | R2     | All MCs   | 42           | 0.0          | 42          | 0.0          | 0.824 | 15.0  | LOS B    | 6.8      | 48.6     | 0.86  | 0.93         | 1.12   | 31.4  |
| 6u     | U      | All MCs   | 1            | 0.0          | 1           | 0.0          | 0.824 | 16.4  | LOS B    | 6.8      | 48.6     | 0.86  | 0.93         | 1.12   | 30.7  |
| Appro  | ach    |           | 423          | 2.5          | 423         | 2.5          | 0.824 | 12.6  | LOS A    | 6.8      | 48.6     | 0.86  | 0.93         | 1.12   | 25.9  |
| North: | Oxle   | v St (N)  |              |              |             |              |       |       |          |          |          |       |              |        |       |
| 7      | 12     | All MCs   | 42           | 25           | 42          | 25           | 0.369 | 8.5   | LOSA     | 26       | 18.4     | 0.78  | 0.71         | 0 78   | 34.4  |
| 8      | T1     |           | 116          | 3.6          | 116         | 3.6          | 0.000 | 83    |          | 2.0      | 18.4     | 0.78  | 0.71         | 0.78   | 20.8  |
| 9      | R2     | All MCs   | 103          | 1.0          | 103         | 1.0          | 0.369 | 11 1  | LOSA     | 2.0      | 18.4     | 0.78  | 0.71         | 0.78   | 20.0  |
| 90     | 112    | All MCs   | 100          | 0.0          | 100         | 0.0          | 0.369 | 12.4  | LOSA     | 2.6      | 18.4     | 0.78  | 0.71         | 0.78   | 34.7  |
| Appro  | ach    | 7 11100   | 262          | 2.4          | 262         | 2.4          | 0.369 | 9.5   | LOSA     | 2.6      | 18.4     | 0.78  | 0.71         | 0.78   | 30.9  |
|        |        |           |              |              |             |              |       |       |          |          |          |       |              |        |       |
| West:  | Albar  | ny St (W) |              |              |             |              |       |       |          |          |          |       |              |        |       |
| 10     | L2     | All MCs   | 104          | 0.0          | 104         | 0.0          | 0.579 | 7.4   | LOS A    | 5.4      | 37.6     | 0.78  | 0.64         | 0.81   | 34.0  |
| 11     | T1     | All MCs   | 339          | 0.0          | 339         | 0.0          | 0.579 | 7.2   | LOS A    | 5.4      | 37.6     | 0.78  | 0.64         | 0.81   | 33.8  |
| 12     | R2     | All MCs   | 82           | 0.0          | 82          | 0.0          | 0.579 | 10.1  | LOS A    | 5.4      | 37.6     | 0.78  | 0.64         | 0.81   | 25.4  |
| 12u    | U      | All MCs   | 1            | 0.0          | 1           | 0.0          | 0.579 | 11.4  | LOS A    | 5.4      | 37.6     | 0.78  | 0.64         | 0.81   | 25.4  |
| Appro  | ach    |           | 526          | 0.0          | 526         | 0.0          | 0.579 | 7.7   | LOS A    | 5.4      | 37.6     | 0.78  | 0.64         | 0.81   | 33.1  |
| All Ve | hicles |           | 1501         | 1.3          | 1501        | 1.3          | 0.824 | 9.7   | LOS A    | 6.8      | 48.6     | 0.81  | 0.74         | 0.90   | 30.2  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:19 PM Project: C:Users/WanJ2/OneDrive - AECOM/General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring/400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

V Site: CST10 [CST10 Albany St / Clarke Ln (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

NA Site Category: (None) Give-Way (Two-Way)

| Vehic     | cle M  | ovemen       | t Perfc                       | orma                      | ince                         |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
|-----------|--------|--------------|-------------------------------|---------------------------|------------------------------|----------------------------|---------------------|-----------------------|---------------------|---------------------------|-------------------------|----------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl<br>[ Total<br>veh/h | nand<br>Iows<br>HV ]<br>% | Ar<br>Fl<br>[ Total<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | East:  | Clarke Lr    | n (SE)                        |                           |                              |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 21a       | L1     | All MCs      | 20                            | 0.0                       | 20                           | 0.0                        | 0.049               | 4.8                   | LOS A               | 0.9                       | 6.0                     | 0.42           | 0.57                 | 0.42                      | 30.0                   |
| 23b       | R3     | All MCs      | 4                             | 0.0                       | 4                            | 0.0                        | 0.049               | 14.4                  | LOS A               | 0.9                       | 6.0                     | 0.42           | 0.57                 | 0.42                      | 30.0                   |
| Appro     | ach    |              | 24                            | 0.0                       | 24                           | 0.0                        | 0.049               | 6.5                   | LOS A               | 0.9                       | 6.0                     | 0.42           | 0.57                 | 0.42                      | 30.0                   |
| East:     | Alban  | y St (E)     |                               |                           |                              |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 5         | T1     | All MCs      | 477                           | 2.4                       | 477                          | 2.4                        | 0.125               | 0.0                   | LOS A               | 8.9                       | 63.6                    | 0.00           | 0.00                 | 0.00                      | 50.0                   |
| Appro     | ach    |              | 477                           | 2.4                       | 477                          | 2.4                        | 0.125               | 0.0                   | NA                  | 8.9                       | 63.6                    | 0.00           | 0.00                 | 0.00                      | 50.0                   |
| West:     | Albar  | ny St (W)    |                               |                           |                              |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 11        | T1     | All MCs      | 526                           | 0.0                       | 526                          | 0.0                        | 0.270               | 0.0                   | LOS A               | 0.0                       | 0.0                     | 0.00           | 0.00                 | 0.00                      | 49.9                   |
| Appro     | ach    |              | 526                           | 0.0                       | 526                          | 0.0                        | 0.270               | 0.0                   | NA                  | 0.0                       | 0.0                     | 0.00           | 0.00                 | 0.00                      | 49.9                   |
| All Ve    | hicles |              | 1027                          | 1.1                       | 1027                         | 1.1                        | 0.270               | 0.2                   | NA                  | 8.9                       | 63.6                    | 0.01           | 0.01                 | 0.01                      | 48.5                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:19 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

Site: CST11 [CST11 Oxley St / Clarke Ln (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

■ Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

NA Site Category: (None) Stop (Two-Way)

| Vehicle Movement Performance |        |              |            |              |          |               |              |                |                     |          |          |                |              |                 |                |
|------------------------------|--------|--------------|------------|--------------|----------|---------------|--------------|----------------|---------------------|----------|----------|----------------|--------------|-----------------|----------------|
| Mov<br>ID                    | Turn   | Mov<br>Class | Derr<br>Fl | nand<br>Iows | Ar<br>Fl | rival<br>lows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back | Of Queue | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|                              |        |              | [ Total    | HV]          | [ Total  | HV]           |              |                |                     | [Veh.    | Dist]    |                | Rate         | Cycles          |                |
| South                        | East:  | Clarke L     |            | %            | ven/n    | %             | V/C          | sec            | _                   | ven      | m        | _              | _            | _               | Km/h           |
| Journ                        |        |              |            | ~ ~          | _        | ~ ~           |              |                |                     |          |          |                |              |                 | 07.0           |
| 1                            | L2     | All MCs      | 2          | 0.0          | 2        | 0.0           | 0.010        | 1.1            | LOSA                | 0.0      | 0.2      | 0.32           | 0.84         | 0.32            | 27.3           |
| 2                            | 11     | All MCs      | 1          | 0.0          | 1        | 0.0           | 0.010        | 9.0            | LOS A               | 0.0      | 0.2      | 0.32           | 0.84         | 0.32            | 27.3           |
| 3                            | R2     | All MCs      | 4          | 0.0          | 4        | 0.0           | 0.010        | 9.2            | LOS A               | 0.0      | 0.2      | 0.32           | 0.84         | 0.32            | 27.3           |
| Appro                        | ach    |              | 7          | 0.0          | 7        | 0.0           | 0.010        | 8.8            | LOS A               | 0.0      | 0.2      | 0.32           | 0.84         | 0.32            | 27.3           |
| NorthEast: Oxley St (NE)     |        |              |            |              |          |               |              |                |                     |          |          |                |              |                 |                |
| 5                            | T1     | All MCs      | 165        | 0.0          | 165      | 0.0           | 0.120        | 0.0            | LOS A               | 0.1      | 0.5      | 0.04           | 0.04         | 0.04            | 46.5           |
| 6                            | R2     | All MCs      | 7          | 0.0          | 7        | 0.0           | 0.120        | 4.9            | LOS A               | 0.1      | 0.5      | 0.04           | 0.04         | 0.04            | 46.5           |
| Appro                        | ach    |              | 173        | 0.0          | 173      | 0.0           | 0.120        | 0.2            | NA                  | 0.1      | 0.5      | 0.04           | 0.04         | 0.04            | 46.5           |
| North                        | West:  | Clarke L     | n (NW)     |              |          |               |              |                |                     |          |          |                |              |                 |                |
| 7                            | L2     | All MCs      | 12         | 0.0          | 12       | 0.0           | 0.020        | 5.2            | LOS A               | 0.1      | 0.5      | 0.33           | 0.53         | 0.33            | 24.7           |
| 9                            | R2     | All MCs      | 6          | 0.0          | 6        | 0.0           | 0.020        | 6.4            | LOS A               | 0.1      | 0.5      | 0.33           | 0.53         | 0.33            | 24.7           |
| Appro                        | ach    |              | 18         | 0.0          | 18       | 0.0           | 0.020        | 5.6            | LOS A               | 0.1      | 0.5      | 0.33           | 0.53         | 0.33            | 24.7           |
| South                        | West   | Oxley St     | t (SW)     |              |          |               |              |                |                     |          |          |                |              |                 |                |
| 10                           | L2     | All MCs      | 8          | 0.0          | 8        | 0.0           | 0.121        | 2.8            | LOS A               | 0.0      | 0.0      | 0.00           | 0.02         | 0.00            | 48.1           |
| 11                           | T1     | All MCs      | 226        | 0.0          | 226      | 0.0           | 0.121        | 0.0            | LOS A               | 0.0      | 0.0      | 0.00           | 0.02         | 0.00            | 48.1           |
| Appro                        | ach    |              | 235        | 0.0          | 235      | 0.0           | 0.121        | 0.1            | NA                  | 0.0      | 0.0      | 0.00           | 0.02         | 0.00            | 48.1           |
| All Ve                       | hicles |              | 433        | 0.0          | 433      | 0.0           | 0.121        | 0.5            | NA                  | 0.1      | 0.5      | 0.04           | 0.06         | 0.04            | 42.4           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:19 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

Site: CST12 [CST12 Hume St / Clarke Ln (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site Site Category: (None) Stop (Two-Way)

### Vehicle Movement Performance Deg. Mov Turn Mov Level of 95% Back Of Queue Prop. Demand Arrival Aver. ID Class Satn Delay Service Stop No. of Speed Flows Que [ Total HV ] [ Total HV ] [Veh. Dist ] Rate Cycles % veh/h veh veh/h SouthEast: Clarke Ln (SE) 1 L2 All MCs 7 0.0 7 0.0 0.006 6.7 LOS A 0.0 0.0 0.00 1.00 0.00 28.1 2 T1 All MCs 1 0.0 1 0.0 0.006 LOS A 0.0 0.0 0.00 1.00 0.00 28.1 6.4 Approach 8 0.0 8 0.0 0.006 6.6 LOS A 0.0 0.0 0.00 1.00 0.00 28.1 NorthEast: Hume St (NE) 5 T1 All MCs 46 0.0 46 0.0 0.013 0.0 LOS A 0.0 0.0 0.00 0.03 0.00 38.1 R2 All MCs 3 0.0 LOS A 0.00 6 3 0.0 0.013 34 0.0 0.0 0.00 0.07 36.1 0.00 Approach 49 0.0 49 0.0 0.013 0.2 NA 0.0 0.0 0.00 0.04 38.0 All Vehicles 58 0.0 58 0.0 0.013 1.2 NA 0.0 0.0 0.00 0.18 0.00 33.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:19 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

Site: CST13 [CST13 Pacific Hwy / Alexander St (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

TCS 763

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 125 seconds (Network Site User-Given Phase Times)

| Vehicle Movement Performance |          |                    |                                |                           |                                |                           |                     |                       |                     |                           |                         |              |                      |                           |                        |
|------------------------------|----------|--------------------|--------------------------------|---------------------------|--------------------------------|---------------------------|---------------------|-----------------------|---------------------|---------------------------|-------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID                    | Turn     | Mov<br>Class       | Derr<br>Fl<br>[ Total<br>veh/h | nand<br>lows<br>HV ]<br>% | Ar<br>Fl<br>[ Total ]<br>veh/h | rival<br>ows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| SouthEast: Pacific Hwy (SE)  |          |                    |                                |                           |                                |                           |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 2<br>3a                      | T1<br>R1 | All MCs<br>All MCs | 1034<br>225                    | 3.6<br>3.3                | 1034<br>225                    | 3.6<br>3.3                | * 0.464<br>0.317    | 8.2<br>11.7           | LOS A<br>LOS A      | 10.0<br>4.6               | 72.1<br>33.1            | 0.60<br>0.44 | 0.53<br>0.64         | 0.60<br>0.44              | 35.8<br>31.1           |
| Appro                        | ach      |                    | 1259                           | 3.5                       | 1259                           | 3.5                       | 0.464               | 8.8                   | LOS A               | 10.0                      | 72.1                    | 0.57         | 0.55                 | 0.57                      | 34.9                   |
| North:                       | Alexa    | ander St (         | N)                             |                           |                                |                           |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 24a<br>26b                   | L1<br>R3 | All MCs<br>All MCs | 194<br>111                     | 4.3<br>1.9                | 194<br>111                     | 4.3<br>1.9                | * 0.331<br>* 0.979  | 25.2<br>63.6          | LOS B<br>LOS E      | 6.7<br>8.0                | 48.5<br>57.1            | 0.81<br>1.00 | 0.76<br>0.99         | 0.81<br>1.34              | 22.7<br>5.4            |
| Appro                        | ach      |                    | 304                            | 3.5                       | 304                            | 3.5                       | 0.979               | 39.1                  | LOS C               | 8.0                       | 57.1                    | 0.88         | 0.84                 | 1.00                      | 14.5                   |
| North                        | Nest:    | Pacific H          | wy (NV                         | V)                        |                                |                           |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 7b                           | L3       | All MCs            | 18                             | 0.0                       | 18                             | 0.0                       | 0.077               | 11.5                  | LOS A               | 0.3                       | 3.1                     | 0.20         | 0.41                 | 0.20                      | 31.6                   |
| 8                            | T1       | All MCs            | 851                            | 2.7                       | 851                            | 2.7                       | 0.454               | 5.1                   | LOS A               | 7.5                       | 53.0                    | 0.32         | 0.30                 | 0.32                      | 47.5                   |
| Appro                        | ach      |                    | 868                            | 2.7                       | 868                            | 2.7                       | 0.454               | 5.2                   | LOS A               | 7.5                       | 53.0                    | 0.31         | 0.30                 | 0.31                      | 47.3                   |
| All Ve                       | hicles   |                    | 2432                           | 3.2                       | 2432                           | 3.2                       | 0.979               | 11.3                  | LOS A               | 10.0                      | 72.1                    | 0.52         | 0.50                 | 0.53                      | 33.6                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Movement Performance |          |       |          |                     |         |       |              |        |        |       |  |  |  |
|---------------------------------|----------|-------|----------|---------------------|---------|-------|--------------|--------|--------|-------|--|--|--|
| Mov                             | Dem.     | Aver. | Level of | AVERAGE             | BACK OF | Prop. | Eff.         | Travel | Travel | Aver. |  |  |  |
| ID Crossing                     | Flow     | Delay | Service  | QUEUE<br>[Ped Dist] |         | Que   | Stop<br>Rate | Time   | Dist.  | Speed |  |  |  |
|                                 | ped/h    | sec   |          | ped                 | m       |       |              | sec    | m      | m/sec |  |  |  |
| North: Alexander St (N)         |          |       |          |                     |         |       |              |        |        |       |  |  |  |
| P6 Full                         | 154      | 20.6  | LOS C    | 0.3                 | 0.3     | 0.80  | 0.80         | 37.3   | 20.0   | 0.54  |  |  |  |
| NorthWest: Pacifi               | c Hwy (N | W)    |          |                     |         |       |              |        |        |       |  |  |  |
| P3 Full                         | 126      | 50.4  | LOS E    | 0.4                 | 0.4     | 0.90  | 0.90         | 67.1   | 20.0   | 0.30  |  |  |  |
| All Pedestrians                 | 280      | 34.1  | LOS D    | 0.4                 | 0.4     | 0.84  | 0.84         | 50.7   | 20.0   | 0.39  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:19 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

Site: CST14 [CST14 Falcon St / Alexander St (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

### TCS 764

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 125 seconds (Network Site User-Given Phase Times)

| Vehicle Movement Performance |        |              |           |              |          |               |              |                |                     |          |          |              |              |                 |                |
|------------------------------|--------|--------------|-----------|--------------|----------|---------------|--------------|----------------|---------------------|----------|----------|--------------|--------------|-----------------|----------------|
| Mov<br>ID                    | Turn   | Mov<br>Class | Dem<br>Fl | nand<br>Iows | Ar<br>Fl | rival<br>Iows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back | Of Queue | Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|                              |        |              | [ Total   | HV]          | [ Total  | HV]           | vic          | -<br>          |                     | [Veh.    | Dist ]   |              | Rate         | Cycles          | km/h           |
| South: Alexander St (S)      |        |              |           |              |          | /0            | v/C          | 360            |                     | Ven      |          | _            | _            | _               | NIII/11        |
| 1                            | L2     | All MCs      | 11        | 0.0          | 11       | 0.0           | 0.421        | 68.3           | LOS E               | 8.9      | 64.5     | 1.00         | 0.85         | 1.00            | 5.5            |
| 2                            | T1     | All MCs      | 187       | 3.9          | 187      | 3.9           | 0.468        | 57.7           | LOS E               | 8.9      | 64.5     | 1.00         | 0.84         | 1.00            | 9.3            |
| 3                            | R2     | All MCs      | 45        | 0.0          | 45       | 0.0           | 0.468        | 73.6           | LOS F               | 6.0      | 43.0     | 1.00         | 0.83         | 1.00            | 18.3           |
| Appro                        | ach    |              | 243       | 3.0          | 243      | 3.0           | 0.468        | 61.1           | LOS E               | 8.9      | 64.5     | 1.00         | 0.84         | 1.00            | 11.3           |
| East:                        | Falco  | n St (E)     |           |              |          |               |              |                |                     |          |          |              |              |                 |                |
| 4                            | L2     | All MCs      | 38        | 0.0          | 38       | 0.0           | 0.515        | 28.4           | LOS B               | 15.6     | 111.2    | 0.69         | 0.62         | 0.69            | 31.0           |
| 5                            | T1     | All MCs      | 748       | 2.1          | 748      | 2.1           | 0.515        | 22.6           | LOS B               | 15.6     | 111.2    | 0.69         | 0.61         | 0.69            | 31.3           |
| 6                            | R2     | All MCs      | 8         | 75.0         | 8        | 75.0          | 0.515        | 28.6           | LOS C               | 15.2     | 109.7    | 0.68         | 0.60         | 0.68            | 32.4           |
| Appro                        | ach    |              | 795       | 2.8          | 795      | 2.8           | 0.515        | 22.9           | LOS B               | 15.6     | 111.2    | 0.69         | 0.61         | 0.69            | 31.3           |
| North:                       | Alexa  | ander St (   | N)        |              |          |               |              |                |                     |          |          |              |              |                 |                |
| 7                            | L2     | All MCs      | 34        | 0.0          | 34       | 0.0           | *0.439       | 56.9           | LOS E               | 8.3      | 59.8     | 0.93         | 0.77         | 0.93            | 21.7           |
| 8                            | T1     | All MCs      | 284       | 3.7          | 284      | 3.7           | 0.439        | 47.6           | LOS D               | 8.9      | 64.3     | 0.93         | 0.76         | 0.93            | 6.8            |
| Appro                        | ach    |              | 318       | 3.3          | 318      | 3.3           | 0.439        | 48.6           | LOS D               | 8.9      | 64.3     | 0.93         | 0.76         | 0.93            | 9.1            |
| West:                        | Falco  | on St (W)    |           |              |          |               |              |                |                     |          |          |              |              |                 |                |
| 10                           | L2     | All MCs      | 219       | 1.0          | 219      | 1.0           | *0.355       | 6.8            | LOS A               | 2.7      | 19.4     | 0.10         | 0.36         | 0.10            | 36.3           |
| 11                           | T1     | All MCs      | 768       | 2.2          | 768      | 2.2           | 0.355        | 0.6            | LOS A               | 2.7      | 19.4     | 0.06         | 0.14         | 0.06            | 56.8           |
| Appro                        | ach    |              | 987       | 1.9          | 987      | 1.9           | 0.355        | 2.0            | LOS A               | 2.7      | 19.4     | 0.07         | 0.19         | 0.07            | 53.9           |
| All Ve                       | hicles |              | 2343      | 2.5          | 2343     | 2.5           | 0.515        | 21.5           | LOS B               | 15.6     | 111.2    | 0.49         | 0.48         | 0.49            | 29.8           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Movement Performance |               |              |                |                     |                          |        |              |              |                |                 |                |  |
|---------------------------------|---------------|--------------|----------------|---------------------|--------------------------|--------|--------------|--------------|----------------|-----------------|----------------|--|
| Mov<br>ID                       | ,<br>Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE BACK OF<br>QUEUE |        | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |  |
|                                 |               |              |                |                     | [Ped                     | Dist ] |              | Rate         |                |                 |                |  |
|                                 |               | ped/h        | sec            |                     | ped                      | m      |              |              | sec            | m               | m/sec          |  |
| Sou                             | th: Alexander | St (S)       |                |                     |                          |        |              |              |                |                 |                |  |
| P1                              | Full          | 169          | 52.4           | LOS E               | 0.6                      | 0.6    | 0.92         | 0.92         | 69.0           | 20.0            | 0.29           |  |
| East: Falcon St (E)             |               |              |                |                     |                          |        |              |              |                |                 |                |  |

| P2 Full                 | 81  | 52.2 | LOS E | 0.3 | 0.3 | 0.92 | 0.92 | 68.8 | 20.0 | 0.29 |  |  |  |
|-------------------------|-----|------|-------|-----|-----|------|------|------|------|------|--|--|--|
| North: Alexander St (N) |     |      |       |     |     |      |      |      |      |      |  |  |  |
| P3 Full                 | 163 | 52.3 | LOS E | 0.5 | 0.5 | 0.92 | 0.92 | 69.0 | 20.0 | 0.29 |  |  |  |
| West: Falcon St (W)     |     |      |       |     |     |      |      |      |      |      |  |  |  |
| P4 Full                 | 271 | 52.6 | LOS E | 0.9 | 0.9 | 0.92 | 0.92 | 69.2 | 20.0 | 0.29 |  |  |  |
| All Pedestrians         | 684 | 52.4 | LOS E | 0.9 | 0.9 | 0.92 | 0.92 | 69.1 | 20.0 | 0.29 |  |  |  |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:19 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9
Site: CST01 [CST01 Pacific Hwy / Albany St (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

### TCS 768

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 125 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfc              | orma                 | nce                 |                       |              |                |                     |                    |                    |              |                      |                           |                |
|-----------|--------|--------------|----------------------|----------------------|---------------------|-----------------------|--------------|----------------|---------------------|--------------------|--------------------|--------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl<br>[ Total | nand<br>lows<br>HV ] | Ar<br>Fl<br>[ Total | rival<br>lows<br>HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh. | Of Queue<br>Dist ] | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
|           |        |              | veh/h                | %                    | veh/h               | %                     | v/c          | sec            |                     | veh                | m                  |              |                      |                           | km/h           |
| South     | East:  | Pacific H    | wy (SE               | )                    |                     |                       |              |                |                     |                    |                    |              |                      |                           |                |
| 22        | T1     | All MCs      | 907                  | 3.7                  | 907                 | 3.7                   | 0.343        | 1.3            | LOS A               | 2.5                | 17.7               | 0.10         | 0.09                 | 0.10                      | 56.0           |
| 23b       | R3     | All MCs      | 153                  | 2.1                  | 153                 | 2.1                   | *0.856       | 76.3           | LOS F               | 10.1               | 71.9               | 1.00         | 0.91                 | 1.17                      | 6.6            |
| Appro     | ach    |              | 1060                 | 3.5                  | 1060                | 3.5                   | 0.856        | 12.1           | LOS A               | 10.1               | 71.9               | 0.23         | 0.21                 | 0.25                      | 34.9           |
| East:     | Alban  | y St (E)     |                      |                      |                     |                       |              |                |                     |                    |                    |              |                      |                           |                |
| 4b        | L3     | All MCs      | 49                   | 0.0                  | 49                  | 0.0                   | *0.726       | 68.5           | LOS E               | 7.0                | 49.0               | 1.00         | 0.87                 | 1.07                      | 2.7            |
| 6a        | R1     | All MCs      | 422                  | 0.7                  | 422                 | 0.7                   | 0.726        | 55.4           | LOS D               | 7.0                | 49.0               | 1.00         | 0.86                 | 1.05                      | 10.1           |
| Appro     | ach    |              | 472                  | 0.7                  | 472                 | 0.7                   | 0.726        | 56.8           | LOS E               | 7.0                | 49.0               | 1.00         | 0.87                 | 1.05                      | 9.4            |
| North     | Nest:  | Pacific H    | wy (NV               | V)                   |                     |                       |              |                |                     |                    |                    |              |                      |                           |                |
| 27a       | L1     | All MCs      | 284                  | 0.4                  | 284                 | 0.4                   | 0.242        | 9.5            | LOS A               | 3.8                | 26.6               | 0.24         | 0.63                 | 0.24                      | 30.6           |
| 28        | T1     | All MCs      | 815                  | 2.7                  | 815                 | 2.7                   | *0.394       | 9.8            | LOS A               | 9.4                | 67.3               | 0.41         | 0.36                 | 0.41                      | 30.3           |
| Appro     | ach    |              | 1099                 | 2.1                  | 1099                | 2.1                   | 0.394        | 9.7            | LOS A               | 9.4                | 67.3               | 0.37         | 0.43                 | 0.37                      | 30.4           |
| All Ve    | hicles |              | 2631                 | 2.4                  | 2631                | 2.4                   | 0.856        | 19.1           | LOS B               | 10.1               | 71.9               | 0.42         | 0.42                 | 0.44                      | 23.9           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov     | ement                                                         | Perform | nance    |              |              |       |              |        |        |       |
|--------------------|---------------------------------------------------------------|---------|----------|--------------|--------------|-------|--------------|--------|--------|-------|
| Mov                | Dem.                                                          | Aver.   | Level of | AVERAGE      | BACK OF      | Prop. | Eff.         | Travel | Travel | Aver. |
| ID Crossing        | Dem. Aver. A<br>9 Flow Delay<br>ped/h sec<br>Pacific Hwy (SE) |         | Service  | QUE<br>[ Ped | UE<br>Dist ] | Que   | Stop<br>Rate | Time   | Dist.  | Speed |
|                    | ped/h                                                         | sec     |          | ped          | m            |       |              | sec    | m      | m/sec |
| SouthEast: Pacific | : Hwy (S                                                      | E)      |          |              |              |       |              |        |        |       |
| P5 Full            | 284                                                           | 50.8    | LOS E    | 0.9          | 0.9          | 0.91  | 0.91         | 217.4  | 200.0  | 0.92  |
| East: Albany St (E | )                                                             |         |          |              |              |       |              |        |        |       |
| P2 Full            | 253                                                           | 50.7    | LOS E    | 0.8          | 0.8          | 0.91  | 0.91         | 67.4   | 20.0   | 0.30  |
| All Pedestrians    | 537                                                           | 50.7    | LOS E    | 0.9          | 0.9          | 0.91  | 0.91         | 146.8  | 115.3  | 0.79  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:28 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

Site: CST02 [CST02 Pacific Hwy / Oxley St (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

### TCS 767

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 125 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfc   | orma         | nce      |               |              |                |                     |          |          |                |              |                 |                |
|-----------|--------|--------------|-----------|--------------|----------|---------------|--------------|----------------|---------------------|----------|----------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl | nand<br>Iows | Ar<br>Fl | rival<br>lows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back | Of Queue | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total   | HV ]         | [ Total  | HV ]          | vio          |                |                     | [Veh.    | Dist ]   |                | Rate         | Cycles          | km/b           |
| South     | East:  | Pacific H    | wv (SE    | )            | ven/n    | /0            | v/C          | 366            |                     | VEIT     | 111      | _              | _            |                 | KI11/11        |
| 1         | L2     | All MCs      | 118       | ,<br>1.8     | 118      | 1.8           | 0.107        | 9.9            | LOS A               | 1.4      | 9.6      | 0.20           | 0.61         | 0.20            | 22.2           |
| 2         | T1     | All MCs      | 906       | 3.7          | 906      | 3.7           | *0.349       | 2.8            | LOSA                | 5.1      | 36.6     | 0.19           | 0.17         | 0.19            | 43.7           |
| Appro     | ach    |              | 1024      | 3.5          | 1024     | 3.5           | 0.349        | 3.6            | LOS A               | 5.1      | 36.6     | 0.19           | 0.22         | 0.19            | 37.5           |
| North     | East:  | Oxley St     | (NE)      |              |          |               |              |                |                     |          |          |                |              |                 |                |
| 4         | L2     | All MCs      | 116       | 1.8          | 116      | 1.8           | 0.318        | 48.9           | LOS D               | 5.7      | 40.8     | 0.90           | 0.77         | 0.90            | 2.8            |
| 5         | T1     | All MCs      | 77        | 1.4          | 77       | 1.4           | 0.200        | 45.0           | LOS D               | 3.9      | 27.7     | 0.87           | 0.68         | 0.87            | 8.1            |
| Appro     | ach    |              | 193       | 1.6          | 193      | 1.6           | 0.318        | 47.3           | LOS D               | 5.7      | 40.8     | 0.89           | 0.73         | 0.89            | 5.0            |
| North     | Nest:  | Pacific H    | lwy (NV   | V)           |          |               |              |                |                     |          |          |                |              |                 |                |
| 7         | L2     | All MCs      | 65        | 3.2          | 65       | 3.2           | 0.237        | 24.0           | LOS B               | 7.8      | 56.2     | 0.54           | 0.50         | 0.54            | 24.1           |
| 8         | T1     | All MCs      | 799       | 2.5          | 799      | 2.5           | 0.237        | 10.6           | LOS A               | 8.9      | 63.8     | 0.51           | 0.40         | 0.51            | 27.6           |
| Appro     | ach    |              | 864       | 2.6          | 864      | 2.6           | 0.237        | 11.6           | LOS A               | 8.9      | 63.8     | 0.51           | 0.41         | 0.51            | 27.3           |
| South     | West   | Oxley S      | t (SW)    |              |          |               |              |                |                     |          |          |                |              |                 |                |
| 10        | L2     | All MCs      | 154       | 2.1          | 154      | 2.1           | *0.529       | 57.5           | LOS E               | 8.8      | 62.5     | 0.97           | 0.80         | 0.97            | 5.1            |
| 11        | T1     | All MCs      | 102       | 0.0          | 102      | 0.0           | 0.262        | 47.0           | LOS D               | 5.3      | 37.0     | 0.89           | 0.73         | 0.89            | 6.6            |
| 12        | R2     | All MCs      | 99        | 1.1          | 99       | 1.1           | 0.489        | 58.8           | LOS E               | 5.7      | 40.5     | 0.96           | 0.79         | 0.96            | 5.1            |
| Appro     | ach    |              | 355       | 1.2          | 355      | 1.2           | 0.529        | 54.8           | LOS D               | 8.8      | 62.5     | 0.94           | 0.78         | 0.94            | 5.5            |
| All Ve    | hicles |              | 2436      | 2.7          | 2436     | 2.7           | 0.529        | 17.4           | LOS B               | 8.9      | 63.8     | 0.47           | 0.41         | 0.47            | 18.2           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pe  | destrian Mov    | vement   | Perform | nance    |         |         |       |      |        |        |       |
|-----|-----------------|----------|---------|----------|---------|---------|-------|------|--------|--------|-------|
| Mo  |                 | Dem.     | Aver.   | Level of | AVERAGE | BACK OF | Prop. | Eff. | Travel | Travel | Aver. |
| ID  | Crossing        | Flow     | Delay   | Service  | QUE     | UE      | Que   | Stop | Time   | Dist.  | Speed |
|     |                 | 17       |         |          | [ Ped   | Dist J  |       | Rate |        |        |       |
|     |                 | ped/h    | sec     |          | ped     | m       |       |      | sec    | m      | m/sec |
| Sou | ithEast: Pacifi | c Hwy (S | SE)     |          |         |         |       |      |        |        |       |
| P1  | Full            | 1        | 50.2    | LOS E    | 0.0     | 0.0     | 0.90  | 0.90 | 66.8   | 20.0   | 0.30  |
| Nor | thEast: Oxley   | St (NE)  |         |          |         |         |       |      |        |        |       |

| P2 Full            | 486     | 51.2 | LOS E | 1.6 | 1.6 | 0.91 | 0.91 | 67.9 | 20.0 | 0.29 |
|--------------------|---------|------|-------|-----|-----|------|------|------|------|------|
| NorthWest: Pacific | Hwy (N  | N)   |       |     |     |      |      |      |      |      |
| P3 Full            | 259     | 50.7 | LOS E | 0.8 | 0.8 | 0.91 | 0.91 | 67.4 | 20.0 | 0.30 |
| SouthWest: Oxley   | St (SW) |      |       |     |     |      |      |      |      |      |
| P4 Full            | 201     | 50.6 | LOS E | 0.6 | 0.6 | 0.90 | 0.90 | 67.3 | 20.0 | 0.30 |
| All Pedestrians    | 947     | 50.9 | LOS E | 1.6 | 1.6 | 0.91 | 0.91 | 67.6 | 20.0 | 0.30 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:28 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

Site: CST03 [CST03 Pacific Hwy / Hume St (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

### TCS 766

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 125 seconds (Network Site User-Given Phase Times)

| Vehic     | cle M  | ovement      | t Perfc          | orma         | nce              |              |              |                |                     |               |             |                |              |                 |                |
|-----------|--------|--------------|------------------|--------------|------------------|--------------|--------------|----------------|---------------------|---------------|-------------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl        | nand<br>lows | Ar<br>Fl         | rival<br>ows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back      | Of Queue    | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | l Iotal<br>veh/h | HV J<br>%    | l Iotal<br>veh/h | HV J<br>%    | v/c          | sec            |                     | [ Veh.<br>veh | Dist J<br>m |                | Rate         | Cycles          | km/h           |
| South     | East:  | Pacific H    | wy (SE           | )            |                  |              |              |                |                     |               |             |                |              |                 |                |
| 1         | L2     | All MCs      | 31               | 0.0          | 31               | 0.0          | 0.084        | 14.2           | LOS A               | 1.9           | 13.9        | 0.30           | 0.36         | 0.30            | 31.0           |
| 2         | T1     | All MCs      | 957              | 3.7          | 957              | 3.7          | *0.331       | 6.8            | LOS A               | 9.2           | 66.4        | 0.35           | 0.32         | 0.35            | 41.8           |
| Appro     | ach    |              | 987              | 3.6          | 987              | 3.6          | 0.331        | 7.0            | LOS A               | 9.2           | 66.4        | 0.35           | 0.32         | 0.35            | 41.2           |
| North     | West:  | Pacific H    | wy (NV           | V)           |                  |              |              |                |                     |               |             |                |              |                 |                |
| 8         | T1     | All MCs      | 1014             | 2.3          | 1014             | 2.3          | 0.321        | 5.3            | LOS A               | 9.0           | 63.9        | 0.35           | 0.31         | 0.35            | 35.2           |
| Appro     | ach    |              | 1014             | 2.3          | 1014             | 2.3          | 0.321        | 5.3            | LOS A               | 9.0           | 63.9        | 0.35           | 0.31         | 0.35            | 35.2           |
| South     | West:  | Hume St      | (SW)             |              |                  |              |              |                |                     |               |             |                |              |                 |                |
| 10        | L2     | All MCs      | 67               | 0.0          | 67               | 0.0          | *0.349       | 62.4           | LOS E               | 3.9           | 27.6        | 0.97           | 0.76         | 0.97            | 4.5            |
| 12        | R2     | All MCs      | 18               | 5.9          | 18               | 5.9          | 0.075        | 55.9           | LOS D               | 1.0           | 7.1         | 0.90           | 0.69         | 0.90            | 5.1            |
| Appro     | ach    |              | 85               | 1.2          | 85               | 1.2          | 0.349        | 61.0           | LOS E               | 3.9           | 27.6        | 0.96           | 0.75         | 0.96            | 4.6            |
| All Ve    | hicles |              | 2086             | 2.9          | 2086             | 2.9          | 0.349        | 8.4            | LOS A               | 9.2           | 66.4        | 0.37           | 0.33         | 0.37            | 33.4           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pec   | lestrian Mov   | vement   | Perforr | nance    |              |               |       |              |        |        |       |
|-------|----------------|----------|---------|----------|--------------|---------------|-------|--------------|--------|--------|-------|
| Mov   | ·              | Dem.     | Aver.   | Level of | AVERAGE      | BACK OF       | Prop. | Eff.         | Travel | Travel | Aver. |
| ID    | Crossing       | Flow     | Delay   | Service  | QUI<br>[ Ped | EUE<br>Dist ] | Que   | Stop<br>Rate | Time   | Dist.  | Speed |
|       |                | ped/h    | sec     |          | ped          | m             |       |              | sec    | m      | m/sec |
| Sou   | thEast: Pacifi | c Hwy (S | SE)     |          |              |               |       |              |        |        |       |
| P1    | Full           | 1        | 50.2    | LOS E    | 0.0          | 0.0           | 0.90  | 0.90         | 66.8   | 20.0   | 0.30  |
| Nor   | thWest: Pacifi | c Hwy (N | W)      |          |              |               |       |              |        |        |       |
| P3    | Full           | 115      | 50.4    | LOS E    | 0.4          | 0.4           | 0.90  | 0.90         | 67.1   | 20.0   | 0.30  |
| Sou   | thWest: Hum    | e St (SW | ')      |          |              |               |       |              |        |        |       |
| P4    | Full           | 81       | 53.1    | LOS E    | 0.3          | 0.3           | 0.92  | 0.92         | 69.7   | 20.0   | 0.29  |
| All F | Pedestrians    | 197      | 51.5    | LOS E    | 0.4          | 0.4           | 0.91  | 0.91         | 68.2   | 20.0   | 0.29  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:28 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

Site: CST04 [CST04 Pacific Hwy / Falcon St / Shirley Rd (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

TCS 765

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 125 seconds (Network Site User-Given Phase Times)

| Vehic  | le M   | ovement   | t Perfo    | orma         | nce          |       |        |       |          |          |          |       |              |                  |       |
|--------|--------|-----------|------------|--------------|--------------|-------|--------|-------|----------|----------|----------|-------|--------------|------------------|-------|
| Mov    | Turn   | Mov       | Dem        | nand         | Ar           | rival | Deg.   | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff.         | Aver.            | Aver. |
| ID     |        | Class     | H<br>Total | lows<br>H\/1 | H<br>I Total | IOWS  | Satn   | Delay | Service  | [\/eh    | Dist 1   | Que   | Stop<br>Rate | No. of<br>Cycles | Speed |
|        |        |           | veh/h      | %            | veh/h        | %     | v/c    | sec   |          | veh      | m        |       | T tato       | Cycles           | km/h  |
| South  | East:  | Pacific H | wy (SE     | )            |              |       |        |       |          |          |          |       |              |                  |       |
| 1      | L2     | All MCs   | 306        | 1.0          | 306          | 1.0   | 0.302  | 17.8  | LOS B    | 8.1      | 57.3     | 0.47  | 0.71         | 0.47             | 28.8  |
| 2      | T1     | All MCs   | 565        | 4.5          | 565          | 4.5   | 0.557  | 38.2  | LOS C    | 14.5     | 105.3    | 0.87  | 0.74         | 0.87             | 10.6  |
| Appro  | ach    |           | 872        | 3.3          | 872          | 3.3   | 0.557  | 31.1  | LOS C    | 14.5     | 105.3    | 0.73  | 0.73         | 0.73             | 16.7  |
| East:  | Falco  | n St (E)  |            |              |              |       |        |       |          |          |          |       |              |                  |       |
| 21b    | L3     | All MCs   | 12         | 9.1          | 12           | 9.1   | 0.915  | 25.0  | LOS B    | 18.5     | 130.6    | 0.99  | 0.98         | 1.16             | 6.3   |
| 21a    | L1     | All MCs   | 355        | 0.6          | 355          | 0.6   | *0.915 | 52.7  | LOS D    | 18.5     | 130.6    | 0.99  | 0.98         | 1.16             | 15.0  |
| 23a    | R1     | All MCs   | 359        | 2.9          | 359          | 2.9   | 0.672  | 34.1  | LOS C    | 16.8     | 120.9    | 0.82  | 0.80         | 0.82             | 8.7   |
| Appro  | ach    |           | 725        | 1.9          | 725          | 1.9   | 0.915  | 43.1  | LOS D    | 18.5     | 130.6    | 0.90  | 0.89         | 0.99             | 12.7  |
| North: | Willo  | ughby Ro  | l (N)      |              |              |       |        |       |          |          |          |       |              |                  |       |
| 7      | L2     | All MCs   | 92         | 0.0          | 92           | 0.0   | 0.060  | 3.8   | LOS A    | 0.4      | 2.9      | 0.08  | 0.48         | 0.08             | 37.0  |
| Appro  | ach    |           | 92         | 0.0          | 92           | 0.0   | 0.060  | 3.8   | LOS A    | 0.4      | 2.9      | 0.08  | 0.48         | 0.08             | 37.0  |
| North  | West:  | Pacific H | wy (NV     | V)           |              |       |        |       |          |          |          |       |              |                  |       |
| 7a     | L1     | All MCs   | 408        | 3.1          | 408          | 3.1   | *0.575 | 18.6  | LOS B    | 11.0     | 78.7     | 0.75  | 0.78         | 0.75             | 23.9  |
| 8      | T1     | All MCs   | 623        | 1.9          | 623          | 1.9   | 0.665  | 53.1  | LOS D    | 20.3     | 144.4    | 1.00  | 0.87         | 1.00             | 11.6  |
| Appro  | ach    |           | 1032       | 2.3          | 1032         | 2.3   | 0.665  | 39.4  | LOS C    | 20.3     | 144.4    | 0.90  | 0.83         | 0.90             | 14.5  |
| South  | West   | Shirley F | Rd (SW     | )            |              |       |        |       |          |          |          |       |              |                  |       |
| 10     | L2     | All MCs   | 63         | 0.0          | 63           | 0.0   | *0.647 | 59.0  | LOS E    | 16.6     | 116.1    | 0.96  | 0.83         | 0.96             | 12.7  |
| 12a    | R1     | All MCs   | 447        | 0.0          | 447          | 0.0   | 0.647  | 46.4  | LOS D    | 18.7     | 131.8    | 0.95  | 0.83         | 0.95             | 12.9  |
| 12     | R2     | All MCs   | 137        | 1.5          | 137          | 1.5   | 0.647  | 47.9  | LOS D    | 18.7     | 131.8    | 0.94  | 0.83         | 0.94             | 13.1  |
| Appro  | ach    |           | 647        | 0.3          | 647          | 0.3   | 0.647  | 47.9  | LOS D    | 18.7     | 131.8    | 0.95  | 0.83         | 0.95             | 12.9  |
| All Ve | hicles |           | 3367       | 2.0          | 3367         | 2.0   | 0.915  | 38.7  | LOS C    | 20.3     | 144.4    | 0.84  | 0.81         | 0.86             | 14.8  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian Mov     | vement       | Perform        | nance               |                            |                         |              |                      |                |                 |                |
|--------------------|--------------|----------------|---------------------|----------------------------|-------------------------|--------------|----------------------|----------------|-----------------|----------------|
| Mov<br>ID Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE E<br>QUEL<br>[ Ped | BACK OF<br>JE<br>Dist ] | Prop.<br>Que | Eff.<br>Stop<br>Rate | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |

|            | ped/h             | sec  |       | ped | m   |      |      | sec  | m    | m/sec |
|------------|-------------------|------|-------|-----|-----|------|------|------|------|-------|
| SouthEas   | t: Pacific Hwy (  | SE)  |       |     |     |      |      |      |      |       |
| P1 Full    | 79                | 49.4 | LOS E | 0.2 | 0.2 | 0.89 | 0.89 | 66.1 | 20.0 | 0.30  |
| East: Falo | con St (E)        |      |       |     |     |      |      |      |      |       |
| P5 Full    | 204               | 53.4 | LOS E | 0.7 | 0.7 | 0.93 | 0.93 | 70.0 | 20.0 | 0.29  |
| NorthWes   | st: Pacific Hwy ( | NW)  |       |     |     |      |      |      |      |       |
| P3 Full    | 341               | 50.0 | LOS E | 1.1 | 1.1 | 0.90 | 0.90 | 66.7 | 20.0 | 0.30  |
| SouthWe    | st: Shirley Rd (S | SW)  |       |     |     |      |      |      |      |       |
| P4 Full    | 81                | 53.1 | LOS E | 0.3 | 0.3 | 0.92 | 0.92 | 69.7 | 20.0 | 0.29  |
| All Pedes  | trians 705        | 51.3 | LOS E | 1.1 | 1.1 | 0.91 | 0.91 | 67.9 | 20.0 | 0.29  |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:28 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

V Site: CST05 [CST05 Clarke St / Oxley St (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

NA Site Category: (None) Give-Way (Two-Way)

| Vehic     | le M   | ovemen       | t Perfc              | orma                 | nce                   |                       |              |                |                     |                    |                      |                |                      |                           |                |
|-----------|--------|--------------|----------------------|----------------------|-----------------------|-----------------------|--------------|----------------|---------------------|--------------------|----------------------|----------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl<br>[ Total | nand<br>lows<br>HV ] | Ar<br>Fl<br>[ Total ] | rival<br>lows<br>HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Bacl<br>[ Veh. | k Of Queue<br>Dist ] | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| Oth       | E t.   |              | veh/h                | %                    | veh/h                 | %                     | V/C          | sec            |                     | veh                | m                    |                |                      |                           | km/h           |
| South     | East:  | Clarke S     | t (SE)               |                      |                       |                       |              |                |                     |                    |                      |                |                      |                           |                |
| 1         | L2     | All MCs      | 38                   | 0.0                  | 38                    | 0.0                   | 0.076        | 5.0            | LOS A               | 0.3                | 1.8                  | 0.32           | 0.55                 | 0.32                      | 32.5           |
| 3a        | R1     | All MCs      | 42                   | 0.0                  | 42                    | 0.0                   | 0.076        | 5.7            | LOS A               | 0.3                | 1.8                  | 0.32           | 0.55                 | 0.32                      | 32.5           |
| Appro     | ach    |              | 80                   | 0.0                  | 80                    | 0.0                   | 0.076        | 5.4            | LOS A               | 0.3                | 1.8                  | 0.32           | 0.55                 | 0.32                      | 32.5           |
| North:    | Oxle   | y St (N)     |                      |                      |                       |                       |              |                |                     |                    |                      |                |                      |                           |                |
| 24a       | L1     | All MCs      | 127                  | 0.0                  | 127                   | 0.0                   | 0.154        | 4.4            | LOS A               | 0.0                | 0.0                  | 0.00           | 0.53                 | 0.00                      | 29.6           |
| 26a       | R1     | All MCs      | 156                  | 1.4                  | 156                   | 1.4                   | 0.154        | 4.1            | LOS A               | 0.0                | 0.0                  | 0.00           | 0.53                 | 0.00                      | 29.6           |
| Appro     | ach    |              | 283                  | 0.7                  | 283                   | 0.7                   | 0.154        | 4.2            | NA                  | 0.0                | 0.0                  | 0.00           | 0.53                 | 0.00                      | 29.6           |
| South     | West:  | Oxley St     | t (SW)               |                      |                       |                       |              |                |                     |                    |                      |                |                      |                           |                |
| 10a       | L1     | All MCs      | 123                  | 1.7                  | 123                   | 1.7                   | 0.106        | 2.8            | LOS A               | 0.4                | 2.7                  | 0.25           | 0.54                 | 0.25                      | 22.7           |
| 12        | R2     | All MCs      | 56                   | 0.0                  | 56                    | 0.0                   | 0.106        | 4.9            | LOS A               | 0.4                | 2.7                  | 0.25           | 0.54                 | 0.25                      | 22.7           |
| Appro     | ach    |              | 179                  | 1.2                  | 179                   | 1.2                   | 0.106        | 3.4            | NA                  | 0.4                | 2.7                  | 0.25           | 0.54                 | 0.25                      | 22.7           |
| All Ve    | hicles |              | 542                  | 0.8                  | 542                   | 0.8                   | 0.154        | 4.1            | NA                  | 0.4                | 2.7                  | 0.13           | 0.54                 | 0.13                      | 28.8           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:28 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

V Site: CST06 [CST06 Clarke St / Hume St (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

NA Site Category: (None) Give-Way (Two-Way)

| Vehic     | le M   | ovemen       | t Perfo                      | orma                      | nce                          |                            |                     |                       |                     |                           |                         |              |                      |                           |                        |
|-----------|--------|--------------|------------------------------|---------------------------|------------------------------|----------------------------|---------------------|-----------------------|---------------------|---------------------------|-------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F<br>[ Total<br>veh/h | nand<br>Iows<br>HV ]<br>% | Ar<br>Fl<br>[ Total<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | East:  | Clarke S     | t (SE)                       |                           |                              |                            |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 21        | L2     | All MCs      | 1                            | 0.0                       | 1                            | 0.0                        | 0.053               | 3.4                   | LOS A               | 0.1                       | 0.8                     | 0.12         | 0.13                 | 0.12                      | 19.5                   |
| 2         | T1     | All MCs      | 80                           | 0.0                       | 80                           | 0.0                        | 0.053               | 0.0                   | LOS A               | 0.1                       | 0.8                     | 0.12         | 0.13                 | 0.12                      | 36.4                   |
| 23a       | R1     | All MCs      | 18                           | 0.0                       | 18                           | 0.0                        | 0.053               | 3.8                   | LOS A               | 0.1                       | 0.8                     | 0.12         | 0.13                 | 0.12                      | 37.4                   |
| Appro     | ach    |              | 99                           | 0.0                       | 99                           | 0.0                        | 0.053               | 0.7                   | NA                  | 0.1                       | 0.8                     | 0.12         | 0.13                 | 0.12                      | 36.4                   |
| North     | West:  | Clarke S     | t (NW)                       |                           |                              |                            |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 27b       | L3     | All MCs      | 9                            | 0.0                       | 9                            | 0.0                        | 0.095               | 4.1                   | LOS A               | 0.0                       | 0.1                     | 0.00         | 0.03                 | 0.00                      | 38.3                   |
| 8         | T1     | All MCs      | 173                          | 0.0                       | 173                          | 0.0                        | 0.095               | 0.0                   | LOS A               | 0.0                       | 0.1                     | 0.00         | 0.03                 | 0.00                      | 39.5                   |
| 29        | R2     | All MCs      | 1                            | 0.0                       | 1                            | 0.0                        | 0.095               | 3.9                   | LOS A               | 0.0                       | 0.1                     | 0.00         | 0.03                 | 0.00                      | 20.4                   |
| Appro     | ach    |              | 183                          | 0.0                       | 183                          | 0.0                        | 0.095               | 0.2                   | NA                  | 0.0                       | 0.1                     | 0.00         | 0.03                 | 0.00                      | 39.3                   |
| All Ve    | hicles | ;            | 282                          | 0.0                       | 282                          | 0.0                        | 0.095               | 0.4                   | NA                  | 0.1                       | 0.8                     | 0.05         | 0.06                 | 0.05                      | 38.6                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:28 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

### V Site: CST07 [CST07 Clarke St / Willoughby Rd (Site Folder: Block 4 Model - 2024 Weekend Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA Site Category: (None) Give-Way (Two-Way)

| Vehic     | le M    | ovemen       | t Perfo                      | rma                       | nce                            |                            |                     |                       |                     |                            |                                |              |                      |                           |                        |
|-----------|---------|--------------|------------------------------|---------------------------|--------------------------------|----------------------------|---------------------|-----------------------|---------------------|----------------------------|--------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn    | Mov<br>Class | Dem<br>F<br>[ Total<br>veh/h | nand<br>Iows<br>HV ]<br>% | Ar<br>Fl<br>[ Total ]<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% I<br>Qu<br>Veh.<br>veh | Back Of<br>Jeue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Willo | oughby R     | d (S)                        |                           |                                |                            |                     |                       |                     |                            |                                |              |                      |                           |                        |
| 1         | L2      | All MCs      | 92                           | 0.0                       | 92                             | 0.0                        | 0.218               | 5.8                   | LOS A               | 1.1                        | 7.7                            | 0.38         | 0.36                 | 0.38                      | 31.1                   |
| 2         | T1      | All MCs      | 119                          | 6.2                       | 119                            | 6.2                        | 0.218               | 1.0                   | LOS A               | 1.1                        | 7.7                            | 0.38         | 0.36                 | 0.38                      | 35.8                   |
| Appro     | ach     |              | 211                          | 3.5                       | 211                            | 3.5                        | 0.218               | 3.1                   | NA                  | 1.1                        | 7.7                            | 0.38         | 0.36                 | 0.38                      | 34.2                   |
| North:    | Willo   | ughby Ro     | d (N)                        |                           |                                |                            |                     |                       |                     |                            |                                |              |                      |                           |                        |
| 8         | T1      | All MCs      | 148                          | 3.5                       | 148                            | 3.5                        | 0.214               | 1.0                   | LOS A               | 0.9                        | 6.7                            | 0.33         | 0.27                 | 0.33                      | 36.0                   |
| 9         | R2      | All MCs      | 46                           | 0.0                       | 46                             | 0.0                        | 0.214               | 9.1                   | LOS A               | 0.9                        | 6.7                            | 0.33         | 0.27                 | 0.33                      | 35.1                   |
| Appro     | ach     |              | 195                          | 2.7                       | 195                            | 2.7                        | 0.214               | 2.9                   | NA                  | 0.9                        | 6.7                            | 0.33         | 0.27                 | 0.33                      | 35.8                   |
| West:     | Clark   | e St (W)     |                              |                           |                                |                            |                     |                       |                     |                            |                                |              |                      |                           |                        |
| 10        | L2      | All MCs      | 61                           | 0.0                       | 61                             | 0.0                        | 0.212               | 7.2                   | LOS A               | 0.8                        | 5.3                            | 0.61         | 0.80                 | 0.62                      | 31.1                   |
| 12        | R2      | All MCs      | 74                           | 1.4                       | 74                             | 1.4                        | 0.212               | 8.4                   | LOS A               | 0.8                        | 5.3                            | 0.61         | 0.80                 | 0.62                      | 24.5                   |
| Appro     | ach     |              | 135                          | 0.8                       | 135                            | 0.8                        | 0.212               | 7.9                   | LOS A               | 0.8                        | 5.3                            | 0.61         | 0.80                 | 0.62                      | 28.3                   |
| All Ve    | nicles  |              | 540                          | 2.5                       | 540                            | 2.5                        | 0.218               | 4.2                   | NA                  | 1.1                        | 7.7                            | 0.42         | 0.44                 | 0.42                      | 33.2                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 8:52:39 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

# Site: CST08 [CST08 Albany St / Willoughby Rd (Site Folder: Block 4 Model - 2024 Weekend Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TCS 516

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 65 seconds (Site User-Given Phase Times)

| Vehic   | le Mo   | ovement  | t Perfo     | rma      | nce         |          |        |       |          |             |          |       |      |        |       |
|---------|---------|----------|-------------|----------|-------------|----------|--------|-------|----------|-------------|----------|-------|------|--------|-------|
| Mov     | Turn    | Mov      | Dem         | nand     | Ar          | rival    | Deg.   | Aver. | Level of | 95%         | Back Of  | Prop. | Eff. | Aver.  | Aver. |
| ID      |         | Class    | FI<br>Total | lows     | FI<br>Total | OWS      | Satn   | Delay | Service  | Q<br>[ \/ob |          | Que   | Stop | No. of | Speed |
|         |         |          | veh/h       | пvј<br>% | veh/h       | ⊓vj<br>% | v/c    | sec   |          | ven.        | m Dist j |       | Nale | Cycles | km/h  |
| South   | : Willo | ughby Ro | d (S)       |          |             |          |        |       |          |             |          |       |      |        |       |
| 1       | L2      | All MCs  | 53          | 8.0      | 53          | 8.0      | 0.133  | 25.4  | LOS B    | 1.4         | 10.2     | 0.83  | 0.71 | 0.83   | 23.5  |
| 2       | T1      | All MCs  | 85          | 3.7      | 85          | 3.7      | 0.166  | 18.2  | LOS B    | 2.1         | 15.4     | 0.76  | 0.61 | 0.76   | 28.3  |
| 3       | R2      | All MCs  | 5           | 0.0      | 5           | 0.0      | 0.166  | 25.4  | LOS B    | 2.1         | 15.4     | 0.76  | 0.61 | 0.76   | 26.7  |
| Appro   | ach     |          | 143         | 5.1      | 143         | 5.1      | 0.166  | 21.1  | LOS B    | 2.1         | 15.4     | 0.79  | 0.65 | 0.79   | 26.3  |
| East: / | Alban   | y St (E) |             |          |             |          |        |       |          |             |          |       |      |        |       |
| 4       | L2      | All MCs  | 14          | 0.0      | 14          | 0.0      | 0.113  | 14.9  | LOS B    | 1.8         | 12.6     | 0.53  | 0.46 | 0.53   | 33.3  |
| 5       | T1      | All MCs  | 303         | 0.0      | 303         | 0.0      | 0.567  | 10.8  | LOS A    | 8.7         | 60.8     | 0.74  | 0.65 | 0.74   | 31.0  |
| 6       | R2      | All MCs  | 163         | 0.0      | 163         | 0.0      | *0.567 | 21.8  | LOS B    | 8.7         | 60.8     | 0.84  | 0.74 | 0.84   | 28.5  |
| Appro   | ach     |          | 480         | 0.0      | 480         | 0.0      | 0.567  | 14.7  | LOS B    | 8.7         | 60.8     | 0.77  | 0.68 | 0.77   | 30.1  |
| North:  | Willo   | ughby Ro | l (N)       |          |             |          |        |       |          |             |          |       |      |        |       |
| 7       | L2      | All MCs  | 121         | 0.0      | 121         | 0.0      | 0.137  | 14.8  | LOS B    | 2.1         | 15.0     | 0.59  | 0.69 | 0.59   | 29.6  |
| 8       | T1      | All MCs  | 136         | 3.1      | 136         | 3.1      | *0.391 | 21.1  | LOS B    | 4.8         | 34.1     | 0.86  | 0.75 | 0.86   | 26.0  |
| 9       | R2      | All MCs  | 44          | 0.0      | 44          | 0.0      | 0.391  | 30.0  | LOS C    | 4.8         | 34.1     | 0.86  | 0.75 | 0.86   | 24.5  |
| Appro   | ach     |          | 301         | 1.4      | 301         | 1.4      | 0.391  | 19.9  | LOS B    | 4.8         | 34.1     | 0.75  | 0.72 | 0.75   | 27.0  |
| West:   | Alban   | y St (W) |             |          |             |          |        |       |          |             |          |       |      |        |       |
| 10      | L2      | All MCs  | 94          | 0.0      | 94          | 0.0      | 0.182  | 24.2  | LOS B    | 2.3         | 16.1     | 0.80  | 0.73 | 0.80   | 24.1  |
| 11      | T1      | All MCs  | 261         | 0.4      | 261         | 0.4      | *0.397 | 18.0  | LOS B    | 6.4         | 45.2     | 0.81  | 0.68 | 0.81   | 27.9  |
| Appro   | ach     |          | 355         | 0.3      | 355         | 0.3      | 0.397  | 19.6  | LOS B    | 6.4         | 45.2     | 0.81  | 0.69 | 0.81   | 26.8  |
| All Ve  | hicles  |          | 1279        | 1.0      | 1279        | 1.0      | 0.567  | 18.0  | LOS B    | 8.7         | 60.8     | 0.78  | 0.69 | 0.78   | 27.9  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian N   | Noveme   | ent Perf | ormand | e:       |              |               |       |              |        |         |       |
|----------------|----------|----------|--------|----------|--------------|---------------|-------|--------------|--------|---------|-------|
| Mov            | Input    | Dem.     | Aver.  | Level of | AVERAGE      | BACK OF       | Prop. | Eff.         | Travel | Travel  | Aver. |
| ID Crossing    | Vol.     | Flow     | Delay  | Service  | QUE<br>[ Ped | =UE<br>Dist ] | Que   | Stop<br>Rate | lime   | Dist. S | Speed |
|                | ped/h    | ped/h    | sec    |          | ped          | m             |       |              | sec    | m       | m/sec |
| South: Willoug | hby Rd ( | (S)      |        |          |              |               |       |              |        |         |       |
| P1 Full        | 162      | 171      | 26.1   | LOS C    | 0.3          | 0.3           | 0.90  | 0.90         | 42.7   | 20.0    | 0.47  |
| East: Albany S | St (E)   |          |        |          |              |               |       |              |        |         |       |
| P2 Full        | 311      | 327      | 26.2   | LOS C    | 0.5          | 0.5           | 0.90  | 0.90         | 42.9   | 20.0    | 0.47  |

| North: Willoug     | hby Rd ( | N)   |      |       |     |     |      |      |      |      |      |
|--------------------|----------|------|------|-------|-----|-----|------|------|------|------|------|
| P3 Full            | 144      | 152  | 26.0 | LOS C | 0.3 | 0.3 | 0.90 | 0.90 | 42.7 | 20.0 | 0.47 |
| West: Albany S     | St (W)   |      |      |       |     |     |      |      |      |      |      |
| P4 Full            | 353      | 372  | 26.3 | LOS C | 0.6 | 0.6 | 0.91 | 0.91 | 43.0 | 20.0 | 0.47 |
| All<br>Pedestrians | 970      | 1021 | 26.2 | LOS C | 0.6 | 0.6 | 0.90 | 0.90 | 42.9 | 20.0 | 0.47 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 8:52:40 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

V Site: CST09 [CST09 Albany St / Oxley St (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

NA Site Category: (None) Roundabout

| Vehic   | le M   | ovemen     | t Perfo    | orma       | nce         |               |       |       |          |          |          |       |      |        |       |
|---------|--------|------------|------------|------------|-------------|---------------|-------|-------|----------|----------|----------|-------|------|--------|-------|
| Mov     | Turn   | Mov        | Dem        | nand       | Ar          | rival         | Deg.  | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff. | Aver.  | Aver. |
| ID      |        | Class      | H<br>Total | OWS<br>山い1 | <br>  Total | lows<br>山\/ 1 | Satn  | Delay | Service  | [\/ob    | Diet 1   | Que   | Stop | No. of | Speed |
|         |        |            | veh/h      | %          | veh/h       | %             | v/c   | sec   |          | veh      | m        |       | Tale | Cycles | km/h  |
| South   | : Oxle | y St (S)   |            |            |             |               |       |       |          |          |          |       |      |        |       |
| 1       | L2     | All MCs    | 64         | 0.0        | 64          | 0.0           | 0.267 | 7.3   | LOS A    | 1.7      | 12.2     | 0.68  | 0.63 | 0.68   | 22.7  |
| 2       | T1     | All MCs    | 86         | 0.0        | 86          | 0.0           | 0.267 | 7.1   | LOS A    | 1.7      | 12.2     | 0.68  | 0.63 | 0.68   | 33.7  |
| 3       | R2     | All MCs    | 55         | 0.0        | 55          | 0.0           | 0.267 | 10.0  | LOS A    | 1.7      | 12.2     | 0.68  | 0.63 | 0.68   | 31.8  |
| 3u      | U      | All MCs    | 1          | 0.0        | 1           | 0.0           | 0.267 | 11.4  | LOS A    | 1.7      | 12.2     | 0.68  | 0.63 | 0.68   | 22.7  |
| Appro   | ach    |            | 206        | 0.0        | 206         | 0.0           | 0.267 | 8.0   | LOS A    | 1.7      | 12.2     | 0.68  | 0.63 | 0.68   | 31.0  |
| East: / | Alban  | y St (E)   |            |            |             |               |       |       |          |          |          |       |      |        |       |
| 4       | L2     | All MCs    | 54         | 3.9        | 54          | 3.9           | 0.445 | 6.6   | LOS A    | 2.8      | 19.9     | 0.52  | 0.62 | 0.52   | 32.5  |
| 5       | T1     | All MCs    | 301        | 1.0        | 301         | 1.0           | 0.445 | 6.3   | LOSA     | 2.8      | 19.9     | 0.52  | 0.62 | 0.52   | 32.5  |
| 6       | R2     | All MCs    | 43         | 0.0        | 43          | 0.0           | 0.445 | 9.2   | LOSA     | 2.8      | 19.9     | 0.52  | 0.62 | 0.52   | 36.8  |
| 6u      | U      | All MCs    | 1          | 0.0        | 1           | 0.0           | 0.445 | 10.6  | LOSA     | 2.8      | 19.9     | 0.52  | 0.62 | 0.52   | 36.3  |
| Appro   | ach    |            | 399        | 1.3        | 399         | 1.3           | 0.445 | 6.7   | LOS A    | 2.8      | 19.9     | 0.52  | 0.62 | 0.52   | 33.3  |
| North:  | Oxle   | v St (N)   |            |            |             |               |       |       |          |          |          |       |      |        |       |
| 7       | 12     |            | 34         | 0.0        | 34          | 0.0           | 0 275 | 7 1   | LOSA     | 17       | 12 1     | 0.66  | 0.64 | 0.66   | 36.1  |
| 8       | T1     |            | 120        | 0.0        | 120         | 0.0           | 0.275 | 6.9   |          | 17       | 12.1     | 0.66  | 0.64 | 0.66   | 32.1  |
| 9       | R2     | All MCs    | 66         | 0.0        | 66          | 0.0           | 0.275 | 9.8   | LOSA     | 1.7      | 12.1     | 0.66  | 0.64 | 0.00   | 32.1  |
| 911     | 11     |            | 1          | 0.0        | 1           | 0.0           | 0.275 | 11.2  | LOSA     | 1.7      | 12.1     | 0.00  | 0.64 | 0.00   | 36.3  |
| Appro   | ach    | 7 11 11/00 | 221        | 0.0        | 221         | 0.0           | 0.275 | 7.8   | LOSA     | 1.7      | 12.1     | 0.66  | 0.64 | 0.66   | 33.0  |
|         |        |            |            |            |             |               |       |       |          |          |          |       |      |        |       |
| West:   | Albar  | ny St (W)  |            |            |             |               |       |       |          |          |          |       |      |        |       |
| 10      | L2     | All MCs    | 99         | 1.1        | 99          | 1.1           | 0.402 | 5.7   | LOS A    | 3.2      | 22.3     | 0.56  | 0.54 | 0.56   | 35.4  |
| 11      | T1     | All MCs    | 245        | 0.9        | 245         | 0.9           | 0.402 | 5.5   | LOS A    | 3.2      | 22.3     | 0.56  | 0.54 | 0.56   | 35.3  |
| 12      | R2     | All MCs    | 78         | 1.4        | 78          | 1.4           | 0.402 | 8.4   | LOS A    | 3.2      | 22.3     | 0.56  | 0.54 | 0.56   | 27.4  |
| 12u     | U      | All MCs    | 1          | 0.0        | 1           | 0.0           | 0.402 | 9.7   | LOS A    | 3.2      | 22.3     | 0.56  | 0.54 | 0.56   | 27.4  |
| Appro   | ach    |            | 423        | 1.0        | 423         | 1.0           | 0.402 | 6.0   | LOS A    | 3.2      | 22.3     | 0.56  | 0.54 | 0.56   | 34.4  |
| All Ve  | hicles |            | 1249       | 0.8        | 1249        | 0.8           | 0.445 | 6.9   | LOS A    | 3.2      | 22.3     | 0.58  | 0.60 | 0.58   | 33.3  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:28 PM Project: C:Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

V Site: CST10 [CST10 Albany St / Clarke Ln (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

NA Site Category: (None) Give-Way (Two-Way)

| Vehic     | le M   | ovemen       | t Perfo                       | orma                      | ince                         |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
|-----------|--------|--------------|-------------------------------|---------------------------|------------------------------|----------------------------|---------------------|-----------------------|---------------------|---------------------------|-------------------------|----------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Derr<br>F<br>[ Total<br>veh/h | nand<br>Iows<br>HV ]<br>% | Ar<br>Fl<br>[ Total<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | East:  | Clarke Li    | n (SE)                        |                           |                              |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 21a       | L1     | All MCs      | 21                            | 0.0                       | 21                           | 0.0                        | 0.043               | 4.2                   | LOS A               | 2.9                       | 20.3                    | 0.17           | 0.50                 | 0.17                      | 31.7                   |
| 23b       | R3     | All MCs      | 4                             | 0.0                       | 4                            | 0.0                        | 0.043               | 12.8                  | LOS A               | 2.9                       | 20.3                    | 0.17           | 0.50                 | 0.17                      | 31.7                   |
| Appro     | ach    |              | 25                            | 0.0                       | 25                           | 0.0                        | 0.043               | 5.6                   | LOS A               | 2.9                       | 20.3                    | 0.17           | 0.50                 | 0.17                      | 31.7                   |
| East:     | Alban  | y St (E)     |                               |                           |                              |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 5         | T1     | All MCs      | 451                           | 0.7                       | 451                          | 0.7                        | 0.212               | 0.0                   | LOS A               | 8.7                       | 61.1                    | 0.00           | 0.00                 | 0.00                      | 49.9                   |
| Appro     | ach    |              | 451                           | 0.7                       | 451                          | 0.7                        | 0.212               | 0.0                   | NA                  | 8.7                       | 61.1                    | 0.00           | 0.00                 | 0.00                      | 49.9                   |
| West:     | Albar  | ny St (W)    |                               |                           |                              |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 11        | T1     | All MCs      | 437                           | 1.0                       | 437                          | 1.0                        | 0.226               | 0.0                   | LOS A               | 0.0                       | 0.0                     | 0.00           | 0.00                 | 0.00                      | 49.9                   |
| Appro     | ach    |              | 437                           | 1.0                       | 437                          | 1.0                        | 0.226               | 0.0                   | NA                  | 0.0                       | 0.0                     | 0.00           | 0.00                 | 0.00                      | 49.9                   |
| All Ve    | hicles |              | 913                           | 0.8                       | 913                          | 0.8                        | 0.226               | 0.2                   | NA                  | 8.7                       | 61.1                    | 0.00           | 0.01                 | 0.00                      | 48.5                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:28 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

Site: CST11 [CST11 Oxley St / Clarke Ln (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

NA Site Category: (None) Stop (Two-Way)

| Vehic  | cle M  | ovemen    | t Perfc     | orma         | nce             |             |       |       |          |          |            |         |              |                  |       |
|--------|--------|-----------|-------------|--------------|-----------------|-------------|-------|-------|----------|----------|------------|---------|--------------|------------------|-------|
| Mov    | Turn   | Mov       | Dem         | nand         | Ar              | rival       | Deg.  | Aver. | Level of | 95% Bacl | k Of Queue | e Prop. | Eff.         | Aver.            | Aver. |
| UI     |        | Class     | Fi<br>Total | IOWS<br>HV 1 | ۲۱<br>Total I آ | ows<br>HV 1 | Sath  | Delay | Service  | [Veh.    | Dist 1     | Que     | Stop<br>Rate | NO. OT<br>Cvcles | Speed |
|        |        |           | veh/h       | %            | veh/h           | %           | v/c   | sec   |          | veh      | m          |         |              |                  | km/h  |
| South  | East:  | Clarke Li | n (SE)      |              |                 |             |       |       |          |          |            |         |              |                  |       |
| 1      | L2     | All MCs   | 1           | 0.0          | 1               | 0.0         | 0.005 | 7.7   | LOS A    | 0.0      | 0.1        | 0.32    | 0.83         | 0.32             | 27.6  |
| 2      | T1     | All MCs   | 1           | 0.0          | 1               | 0.0         | 0.005 | 8.8   | LOS A    | 0.0      | 0.1        | 0.32    | 0.83         | 0.32             | 27.6  |
| 3      | R2     | All MCs   | 2           | 0.0          | 2               | 0.0         | 0.005 | 9.0   | LOS A    | 0.0      | 0.1        | 0.32    | 0.83         | 0.32             | 27.6  |
| Appro  | ach    |           | 4           | 0.0          | 4               | 0.0         | 0.005 | 8.6   | LOS A    | 0.0      | 0.1        | 0.32    | 0.83         | 0.32             | 27.6  |
| North  | East:  | Oxley St  | (NE)        |              |                 |             |       |       |          |          |            |         |              |                  |       |
| 5      | T1     | All MCs   | 185         | 1.1          | 185             | 1.1         | 0.109 | 0.0   | LOS A    | 0.5      | 3.7        | 0.02    | 0.03         | 0.02             | 47.5  |
| 6      | R2     | All MCs   | 6           | 0.0          | 6               | 0.0         | 0.109 | 3.6   | LOS A    | 0.5      | 3.7        | 0.02    | 0.03         | 0.02             | 47.5  |
| Appro  | ach    |           | 192         | 1.1          | 192             | 1.1         | 0.109 | 0.1   | NA       | 0.5      | 3.7        | 0.02    | 0.03         | 0.02             | 47.5  |
| North  | West:  | Clarke L  | n (NW)      |              |                 |             |       |       |          |          |            |         |              |                  |       |
| 7      | L2     | All MCs   | 12          | 0.0          | 12              | 0.0         | 0.016 | 5.0   | LOS A    | 0.1      | 0.5        | 0.29    | 0.51         | 0.29             | 25.1  |
| 9      | R2     | All MCs   | 5           | 20.0         | 52              | 20.0        | 0.016 | 6.7   | LOS A    | 0.1      | 0.5        | 0.29    | 0.51         | 0.29             | 25.1  |
| Appro  | ach    |           | 17          | 6.3          | 17              | 6.3         | 0.016 | 5.5   | LOS A    | 0.1      | 0.5        | 0.29    | 0.51         | 0.29             | 25.1  |
| South  | West   | Oxley St  | t (SW)      |              |                 |             |       |       |          |          |            |         |              |                  |       |
| 10     | L2     | All MCs   | 1           | 0.0          | 1               | 0.0         | 0.086 | 2.8   | LOS A    | 0.0      | 0.0        | 0.00    | 0.00         | 0.00             | 49.6  |
| 11     | T1     | All MCs   | 164         | 1.3          | 164             | 1.3         | 0.086 | 0.0   | LOS A    | 0.0      | 0.0        | 0.00    | 0.00         | 0.00             | 49.6  |
| Appro  | ach    |           | 165         | 1.3          | 165             | 1.3         | 0.086 | 0.0   | NA       | 0.0      | 0.0        | 0.00    | 0.00         | 0.00             | 49.6  |
| All Ve | hicles |           | 378         | 1.4          | 378             | 1.4         | 0.109 | 0.4   | NA       | 0.5      | 3.7        | 0.03    | 0.05         | 0.03             | 43.6  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:28 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

Site: CST13 [CST13 Pacific Hwy / Alexander St (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Network: CST-N1 [CST Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

TCS 763

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 125 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfc              | orma                 | nce                   |                      |              |                |                     |                    |                    |              |                      |                           |                |
|-----------|--------|--------------|----------------------|----------------------|-----------------------|----------------------|--------------|----------------|---------------------|--------------------|--------------------|--------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl<br>[ Total | nand<br>lows<br>HV ] | Ar<br>Fl<br>[ Total ] | rival<br>ows<br>HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh. | Of Queue<br>Dist ] | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| South     | Foot   | Dooifio H    | veh/h                | %<br>\               | veh/h                 | %                    | V/C          | sec            | _                   | veh                | m                  | _            | _                    | _                         | km/h           |
| South     | Easi.  |              | wy (SE               | )                    |                       |                      |              |                |                     |                    |                    |              |                      |                           |                |
| 2         | T1     | All MCs      | 760                  | 3.3                  | 760                   | 3.3                  | *0.311       | 5.4            | LOS A               | 5.8                | 41.7               | 0.47         | 0.40                 | 0.47                      | 41.4           |
| 3a        | R1     | All MCs      | 202                  | 1.6                  | 202                   | 1.6                  | 0.264        | 8.9            | LOS A               | 3.4                | 24.3               | 0.35         | 0.59                 | 0.35                      | 35.3           |
| Appro     | ach    |              | 962                  | 3.0                  | 962                   | 3.0                  | 0.311        | 6.1            | LOS A               | 5.8                | 41.7               | 0.44         | 0.44                 | 0.44                      | 39.9           |
| North:    | Alexa  | ander St (   | (N)                  |                      |                       |                      |              |                |                     |                    |                    |              |                      |                           |                |
| 24a       | L1     | All MCs      | 192                  | 2.7                  | 192                   | 2.7                  | *0.358       | 30.8           | LOS C               | 7.7                | 55.5               | 0.87         | 0.77                 | 0.87                      | 20.2           |
| 26b       | R3     | All MCs      | 112                  | 2.8                  | 112                   | 2.8                  | *0.883       | 64.2           | LOS E               | 7.2                | 51.7               | 1.00         | 0.87                 | 1.14                      | 5.3            |
| Appro     | ach    |              | 303                  | 2.8                  | 303                   | 2.8                  | 0.883        | 43.1           | LOS D               | 7.7                | 55.5               | 0.92         | 0.81                 | 0.97                      | 13.5           |
| North     | Nest:  | Pacific H    | lwy (NV              | V)                   |                       |                      |              |                |                     |                    |                    |              |                      |                           |                |
| 7b        | L3     | All MCs      | 13                   | 8.3                  | 13                    | 8.3                  | 0.035        | 10.5           | LOS A               | 0.1                | 1.4                | 0.18         | 0.47                 | 0.18                      | 32.0           |
| 8         | T1     | All MCs      | 752                  | 1.8                  | 752                   | 1.8                  | *0.359       | 3.3            | LOS A               | 3.8                | 26.9               | 0.24         | 0.22                 | 0.24                      | 51.3           |
| Appro     | ach    |              | 764                  | 1.9                  | 764                   | 1.9                  | 0.359        | 3.4            | LOS A               | 3.8                | 26.9               | 0.24         | 0.22                 | 0.24                      | 51.1           |
| All Ve    | hicles |              | 2029                 | 2.5                  | 2029                  | 2.5                  | 0.883        | 10.6           | LOS A               | 7.7                | 55.5               | 0.44         | 0.41                 | 0.44                      | 34.6           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov    | vement   | Perforr | nance    |              |              |       |              |        |        |       |
|-------------------|----------|---------|----------|--------------|--------------|-------|--------------|--------|--------|-------|
| Mov               | Dem.     | Aver.   | Level of | AVERAGE      | BACK OF      | Prop. | Eff.         | Travel | Travel | Aver. |
| ID Crossing       | Flow     | Delay   | Service  | QUE<br>[ Ped | UE<br>Dist ] | Que   | Stop<br>Rate | Time   | Dist.  | Speed |
|                   | ped/h    | sec     |          | ped          | m            |       |              | sec    | m      | m/sec |
| North: Alexander  | St (N)   |         |          |              |              |       |              |        |        |       |
| P6 Full           | 122      | 22.2    | LOS C    | 0.2          | 0.2          | 0.80  | 0.80         | 38.8   | 20.0   | 0.52  |
| NorthWest: Pacifi | c Hwy (N | W)      |          |              |              |       |              |        |        |       |
| P3 Full           | 75       | 50.3    | LOS E    | 0.2          | 0.2          | 0.90  | 0.90         | 67.0   | 20.0   | 0.30  |
| All Pedestrians   | 197      | 32.9    | LOS D    | 0.2          | 0.2          | 0.84  | 0.84         | 49.5   | 20.0   | 0.40  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:28 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

Site: CST14 [CST14 Falcon St / Alexander St (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

TCS 764

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 125 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfc   | orma         | nce      |               |              |                |                     |          |          |                |              |                 |                |
|-----------|--------|--------------|-----------|--------------|----------|---------------|--------------|----------------|---------------------|----------|----------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl | nand<br>Iows | Ar<br>Fl | rival<br>lows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back | Of Queue | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total   | HV]          | [ Total  | HV ]          |              |                |                     | [Veh.    | Dist]    |                | Rate         | Cycles          |                |
| Cauth     |        | andan Ct     | veh/h     | %            | veh/h    | %             | V/C          | sec            |                     | veh      | m        |                |              |                 | km/h           |
| South     | Alex   | ander St     | (5)       |              |          |               |              |                |                     |          |          |                |              |                 |                |
| 1         | L2     | All MCs      | 6         | 16.7         | 6        | 16.7          | 0.407        | 64.4           | LOS E               | 9.9      | 71.0     | 1.00           | 0.84         | 1.00            | 5.8            |
| 2         | T1     | All MCs      | 160       | 2.0          | 160      | 2.0           | 0.407        | 55.4           | LOS D               | 9.9      | 71.0     | 1.00           | 0.84         | 1.00            | 10.0           |
| 3         | R2     | All MCs      | 48        | 0.0          | 48       | 0.0           | 0.478        | 72.6           | LOS F               | 3.1      | 21.9     | 1.00           | 0.77         | 1.00            | 16.9           |
| Appro     | ach    |              | 215       | 2.0          | 215      | 2.0           | 0.478        | 59.5           | LOS E               | 9.9      | 71.0     | 1.00           | 0.83         | 1.00            | 12.0           |
| East:     | Falco  | n St (E)     |           |              |          |               |              |                |                     |          |          |                |              |                 |                |
| 4         | L2     | All MCs      | 31        | 0.0          | 31       | 0.0           | 0.672        | 17.8           | LOS B               | 17.9     | 127.1    | 0.55           | 0.50         | 0.55            | 40.2           |
| 5         | T1     | All MCs      | 859       | 2.0          | 859      | 2.0           | 0.672        | 11.8           | LOS A               | 17.9     | 127.1    | 0.54           | 0.49         | 0.54            | 40.5           |
| 6         | R2     | All MCs      | 4         | 75.0         | 4        | 75.0          | 0.672        | 17.9           | LOS B               | 9.4      | 67.5     | 0.53           | 0.47         | 0.53            | 39.9           |
| Appro     | ach    |              | 894       | 2.2          | 894      | 2.2           | 0.672        | 12.1           | LOS A               | 17.9     | 127.1    | 0.54           | 0.49         | 0.54            | 40.5           |
| North     | Alexa  | ander St (   | (N)       |              |          |               |              |                |                     |          |          |                |              |                 |                |
| 7         | L2     | All MCs      | 66        | 0.0          | 66       | 0.0           | 0.203        | 82.1           | LOS F               | 3.5      | 24.4     | 0.89           | 0.75         | 0.89            | 21.0           |
| 8         | T1     | All MCs      | 283       | 3.0          | 283      | 3.0           | * 0.767      | 79.7           | LOS F               | 16.9     | 121.7    | 1.00           | 0.90         | 1.07            | 6.4            |
| Appro     | ach    |              | 349       | 2.4          | 349      | 2.4           | 0.767        | 80.2           | LOS F               | 16.9     | 121.7    | 0.98           | 0.87         | 1.04            | 10.1           |
| West:     | Falco  | on St (W)    |           |              |          |               |              |                |                     |          |          |                |              |                 |                |
| 10        | L2     | All MCs      | 220       | 0.5          | 220      | 0.5           | 0.184        | 17.3           | LOS B               | 6.7      | 47.2     | 0.55           | 0.66         | 0.55            | 21.3           |
| 11        | T1     | All MCs      | 726       | 1.9          | 726      | 1.9           | *0.558       | 2.4            | LOS A               | 8.2      | 58.4     | 0.21           | 0.19         | 0.21            | 55.5           |
| Appro     | ach    |              | 946       | 1.6          | 946      | 1.6           | 0.558        | 5.9            | LOS A               | 8.2      | 58.4     | 0.28           | 0.30         | 0.28            | 47.7           |
| All Ve    | hicles |              | 2404      | 2.0          | 2404     | 2.0           | 0.767        | 23.8           | LOS B               | 17.9     | 127.1    | 0.54           | 0.50         | 0.55            | 31.3           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pec       | lestrian Mo     | vement       | Perform        | nance               |                |         |              |              |                |                 |                |
|-----------|-----------------|--------------|----------------|---------------------|----------------|---------|--------------|--------------|----------------|-----------------|----------------|
| Mo∖<br>ID | ,<br>Crossing   | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|           |                 |              |                |                     | [Ped           | Dist ]  |              | Rate         |                |                 |                |
|           |                 | ped/h        | sec            |                     | ped            | m       |              |              | sec            | m               | m/sec          |
| Sou       | th: Alexander   | St (S)       |                |                     |                |         |              |              |                |                 |                |
| P1        | Full            | 157          | 52.3           | LOS E               | 0.5            | 0.5     | 0.92         | 0.92         | 69.0           | 20.0            | 0.29           |
| Eas       | t: Falcon St (I | Ξ)           |                |                     |                |         |              |              |                |                 |                |

| P2 Full            | 133   | 52.3 | LOS E | 0.4 | 0.4 | 0.92 | 0.92 | 68.9 | 20.0 | 0.29 |
|--------------------|-------|------|-------|-----|-----|------|------|------|------|------|
| North: Alexander S | t (N) |      |       |     |     |      |      |      |      |      |
| P3 Full            | 166   | 52.3 | LOS E | 0.5 | 0.5 | 0.92 | 0.92 | 69.0 | 20.0 | 0.29 |
| West: Falcon St (W | /)    |      |       |     |     |      |      |      |      |      |
| P4 Full            | 229   | 52.5 | LOS E | 0.8 | 0.8 | 0.92 | 0.92 | 69.2 | 20.0 | 0.29 |
| All Pedestrians    | 685   | 52.4 | LOS E | 0.8 | 0.8 | 0.92 | 0.92 | 69.0 | 20.0 | 0.29 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 1:28:28 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\02 SM C&SW\_CST (Block 4).sip9

Site: VIC01 [VIC01 Pacific Hwy / Berry St (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: VIC-N1 [VIC Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

### TCS 1206

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 115 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfo             | orma                 | nce                   |                       |              |                |                     |                    |                    |                |                      |                           |                |
|-----------|--------|--------------|---------------------|----------------------|-----------------------|-----------------------|--------------|----------------|---------------------|--------------------|--------------------|----------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F<br>[ Total | nand<br>Iows<br>HV 1 | Ar<br>Fl<br>[ Total ] | rival<br>lows<br>HV 1 | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh. | Of Queue<br>Dist 1 | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cvcles | Aver.<br>Speed |
|           |        |              | veh/h               | %                    | veh/h                 | %                     | v/c          | sec            |                     | veh                | m                  |                |                      | - 5                       | km/h           |
| South     | East:  | Pacific H    | wy (SE              | )                    |                       |                       |              |                |                     |                    |                    |                |                      |                           |                |
| 1         | L2     | All MCs      | 61                  | 1.7                  | 61                    | 1.7                   | 0.243        | 10.0           | LOS A               | 7.4                | 54.0               | 0.44           | 0.37                 | 0.44                      | 37.4           |
| 2         | T1     | All MCs      | 929                 | 5.9                  | 929                   | 5.9                   | 0.243        | 3.5            | LOS A               | 7.4                | 54.0               | 0.25           | 0.21                 | 0.25                      | 51.5           |
| 23b       | R3     | All MCs      | 272                 | 1.9                  | 272                   | 1.9                   | *0.852       | 31.7           | LOS C               | 8.5                | 60.8               | 0.98           | 0.87                 | 1.10                      | 19.3           |
| Appro     | ach    |              | 1262                | 4.8                  | 1262                  | 4.8                   | 0.852        | 9.9            | LOS A               | 8.5                | 60.8               | 0.42           | 0.36                 | 0.44                      | 41.1           |
| North     | West:  | Pacific H    | wy (NV              | V)                   |                       |                       |              |                |                     |                    |                    |                |                      |                           |                |
| 27a       | L1     | All MCs      | 838                 | 5.0                  | 838                   | 5.0                   | 0.413        | 8.7            | LOS A               | 7.6                | 55.2               | 0.32           | 0.68                 | 0.32                      | 33.4           |
| 8         | T1     | All MCs      | 488                 | 4.3                  | 488                   | 4.3                   | *0.668       | 23.3           | LOS B               | 15.0               | 108.7              | 0.88           | 0.84                 | 0.88                      | 19.0           |
| Appro     | ach    |              | 1326                | 4.8                  | 1326                  | 4.8                   | 0.668        | 14.1           | LOS A               | 15.0               | 108.7              | 0.53           | 0.74                 | 0.53                      | 26.1           |
| South     | West   | Berry St     | (SW)                |                      |                       |                       |              |                |                     |                    |                    |                |                      |                           |                |
| 10        | L2     | All MCs      | 53                  | 0.0                  | 53                    | 0.0                   | 0.114        | 5.9            | LOS A               | 0.6                | 4.4                | 0.22           | 0.54                 | 0.22                      | 36.0           |
| Appro     | ach    |              | 53                  | 0.0                  | 53                    | 0.0                   | 0.114        | 5.9            | LOS A               | 0.6                | 4.4                | 0.22           | 0.54                 | 0.22                      | 36.0           |
| All Ve    | hicles |              | 2641                | 4.7                  | 2641                  | 4.7                   | 0.852        | 11.9           | LOS A               | 15.0               | 108.7              | 0.47           | 0.55                 | 0.48                      | 34.5           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian                  | Movement       | t Perforr                                 | nance |                        |                            |              |                      |                |                 |                |  |  |  |
|-----------------------------|----------------|-------------------------------------------|-------|------------------------|----------------------------|--------------|----------------------|----------------|-----------------|----------------|--|--|--|
| Mov<br>ID Crossing          | Dem.<br>9 Flow | Dem. Aver. Level of<br>Flow Delay Service |       | AVERAGE<br>QU<br>[ Ped | E BACK OF<br>EUE<br>Dist 1 | Prop.<br>Que | Eff.<br>Stop<br>Rate | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |  |  |  |
|                             | ped/h          | sec                                       |       | ped                    | m                          |              |                      | sec            | m               | m/sec          |  |  |  |
| SouthEast: Pacific Hwy (SE) |                |                                           |       |                        |                            |              |                      |                |                 |                |  |  |  |
| P1 Full                     | 324            | 51.4                                      | LOS E | 1.0                    | 1.0                        | 0.95         | 0.95                 | 68.1           | 20.0            | 0.29           |  |  |  |
| East: Berry S               | St (E)         |                                           |       |                        |                            |              |                      |                |                 |                |  |  |  |
| P2 Full                     | 435            | 51.6                                      | LOS E | 1.4                    | 1.4                        | 0.96         | 0.96                 | 218.3          | 200.0           | 0.92           |  |  |  |
| NorthWest: F                | Pacific Hwy (  | NW)                                       |       |                        |                            |              |                      |                |                 |                |  |  |  |
| P3B Slip/<br>Bypass         | 1              | 50.7                                      | LOS E | 0.0                    | 0.0                        | 0.94         | 0.94                 | 67.4           | 20.0            | 0.30           |  |  |  |
| SouthWest: E                | Berry St (SW   | /)                                        |       |                        |                            |              |                      |                |                 |                |  |  |  |
| P4 Full                     | 287            | 26.4                                      | LOS C | 0.6                    | 0.6                        | 0.91         | 0.91                 | 43.0           | 20.0            | 0.46           |  |  |  |

| All Pedestrians | 1047 | 44.6 | LOS E | 1.4 | 1.4 | 0.94 | 0.94 | 123.6 | 94.7 | 0.77 |
|-----------------|------|------|-------|-----|-----|------|------|-------|------|------|
|-----------------|------|------|-------|-----|-----|------|------|-------|------|------|

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Wednesday, 6 November 2024 4:33:31 РŇ

Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\03 SM C&SW\_VIC (Block 4).sip9

Site: VIC02 [VIC02 Miller St / Berry St (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: VIC-N1 [VIC Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

### TCS 874

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 115 seconds (Network Site User-Given Phase Times)

| Vehic     | le M    | ovemen       | t Perfc          | orma         | nce              |               |              |                |                     |               |             |              |              |                 |                |
|-----------|---------|--------------|------------------|--------------|------------------|---------------|--------------|----------------|---------------------|---------------|-------------|--------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn    | Mov<br>Class | Dem<br>Fl        | nand<br>Iows | Ar<br>Fl         | rival<br>lows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back      | Of Queue    | Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |         |              | [ Iotal<br>veh/h | HV J<br>%    | [ lotal<br>veh/h | HV J<br>%     | v/c          | sec            |                     | [ Veh.<br>veh | Dist J<br>m |              | Rate         | Cycles          | km/h           |
| South     | : Mille | er St (S)    |                  |              |                  |               |              |                |                     |               |             |              |              |                 |                |
| 2         | T1      | All MCs      | 360              | 8.8          | 360              | 8.8           | 0.974        | 33.8           | LOS C               | 25.0          | 186.2       | 0.80         | 0.76         | 0.92            | 13.1           |
| 3         | R2      | All MCs      | 264              | 7.2          | 264              | 7.2           | *0.974       | 87.7           | LOS F               | 25.0          | 186.2       | 1.00         | 1.30         | 1.49            | 11.0           |
| Appro     | ach     |              | 624              | 8.1          | 624              | 8.1           | 0.974        | 56.6           | LOS E               | 25.0          | 186.2       | 0.88         | 0.98         | 1.16            | 11.8           |
| North:    | Mille   | r St (N)     |                  |              |                  |               |              |                |                     |               |             |              |              |                 |                |
| 7         | L2      | All MCs      | 195              | 4.9          | 195              | 4.9           | 0.793        | 60.5           | LOS E               | 11.5          | 83.8        | 1.00         | 0.93         | 1.16            | 14.2           |
| 8         | T1      | All MCs      | 307              | 15.1         | 307              | 15.1          | 0.773        | 47.8           | LOS D               | 17.1          | 135.2       | 0.99         | 0.92         | 1.08            | 11.5           |
| Appro     | ach     |              | 502              | 11.1         | 502              | 11.1          | 0.793        | 52.7           | LOS D               | 17.1          | 135.2       | 1.00         | 0.92         | 1.11            | 12.8           |
| West:     | Berry   | ' St (W)     |                  |              |                  |               |              |                |                     |               |             |              |              |                 |                |
| 10        | L2      | All MCs      | 195              | 3.8          | 195              | 3.8           | *0.695       | 43.5           | LOS D               | 16.5          | 118.5       | 0.86         | 0.78         | 0.86            | 10.3           |
| 11        | T1      | All MCs      | 982              | 1.6          | 982              | 1.6           | 0.695        | 31.8           | LOS C               | 21.0          | 155.6       | 0.87         | 0.77         | 0.87            | 18.3           |
| 12        | R2      | All MCs      | 65               | 38.7         | 65               | 38.7          | 0.695        | 41.0           | LOS C               | 21.0          | 155.6       | 0.88         | 0.78         | 0.88            | 10.8           |
| Appro     | ach     |              | 1242             | 3.9          | 1242             | 3.9           | 0.695        | 34.1           | LOS C               | 21.0          | 155.6       | 0.87         | 0.77         | 0.87            | 16.0           |
| All Ve    | hicles  |              | 2368             | 6.5          | 2368             | 6.5           | 0.974        | 44.0           | LOS D               | 25.0          | 186.2       | 0.90         | 0.86         | 1.00            | 13.9           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pe        | destrian Mov      | rement       | Perform        | nance               |                |                |              |              |                |                 |                |
|-----------|-------------------|--------------|----------------|---------------------|----------------|----------------|--------------|--------------|----------------|-----------------|----------------|
| Moʻ<br>ID | /<br>Crossing     | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>EUE | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|           |                   |              |                |                     | [Ped           | Dist ]         |              | Rate         |                |                 |                |
|           |                   | ped/h        | sec            |                     | ped            | m              |              |              | sec            | m               | m/sec          |
| Sou       | ith: Miller St (S | 5)           |                |                     |                |                |              |              |                |                 |                |
| P1        | Full              | 417          | 51.6           | LOS E               | 1.3            | 1.3            | 0.96         | 0.96         | 68.3           | 20.0            | 0.29           |
| Eas       | st: Berry St (E)  |              |                |                     |                |                |              |              |                |                 |                |
| P2        | Full              | 267          | 51.3           | LOS E               | 0.8            | 0.8            | 0.95         | 0.95         | 68.0           | 20.0            | 0.29           |
| Nor       | th: Miller St (N  | )            |                |                     |                |                |              |              |                |                 |                |
| P3        | Full              | 273          | 51.3           | LOS E               | 0.8            | 0.8            | 0.95         | 0.95         | 68.0           | 20.0            | 0.29           |
| We        | st: Berry St (W   | ')           |                |                     |                |                |              |              |                |                 |                |
| P4        | Full              | 516          | 51.8           | LOS E               | 1.6            | 1.6            | 0.96         | 0.96         | 68.5           | 20.0            | 0.29           |

| All Pedestrians | 1473 | 51.6 | LOS E | 1.6 | 1.6 | 0.95 | 0.95 | 68.2 | 20.0 | 0.29 |
|-----------------|------|------|-------|-----|-----|------|------|------|------|------|
|-----------------|------|------|-------|-----|-----|------|------|------|------|------|

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Wednesday, 6 November 2024 4:33:31 РŇ

Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\03 SM C&SW\_VIC (Block 4).sip9

Site: VIC03 [VIC03 Miller St / McLaren St (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: VIC-N1 [VIC Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

TCS 1156

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 110 seconds (Site User-Given Phase Times)

| Vehic  | le M    | ovemen    | t Perfo      | orma         | nce             |              |        |       |          |          |          |       |              |                  |       |
|--------|---------|-----------|--------------|--------------|-----------------|--------------|--------|-------|----------|----------|----------|-------|--------------|------------------|-------|
| Mov    | Turn    | Mov       | Dem          | nand         | Ar              | rival        | Deg.   | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff.         | Aver.            | Aver. |
| U      |         | Class     | H<br>[ Total | lows<br>HV 1 | FI<br>[ Total ] | lows<br>HV/1 | Satn   | Delay | Service  | [ Veh    | Dist 1   | Que   | Stop<br>Rate | No. of<br>Cycles | Speed |
|        |         |           | veh/h        | %            | veh/h           | %            | v/c    | sec   |          | veh      | m        |       | i tato       | 0,0100           | km/h  |
| South  | : Mille | er St (S) |              |              |                 |              |        |       |          |          |          |       |              |                  |       |
| 1      | L2      | All MCs   | 127          | 3.3          | 127             | 3.3          | 0.101  | 11.8  | LOS A    | 2.2      | 15.5     | 0.34  | 0.58         | 0.34             | 34.3  |
| 2      | T1      | All MCs   | 397          | 8.5          | 397             | 8.5          | 0.437  | 13.1  | LOS A    | 11.8     | 88.6     | 0.56  | 0.51         | 0.56             | 32.6  |
| 3      | R2      | All MCs   | 31           | 3.4          | 31              | 3.4          | *0.437 | 27.6  | LOS B    | 11.8     | 88.6     | 0.56  | 0.51         | 0.56             | 26.9  |
| Appro  | ach     |           | 555          | 7.0          | 555             | 7.0          | 0.437  | 13.6  | LOS A    | 11.8     | 88.6     | 0.51  | 0.53         | 0.51             | 31.2  |
| East:  | McLa    | ren St (E | )            |              |                 |              |        |       |          |          |          |       |              |                  |       |
| 4      | L2      | All MCs   | 47           | 6.7          | 47              | 6.7          | 0.752  | 88.5  | LOS F    | 2.9      | 21.2     | 1.00  | 0.86         | 1.29             | 7.7   |
| 5      | T1      | All MCs   | 122          | 4.3          | 122             | 4.3          | *0.649 | 71.6  | LOS F    | 6.6      | 47.7     | 1.00  | 0.83         | 1.06             | 18.1  |
| Appro  | ach     |           | 169          | 5.0          | 169             | 5.0          | 0.752  | 76.3  | LOS F    | 6.6      | 47.7     | 1.00  | 0.84         | 1.12             | 12.3  |
| North  | Mille   | r St (N)  |              |              |                 |              |        |       |          |          |          |       |              |                  |       |
| 7      | L2      | All MCs   | 74           | 0.0          | 74              | 0.0          | 0.388  | 19.6  | LOS B    | 11.4     | 84.4     | 0.53  | 0.60         | 0.53             | 19.4  |
| 8      | T1      | All MCs   | 388          | 7.9          | 388             | 7.9          | 0.388  | 11.1  | LOS A    | 11.4     | 84.4     | 0.54  | 0.61         | 0.54             | 27.2  |
| 9      | R2      | All MCs   | 162          | 3.2          | 162             | 3.2          | 0.388  | 23.2  | LOS B    | 6.1      | 43.9     | 0.64  | 0.73         | 0.64             | 29.0  |
| Appro  | ach     |           | 624          | 5.7          | 624             | 5.7          | 0.388  | 15.2  | LOS B    | 11.4     | 84.4     | 0.56  | 0.64         | 0.56             | 26.6  |
| West:  | McLa    | ren St (V | V)           |              |                 |              |        |       |          |          |          |       |              |                  |       |
| 10     | L2      | All MCs   | 115          | 3.7          | 115             | 3.7          | 0.441  | 52.2  | LOS D    | 5.8      | 41.5     | 0.95  | 0.79         | 0.95             | 18.9  |
| 11     | T1      | All MCs   | 103          | 3.1          | 103             | 3.1          | 0.783  | 49.4  | LOS D    | 7.7      | 55.6     | 1.00  | 0.97         | 1.20             | 15.4  |
| 12     | R2      | All MCs   | 46           | 4.5          | 46              | 4.5          | *0.783 | 58.0  | LOS E    | 7.7      | 55.6     | 1.00  | 0.97         | 1.20             | 12.9  |
| Appro  | ach     |           | 264          | 3.6          | 264             | 3.6          | 0.783  | 52.1  | LOS D    | 7.7      | 55.6     | 0.98  | 0.89         | 1.09             | 16.7  |
| All Ve | hicles  |           | 1613         | 5.7          | 1613            | 5.7          | 0.783  | 27.1  | LOS B    | 11.8     | 88.6     | 0.66  | 0.66         | 0.69             | 22.9  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Peo | destrian Mov     | /ement | Perforr | nance    |         |         |       |      |        |        |       |
|-----|------------------|--------|---------|----------|---------|---------|-------|------|--------|--------|-------|
| Mov |                  | Dem.   | Aver.   | Level of | AVERAGE | BACK OF | Prop. | Eff. | Travel | Travel | Aver. |
| ID  | Crossing         | Flow   | Delay   | Service  | QUE     | UE      | Que   | Stop | Time   | Dist.  | Speed |
|     |                  |        |         |          | [Ped    | Dist ]  |       | Rate |        |        |       |
|     |                  | ped/h  | sec     |          | ped     | m       |       |      | sec    | m      | m/sec |
| Sou | th: Miller St (S | 5)     |         |          |         |         |       |      |        |        |       |
| P1  | Full             | 441    | 49.1    | LOS E    | 1.3     | 1.3     | 0.95  | 0.95 | 65.8   | 20.0   | 0.30  |

| East: McLaren St    | East: McLaren St (E) |      |       |     |     |      |      |      |      |      |  |  |  |  |  |
|---------------------|----------------------|------|-------|-----|-----|------|------|------|------|------|--|--|--|--|--|
| P2 Full             | 334                  | 48.9 | LOS E | 1.0 | 1.0 | 0.95 | 0.95 | 65.6 | 20.0 | 0.31 |  |  |  |  |  |
| North: Miller St (N | )                    |      |       |     |     |      |      |      |      |      |  |  |  |  |  |
| P3 Full             | 438                  | 49.1 | LOS E | 1.3 | 1.3 | 0.95 | 0.95 | 65.8 | 20.0 | 0.30 |  |  |  |  |  |
| West: McLaren St    | (W)                  |      |       |     |     |      |      |      |      |      |  |  |  |  |  |
| P4 Full             | 141                  | 48.5 | LOS E | 0.4 | 0.4 | 0.94 | 0.94 | 65.2 | 20.0 | 0.31 |  |  |  |  |  |
| All Pedestrians     | 1354                 | 49.0 | LOS E | 1.3 | 1.3 | 0.95 | 0.95 | 65.7 | 20.0 | 0.30 |  |  |  |  |  |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Wednesday, 6 November 2024 4:33:31 PM

Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\03 SM C&SW\_VIC (Block 4).sip9

Site: VIC04 [VIC04 Pacific Hwy / Miller St (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: VIC-N1 [VIC Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

### TCS 630

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 115 seconds (Network Site User-Given Phase Times)

| Vehicle Movement Performance |            |           |                  |      |                      |         |       |          |          |            |         |              |                  |       |
|------------------------------|------------|-----------|------------------|------|----------------------|---------|-------|----------|----------|------------|---------|--------------|------------------|-------|
| Mov                          | Turn       | Mov       | Dem              | and  | Arriva               | l Deg.  | Aver. | Level of | 95% Bacl | k Of Queue | e Prop. | Eff.         | Aver.            | Aver. |
| ID                           |            | Class     | H<br>Total I     | OWS  | Flow:<br>//H I Total | s Satn  | Delay | Service  | [ \/eh   | Dist 1     | Que     | Stop<br>Rate | No. of<br>Cycles | Speed |
|                              |            |           | veh/h            | %    | veh/h %              | v/c     | sec   |          | veh      | m          |         | Tate         | Cyclc3           | km/h  |
| South                        | : Mille    | er St (S) |                  |      |                      |         |       |          |          |            |         |              |                  |       |
| 1                            | L2         | All MCs   | 36               | 66.7 | 3 66.                | 0.398   | 25.1  | LOS B    | 6.8      | 56.7       | 0.88    | 0.75         | 0.88             | 20.9  |
| 1a                           | L1         | All MCs   | 952              | 25.6 | 95 25.0              | 0.398   | 29.0  | LOS C    | 6.8      | 56.7       | 0.88    | 0.75         | 0.88             | 12.6  |
| 2                            | T1         | All MCs   | 169 <sup>-</sup> | 13.0 | 169 13.0             | 0.663   | 50.3  | LOS D    | 10.1     | 77.3       | 0.95    | 0.81         | 0.97             | 11.7  |
| 3b                           | R3         | All MCs   | 64               | 6.6  | 64 6.0               | * 0.663 | 55.8  | LOS D    | 10.1     | 77.3       | 0.97    | 0.84         | 1.00             | 18.5  |
| Appro                        | ach        |           | 332 2            | 15.9 | 332 15.9             | 0.663   | 45.0  | LOS D    | 10.1     | 77.3       | 0.93    | 0.80         | 0.95             | 13.7  |
| South                        | East:      | Pacific H | wy (SE)          | )    |                      |         |       |          |          |            |         |              |                  |       |
| 21b                          | L3         | All MCs   | 173              | 4.3  | 173 4.3              | 0.823   | 40.2  | LOS C    | 8.7      | 62.4       | 0.78    | 0.93         | 1.01             | 24.1  |
| 21a                          | L1         | All MCs   | 61               | 0.0  | 61 0.0               | * 0.823 | 61.7  | LOS E    | 8.7      | 62.4       | 0.78    | 0.93         | 1.01             | 26.2  |
| 22                           | T1         | All MCs   | 860              | 4.0  | 860 4.0              | 0.754   | 40.1  | LOS C    | 22.3     | 161.5      | 0.97    | 0.86         | 0.99             | 15.4  |
| 23a                          | R1         | All MCs   | 455              | 6.3  | 455 6.3              | * 0.882 | 48.8  | LOS D    | 23.3     | 171.8      | 1.00    | 1.04         | 1.20             | 13.6  |
| Appro                        | ach        |           | 1548             | 4.6  | 1548 4.6             | 0.882   | 43.5  | LOS D    | 23.3     | 171.8      | 0.95    | 0.93         | 1.06             | 16.4  |
| North                        | Mille      | r St (N)  |                  |      |                      |         |       |          |          |            |         |              |                  |       |
| 7a                           | L1         | All MCs   | 982              | 24.7 | 98 24.1              | 0.097   | 6.1   | LOS A    | 1.1      | 9.1        | 0.21    | 0.44         | 0.21             | 38.1  |
| 8                            | T1         | All MCs   | 245              | 18.5 | 245 18.              | 0.405   | 17.1  | LOS B    | 4.1      | 33.5       | 0.49    | 0.42         | 0.49             | 26.6  |
| 9                            | R2         | All MCs   | 21               | 5.0  | 21 5.0               | 0.405   | 24.4  | LOS B    | 3.1      | 24.6       | 0.48    | 0.45         | 0.48             | 27.7  |
| 9b                           | R3         | All MCs   | 8 -              | 12.5 | 8 12.5               | 0.405   | 25.1  | LOS B    | 3.1      | 24.6       | 0.48    | 0.45         | 0.48             | 19.8  |
| Appro                        | ach        |           | 373 <sup>-</sup> | 19.2 | 373 19.2             | 0.405   | 14.8  | LOS B    | 4.1      | 33.5       | 0.41    | 0.43         | 0.41             | 29.0  |
| North                        | West:      | Pacific H | wy (NW           | /)   |                      |         |       |          |          |            |         |              |                  |       |
| 28                           | T1         | All MCs   | 274              | 54   | 274 54               | 0.405   | 29.1  | LOSIC    | 5.1      | 37.7       | 0.69    | 0.56         | 0.69             | 29.2  |
| 29a                          | R1         | All MCs   | 227              | 3.2  | 227 3.2              | 0.488   | 37.6  | LOS C    | 9.9      | 71.5       | 0.82    | 0.77         | 0.82             | 22.8  |
| Appro                        | ach        |           | 501              | 4.4  | 501 4.4              | 0.488   | 33.0  | LOS C    | 9.9      | 71.5       | 0.75    | 0.65         | 0.75             | 26.0  |
| A 11 \ 7                     | l. : . I . |           | 0754             | 7.0  | 0754 74              | 0.000   | 07.0  |          | 00.0     | 474.0      | 0.04    | 0.70         | 0.00             | 10.0  |
| All Ve                       | nicles     |           | 2754             | 7.9  | 2/54 /.9             | 0.882   | 37.9  | LOSIC    | 23.3     | 171.8      | 0.84    | 0.79         | 0.90             | 19.3  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian Mo      | vement       | Perform        | nance               |                                          |              |                      |                |                 |               |
|--------------------|--------------|----------------|---------------------|------------------------------------------|--------------|----------------------|----------------|-----------------|---------------|
| Mov<br>ID Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE BACK OF<br>QUEUE<br>[ Ped Dist ] | Prop.<br>Que | Eff.<br>Stop<br>Rate | Travel<br>Time | Travel<br>Dist. | Aver<br>Speed |

|       |                  | ped/h    | sec  |       | ped | m   |      |      | sec  | m    | m/sec |
|-------|------------------|----------|------|-------|-----|-----|------|------|------|------|-------|
| Sout  | th: Miller St (S | S)       |      |       |     |     |      |      |      |      |       |
| P1    | Full             | 544      | 51.9 | LOS E | 1.7 | 1.7 | 0.96 | 0.96 | 68.6 | 20.0 | 0.29  |
| Sout  | thEast: Pacifi   | c Hwy (S | E)   |       |     |     |      |      |      |      |       |
| P5    | Full             | 993      | 52.9 | LOS E | 3.2 | 3.2 | 0.98 | 0.98 | 69.6 | 20.0 | 0.29  |
| Nort  | h: Miller St (N  | 1)       |      |       |     |     |      |      |      |      |       |
| P3    | Full             | 1648     | 54.5 | LOS E | 5.4 | 5.4 | 1.01 | 1.01 | 71.1 | 20.0 | 0.28  |
| Nort  | hWest: Pacifi    | c Hwy (N | IW)  |       |     |     |      |      |      |      |       |
| P7    | Full             | 758      | 52.4 | LOS E | 2.4 | 2.4 | 0.97 | 0.97 | 69.0 | 20.0 | 0.29  |
| All P | Pedestrians      | 3943     | 53.3 | LOS E | 5.4 | 5.4 | 0.99 | 0.99 | 70.0 | 20.0 | 0.29  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Wednesday, 6 November 2024 4:33:31 PM

Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\03 SM C&SW\_VIC (Block 4).sip9

Site: VIC01 [VIC01 Pacific Hwy / Berry St (Site Folder: Block 4 Model - 2024 PM Peak )]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101 [VIC Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

### TCS 1206

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Network Site User-Given Phase Times)

| Vehic     | le M                        | ovemen       | t Perfo          | orma         | nce              |              |              |                |                     |               |             |              |              |                 |                |
|-----------|-----------------------------|--------------|------------------|--------------|------------------|--------------|--------------|----------------|---------------------|---------------|-------------|--------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn                        | Mov<br>Class | Dem<br>F         | nand<br>Iows | Ar<br>Fl         | rival<br>ows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back      | Of Queue    | Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |                             |              | [ lotal<br>veh/h | HV J<br>%    | l lotal<br>veh/h | HV J<br>%    | v/c          | sec            |                     | [ Veh.<br>veh | Dist J<br>m |              | Rate         | Cycles          | km/h           |
| South     | SouthEast: Pacific Hwy (SE) |              |                  |              |                  |              |              |                |                     |               |             |              |              |                 |                |
| 1         | L2                          | All MCs      | 26               | 0.0          | 26               | 0.0          | 0.057        | 15.1           | LOS B               | 2.4           | 17.5        | 0.74         | 0.37         | 0.74            | 31.6           |
| 2         | T1                          | All MCs      | 767              | 5.5          | 767              | 5.5          | 0.283        | 3.4            | LOS A               | 5.0           | 36.3        | 0.25         | 0.20         | 0.25            | 52.2           |
| 23b       | R3                          | All MCs      | 200              | 4.2          | 200              | 4.2          | *0.855       | 48.8           | LOS D               | 7.6           | 55.0        | 1.00         | 0.92         | 1.17            | 13.9           |
| Appro     | ach                         |              | 994              | 5.1          | 994              | 5.1          | 0.855        | 12.9           | LOS A               | 7.6           | 55.0        | 0.41         | 0.35         | 0.45            | 37.9           |
| North     | Nest:                       | Pacific H    | wy (NV           | V)           |                  |              |              |                |                     |               |             |              |              |                 |                |
| 27a       | L1                          | All MCs      | 436              | 6.8          | 436              | 6.8          | 0.153        | 7.4            | LOS A               | 2.4           | 17.5        | 0.24         | 0.64         | 0.24            | 35.7           |
| 8         | T1                          | All MCs      | 365              | 3.5          | 365              | 3.5          | *0.461       | 17.9           | LOS B               | 11.0          | 79.5        | 0.76         | 0.68         | 0.76            | 22.5           |
| Appro     | ach                         |              | 801              | 5.3          | 801              | 5.3          | 0.461        | 12.2           | LOS A               | 11.0          | 79.5        | 0.48         | 0.66         | 0.48            | 28.2           |
| South     | West:                       | Berry St     | (SW)             |              |                  |              |              |                |                     |               |             |              |              |                 |                |
| 10        | L2                          | All MCs      | 38               | 2.8          | 38               | 2.8          | 0.066        | 4.0            | LOS A               | 0.2           | 1.4         | 0.11         | 0.49         | 0.11            | 38.1           |
| Appro     | ach                         |              | 38               | 2.8          | 38               | 2.8          | 0.066        | 4.0            | LOS A               | 0.2           | 1.4         | 0.11         | 0.49         | 0.11            | 38.1           |
| All Ve    | hicles                      |              | 1833             | 5.1          | 1833             | 5.1          | 0.855        | 12.4           | LOS A               | 11.0          | 79.5        | 0.43         | 0.49         | 0.45            | 34.7           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pec       | lestrian Mov    | /ement       | Perforr        | nance               |                |                          |              |                      |                |                 |                |
|-----------|-----------------|--------------|----------------|---------------------|----------------|--------------------------|--------------|----------------------|----------------|-----------------|----------------|
| Mo∖<br>ID | ,<br>Crossing   | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>EUE<br>Dist 1 | Prop.<br>Que | Eff.<br>Stop<br>Rate | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|           |                 | ped/h        | sec            |                     | ped            | m                        |              | Trate                | sec            | m               | m/sec          |
| Sou       | thEast: Pacifi  | c Hwy (S     | E)             |                     |                |                          |              |                      |                |                 |                |
| P1        | Full            | 228          | 43.7           | LOS E               | 0.6            | 0.6                      | 0.94         | 0.94                 | 60.3           | 20.0            | 0.33           |
| Eas       | t: Berry St (E) |              |                |                     |                |                          |              |                      |                |                 |                |
| P2        | Full            | 171          | 43.6           | LOS E               | 0.5            | 0.5                      | 0.94         | 0.94                 | 210.2          | 200.0           | 0.95           |
| Nor       | thWest: Pacifi  | c Hwy (N     | 1W)            |                     |                |                          |              |                      |                |                 |                |
| P3E       | Slip/<br>Bypass | 1            | 43.2           | LOS E               | 0.0            | 0.0                      | 0.93         | 0.93                 | 59.9           | 20.0            | 0.33           |
| Sou       | thWest: Berry   | St (SW)      | )              |                     |                |                          |              |                      |                |                 |                |
| P4        | Full            | 217          | 22.1           | LOS C               | 0.4            | 0.4                      | 0.89         | 0.89                 | 38.8           | 20.0            | 0.52           |

| All Pedestrians | 617 | 36.1 | LOS D | 0.6 | 0.6 | 0.92 | 0.92 | 94.2 | 69.8 | 0.74 |
|-----------------|-----|------|-------|-----|-----|------|------|------|------|------|
|-----------------|-----|------|-------|-----|-----|------|------|------|------|------|

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Wednesday, 6 November 2024 4:33:25 РŇ

Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\03 SM C&SW\_VIC (Block 4).sip9

Site: VIC02 [VIC02 Miller St / Berry St (Site Folder: Block 4 Model - 2024 PM Peak )] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101 [VIC Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

### TCS 874

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Network Site User-Given Phase Times)

| Vehic     | le M    | ovemen       | t Perfo                         | orma                      | nce                         |                            |              |                |                     |                           |                         |                |                      |                           |                        |
|-----------|---------|--------------|---------------------------------|---------------------------|-----------------------------|----------------------------|--------------|----------------|---------------------|---------------------------|-------------------------|----------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn    | Mov<br>Class | Dem<br>Fl<br>[ Total I<br>veb/b | nand<br>lows<br>HV ]<br>% | Ar<br>F<br>[ Total<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Mille | er St (S)    |                                 |                           |                             |                            |              |                |                     |                           |                         |                |                      |                           |                        |
| 2         | T1      | All MCs      | 361 <sup>-</sup>                | 12.8                      | 361                         | 12.8                       | 0.360        | 12.6           | LOS A               | 9.7                       | 75.3                    | 0.60           | 0.52                 | 0.60                      | 23.5                   |
| 3         | R2      | All MCs      | 248                             | 5.1                       | 248                         | 5.1                        | *0.639       | 28.6           | LOS C               | 7.1                       | 51.7                    | 0.88           | 0.89                 | 0.88                      | 20.7                   |
| Appro     | ach     |              | 609                             | 9.7                       | 609                         | 9.7                        | 0.639        | 19.1           | LOS B               | 9.7                       | 75.3                    | 0.71           | 0.67                 | 0.71                      | 21.9                   |
| North     | Mille   | r St (N)     |                                 |                           |                             |                            |              |                |                     |                           |                         |                |                      |                           |                        |
| 7         | L2      | All MCs      | 192                             | 3.8                       | 192                         | 3.8                        | *0.826       | 56.2           | LOS D               | 10.2                      | 73.8                    | 1.00           | 0.98                 | 1.25                      | 14.9                   |
| 8         | T1      | All MCs      | 175                             | 9.6                       | 175                         | 9.6                        | 0.409        | 35.0           | LOS C               | 7.3                       | 55.3                    | 0.89           | 0.73                 | 0.89                      | 14.2                   |
| Appro     | ach     |              | 366                             | 6.6                       | 366                         | 6.6                        | 0.826        | 46.1           | LOS D               | 10.2                      | 73.8                    | 0.95           | 0.86                 | 1.08                      | 14.6                   |
| West:     | Berry   | / St (W)     |                                 |                           |                             |                            |              |                |                     |                           |                         |                |                      |                           |                        |
| 10        | L2      | All MCs      | 125                             | 10.1                      | 125                         | 10.1                       | 0.481        | 50.4           | LOS D               | 9.3                       | 69.2                    | 1.00           | 0.84                 | 1.00                      | 8.0                    |
| 11        | T1      | All MCs      | 565                             | 2.4                       | 565                         | 2.4                        | 0.481        | 38.0           | LOS C               | 12.8                      | 91.6                    | 0.99           | 0.82                 | 0.99                      | 15.7                   |
| 12        | R2      | All MCs      | 364                             | 47.1                      | 36                          | 47.1                       | *0.481       | 53.8           | LOS D               | 11.5                      | 86.9                    | 1.00           | 0.83                 | 1.00                      | 8.7                    |
| Appro     | ach     |              | 726                             | 5.9                       | 726                         | 5.9                        | 0.481        | 40.9           | LOS C               | 12.8                      | 91.6                    | 0.99           | 0.82                 | 0.99                      | 14.3                   |
| All Ve    | hicles  | ;            | 1702                            | 7.4                       | 1702                        | 7.4                        | 0.826        | 34.2           | LOS C               | 12.8                      | 91.6                    | 0.88           | 0.78                 | 0.91                      | 16.4                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pec      | lestrian Mov      | ement | Perform        | nance    |         |        |       |              |                |                |       |
|----------|-------------------|-------|----------------|----------|---------|--------|-------|--------------|----------------|----------------|-------|
| Mo∿<br>⊓ | ,<br>Crossing     | Dem.  | Aver.<br>Delav | Level of | AVERAGE |        | Prop. | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist | Aver. |
|          |                   |       | Delay          | Cervice  | [Ped    | Dist ] | Que   | Rate         | TIME           | Dist.          |       |
|          |                   | ped/h | sec            |          | ped     | m      |       |              | sec            | m              | m/sec |
| Sou      | th: Miller St (S  | )     |                |          |         |        |       |              |                |                |       |
| P1       | Full              | 398   | 44.0           | LOS E    | 1.1     | 1.1    | 0.95  | 0.95         | 60.6           | 20.0           | 0.33  |
| Eas      | t: Berry St (E)   |       |                |          |         |        |       |              |                |                |       |
| P2       | Full              | 274   | 43.7           | LOS E    | 0.7     | 0.7    | 0.94  | 0.94         | 60.4           | 20.0           | 0.33  |
| Nor      | th: Miller St (N) | 1     |                |          |         |        |       |              |                |                |       |
| P3       | Full              | 252   | 43.7           | LOS E    | 0.7     | 0.7    | 0.94  | 0.94         | 60.4           | 20.0           | 0.33  |
| Wes      | st: Berry St (W)  | )     |                |          |         |        |       |              |                |                |       |
| P4       | Full              | 677   | 44.5           | LOS E    | 1.8     | 1.8    | 0.96  | 0.96         | 61.2           | 20.0           | 0.33  |

| All Pedestrians | 1600 | 44.1 | LOS E | 1.8 | 1.8 | 0.95 | 0.95 | 60.8 | 20.0 | 0.33 |
|-----------------|------|------|-------|-----|-----|------|------|------|------|------|
|-----------------|------|------|-------|-----|-----|------|------|------|------|------|

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Wednesday, 6 November 2024 4:33:25 РŇ

Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\03 SM C&SW\_VIC (Block 4).sip9

Site: VIC03 [VIC03 Miller St / McLaren St (Site Folder: Block 4 Model - 2024 PM Peak )]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101 [VIC Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

### TCS 1156

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 75 seconds (Site User-Given Phase Times)

| Vehic  | le M     | ovemen     | t Perfc        | orma      | nce            |           |             |       |          |               |            |       |      |        |               |
|--------|----------|------------|----------------|-----------|----------------|-----------|-------------|-------|----------|---------------|------------|-------|------|--------|---------------|
| Mov    | Turn     | Mov        | Dem            | hand      | Ar             | rival     | Deg.        | Aver. | Level of | 95% Back      | Of Queue   | Prop. | Eff. | Aver.  | Aver.         |
|        |          | Class      | Total<br>veh/h | HV ]<br>% | Total<br>veh/h | HV ]<br>% | Saur<br>v/c | sec   | Service  | [ Veh.<br>veh | Dist]<br>m | Que   | Rate | Cycles | speed<br>km/h |
| South  | : Mille  | er St (S)  |                |           |                |           |             |       |          |               |            |       |      |        |               |
| 1      | L2       | All MCs    | 109            | 3.8       | 109            | 3.8       | 0.290       | 14.7  | LOS B    | 5.3           | 40.5       | 0.60  | 0.59 | 0.60   | 32.0          |
| 2      | T1       | All MCs    | 339            | 14.9      | 339            | 14.9      | 0.290       | 10.2  | LOS A    | 5.3           | 40.5       | 0.60  | 0.56 | 0.60   | 32.5          |
| 3      | R2       | All MCs    | 38             | 11.1      | 38             | 11.1      | 0.290       | 21.2  | LOS B    | 4.8           | 37.5       | 0.60  | 0.54 | 0.60   | 27.1          |
| Appro  | ach      |            | 486            | 12.1      | 486            | 12.1      | 0.290       | 12.1  | LOS A    | 5.3           | 40.5       | 0.60  | 0.57 | 0.60   | 32.0          |
| East:  | McLa     | ren St (E) | )              |           |                |           |             |       |          |               |            |       |      |        |               |
| 4      | L2       | All MCs    | 38             | 0.0       | 38             | 0.0       | 0.255       | 42.3  | LOS C    | 1.4           | 9.8        | 0.97  | 0.72 | 0.97   | 11.6          |
| 5      | T1       | All MCs    | 98             | 0.0       | 98             | 0.0       | *0.269      | 28.9  | LOS C    | 3.2           | 22.1       | 0.90  | 0.70 | 0.90   | 25.3          |
| Appro  | Approach |            |                | 0.0       | 136            | 0.0       | 0.269       | 32.7  | LOS C    | 3.2           | 22.1       | 0.92  | 0.71 | 0.92   | 21.7          |
| North: | Mille    | r St (N)   |                |           |                |           |             |       |          |               |            |       |      |        |               |
| 7      | L2       | All MCs    | 57             | 1.9       | 57             | 1.9       | 0.197       | 19.2  | LOS B    | 3.4           | 26.2       | 0.58  | 0.62 | 0.58   | 19.1          |
| 8      | T1       | All MCs    | 317            | 16.6      | 317            | 16.6      | 0.476       | 12.5  | LOS A    | 7.7           | 59.1       | 0.68  | 0.68 | 0.68   | 24.6          |
| 9      | R2       | All MCs    | 98             | 0.0       | 98             | 0.0       | *0.476      | 25.9  | LOS B    | 7.7           | 59.1       | 0.73  | 0.72 | 0.73   | 31.3          |
| Appro  | ach      |            | 472            | 11.4      | 472            | 11.4      | 0.476       | 16.1  | LOS B    | 7.7           | 59.1       | 0.68  | 0.68 | 0.68   | 25.6          |
| West:  | McLa     | aren St (V | /)             |           |                |           |             |       |          |               |            |       |      |        |               |
| 10     | L2       | All MCs    | 79             | 4.0       | 79             | 4.0       | 0.300       | 35.9  | LOS C    | 2.7           | 19.3       | 0.92  | 0.76 | 0.92   | 23.1          |
| 11     | T1       | All MCs    | 64             | 1.6       | 64             | 1.6       | 0.440       | 30.0  | LOS C    | 3.6           | 25.4       | 0.96  | 0.82 | 0.96   | 20.6          |
| 12     | R2       | All MCs    | 41             | 2.6       | 41             | 2.6       | *0.440      | 38.1  | LOS C    | 3.6           | 25.4       | 0.96  | 0.82 | 0.96   | 17.7          |
| Appro  | ach      |            | 184            | 2.9       | 184            | 2.9       | 0.440       | 34.3  | LOS C    | 3.6           | 25.4       | 0.94  | 0.79 | 0.94   | 21.3          |
| All Ve | hicles   |            | 1278           | 9.2       | 1278           | 9.2       | 0.476       | 19.0  | LOS B    | 7.7           | 59.1       | 0.71  | 0.66 | 0.71   | 26.7          |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Peo | destrian Mo     | vement | Perform | nance    |         |        |       |      |        |        |       |
|-----|-----------------|--------|---------|----------|---------|--------|-------|------|--------|--------|-------|
| Mov | /<br>Crossina   | Dem.   | Aver.   | Level of | AVERAGE |        | Prop. | Eff. | Travel | Travel | Aver. |
| שו  | Creecing        | FIOW   | Delay   | Service  | [Ped    | Dist ] | Que   | Rate | Time   | DISI.  | Speed |
|     |                 | ped/h  | sec     |          | ped     | m      |       |      | sec    | m      | m/sec |
| Sou | th: Miller St ( | S)     |         |          |         |        |       |      |        |        |       |
| P1  | Full            | 273    | 31.2    | LOS D    | 0.5     | 0.5    | 0.92  | 0.92 | 47.8   | 20.0   | 0.42  |
| Eas | t: McLaren St   | :(E)   |         |          |         |        |       |      |        |        |       |

| P2 Full             | 439  | 31.4 | LOS D | 0.9 | 0.9 | 0.92 | 0.92 | 48.1 | 20.0 | 0.42 |
|---------------------|------|------|-------|-----|-----|------|------|------|------|------|
| North: Miller St (N | )    |      |       |     |     |      |      |      |      |      |
| P3 Full             | 414  | 31.4 | LOS D | 0.8 | 0.8 | 0.92 | 0.92 | 48.0 | 20.0 | 0.42 |
| West: McLaren St    | (W)  |      |       |     |     |      |      |      |      |      |
| P4 Full             | 404  | 31.4 | LOS D | 0.8 | 0.8 | 0.92 | 0.92 | 48.0 | 20.0 | 0.42 |
| All Pedestrians     | 1529 | 31.3 | LOS D | 0.9 | 0.9 | 0.92 | 0.92 | 48.0 | 20.0 | 0.42 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Wednesday, 6 November 2024 4:33:25 PM

Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\03 SM C&SW\_VIC (Block 4).sip9

Site: VIC04 [VIC04 Pacific Hwy / Miller St (Site Folder: Block 4 Model - 2024 PM Peak )]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101 [VIC Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

TCS 630

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Network Site User-Given Phase Times)

| Vehic  | cle M   | ovemen    | t Perfo       | orma         | ince           |            |        |       |          |          |          |       |              |                  |       |
|--------|---------|-----------|---------------|--------------|----------------|------------|--------|-------|----------|----------|----------|-------|--------------|------------------|-------|
| Mov    | Turn    | Mov       | Dem           | nand         | Arri           | ival       | Deg.   | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff.         | Aver.            | Aver. |
| ID     |         | Class     | Fi<br>[ Total | IOWS<br>HV 1 | FIO<br>Total H | ws<br>IV 1 | Sath   | Delay | Service  | [ Veh    | Dist 1   | Que   | Stop<br>Rate | NO. OF<br>Cvcles | Speed |
|        |         |           | veh/h         | %            | veh/h          | %          | v/c    | sec   |          | veh      | m        |       | 11010        |                  | km/h  |
| South  | : Mille | er St (S) |               |              |                |            |        |       |          |          |          |       |              |                  |       |
| 1      | L2      | All MCs   | 5             | 0.0          | 5              | 0.0        | 0.467  | 27.3  | LOS B    | 6.6      | 53.0     | 0.92  | 0.77         | 0.92             | 21.1  |
| 1a     | L1      | All MCs   | 97            | 17.4         | 97 1           | 7.4        | 0.467  | 32.0  | LOS C    | 6.6      | 53.0     | 0.92  | 0.77         | 0.92             | 12.8  |
| 2      | T1      | All MCs   | 246           | 16.7         | 246 1          | 6.7        | 0.778  | 48.1  | LOS D    | 11.3     | 89.8     | 0.98  | 0.92         | 1.11             | 11.7  |
| 3b     | R3      | All MCs   | 23            | 13.6         | 23 1           | 3.6        | *0.778 | 61.4  | LOS E    | 11.3     | 89.8     | 1.00  | 0.96         | 1.16             | 18.7  |
| Appro  | ach     |           | 372           | 16.4         | 372 1          | 6.4        | 0.778  | 44.4  | LOS D    | 11.3     | 89.8     | 0.97  | 0.88         | 1.06             | 12.7  |
| South  | East:   | Pacific H | wy (SE        | )            |                |            |        |       |          |          |          |       |              |                  |       |
| 21b    | L3      | All MCs   | 146           | 7.2          | 146            | 7.2        | 0.607  | 17.5  | LOS B    | 3.6      | 26.7     | 0.59  | 0.76         | 0.59             | 35.9  |
| 21a    | L1      | All MCs   | 57            | 1.9          | 57             | 1.9        | *0.607 | 28.5  | LOS C    | 3.6      | 26.7     | 0.59  | 0.76         | 0.59             | 36.7  |
| 22     | T1      | All MCs   | 680           | 3.6          | 680            | 3.6        | 0.488  | 26.1  | LOS B    | 12.8     | 92.0     | 0.82  | 0.71         | 0.82             | 20.8  |
| 23a    | R1      | All MCs   | 363           | 4.9          | 363 4          | 4.9        | *0.799 | 36.1  | LOS C    | 12.7     | 93.0     | 0.99  | 0.97         | 1.11             | 17.1  |
| Appro  | ach     |           | 1246          | 4.3          | 1246           | 4.3        | 0.799  | 28.1  | LOS B    | 12.8     | 93.0     | 0.83  | 0.79         | 0.87             | 22.2  |
| North  | Mille   | r St (N)  |               |              |                |            |        |       |          |          |          |       |              |                  |       |
| 7a     | L1      | All MCs   | 60            | 35.1         | 60 3           | 5.1        | 0.072  | 7.7   | LOS A    | 0.7      | 6.8      | 0.27  | 0.47         | 0.27             | 36.6  |
| 8      | T1      | All MCs   | 120           | 7.9          | 120            | 7.9        | 0.294  | 12.0  | LOS A    | 1.8      | 13.4     | 0.36  | 0.31         | 0.36             | 29.6  |
| 9      | R2      | All MCs   | 13            | 8.3          | 13             | 8.3        | 0.294  | 18.7  | LOS B    | 0.8      | 6.0      | 0.36  | 0.49         | 0.36             | 28.7  |
| 9b     | R3      | All MCs   | 18            | 11.8         | 18 1           | 1.8        | 0.294  | 19.4  | LOS B    | 0.8      | 6.0      | 0.36  | 0.49         | 0.36             | 21.0  |
| Appro  | ach     |           | 211           | 16.0         | 211 1          | 6.0        | 0.294  | 11.8  | LOS A    | 1.8      | 13.4     | 0.33  | 0.38         | 0.33             | 30.7  |
| North  | West:   | Pacific H | wy (NV        | V)           |                |            |        |       |          |          |          |       |              |                  |       |
| 28     | T1      | All MCs   | 216           | 4.9          | 216            | 4.9        | 0.252  | 22.1  | LOS B    | 3.1      | 22.4     | 0.61  | 0.48         | 0.61             | 33.3  |
| 29a    | R1      | All MCs   | 180           | 1.8          | 180            | 1.8        | 0.505  | 52.4  | LOS D    | 8.9      | 63.2     | 1.00  | 0.86         | 1.00             | 18.8  |
| Appro  | ach     |           | 396           | 3.5          | 396            | 3.5        | 0.505  | 35.9  | LOS C    | 8.9      | 63.2     | 0.79  | 0.65         | 0.79             | 24.8  |
| All Ve | hicles  |           | 2224          | 7.3          | 2224           | 7.3        | 0.799  | 30.7  | LOS C    | 12.8     | 93.0     | 0.80  | 0.74         | 0.83             | 21.5  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian Mo      | Pedestrian Movement Performance |                |                     |                |             |              |              |                |                 |                |  |  |  |  |  |
|--------------------|---------------------------------|----------------|---------------------|----------------|-------------|--------------|--------------|----------------|-----------------|----------------|--|--|--|--|--|
| Mov<br>ID Crossing | Dem.<br>Flow                    | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF     | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |  |  |  |  |  |
|                    | ped/h                           | sec            |                     | [ Ped<br>ped   | Dist ]<br>m |              | Rate         | sec            | m               | m/sec          |  |  |  |  |  |

| South: Miller St (S | S)        |      |       |     |     |      |      |      |      |      |
|---------------------|-----------|------|-------|-----|-----|------|------|------|------|------|
| P1 Full             | 587       | 44.3 | LOS E | 1.6 | 1.6 | 0.95 | 0.95 | 61.0 | 20.0 | 0.33 |
| SouthEast: Pacifi   | c Hwy (S  | E)   |       |     |     |      |      |      |      |      |
| P5 Full             | 458       | 44.1 | LOS E | 1.2 | 1.2 | 0.95 | 0.95 | 60.8 | 20.0 | 0.33 |
| North: Miller St (N | V)        |      |       |     |     |      |      |      |      |      |
| P3 Full             | 992       | 45.1 | LOS E | 2.7 | 2.7 | 0.97 | 0.97 | 61.8 | 20.0 | 0.32 |
| NorthWest: Pacifi   | ic Hwy (N | W)   |       |     |     |      |      |      |      |      |
| P7 Full             | 708       | 44.6 | LOS E | 1.9 | 1.9 | 0.96 | 0.96 | 61.2 | 20.0 | 0.33 |
| All Pedestrians     | 2745      | 44.6 | LOS E | 2.7 | 2.7 | 0.96 | 0.96 | 61.3 | 20.0 | 0.33 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Wednesday, 6 November 2024 4:33:25 PM

vince control of the second se
Site: VIC01 [VIC01 Pacific Hwy / Berry St (Site Folder: Block 4 Model - 2024 Weekend Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101 [VIC Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

### TCS 1206

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehic     | cle M                | ovemen       | t Perfo             | orma                 | nce                 |                       |              |                |                     |                    |                    |              |                      |                           |                |
|-----------|----------------------|--------------|---------------------|----------------------|---------------------|-----------------------|--------------|----------------|---------------------|--------------------|--------------------|--------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn                 | Mov<br>Class | Dem<br>F<br>[ Total | nand<br>lows<br>HV ] | Ar<br>Fl<br>[ Total | rival<br>lows<br>HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh. | Of Queue<br>Dist ] | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
|           |                      |              | veh/h               | %                    | veh/h               | %                     | v/c          | sec            |                     | veh                | m                  |              |                      |                           | km/h           |
| South     | East:                | Pacific H    | lwy (SE             | )                    |                     |                       |              |                |                     |                    |                    |              |                      |                           |                |
| 1         | L2                   | All MCs      | 18                  | 0.0                  | 18                  | 0.0                   | 0.049        | 4.7            | LOS A               | 0.3                | 1.9                | 0.10         | 0.20                 | 0.10                      | 42.2           |
| 2         | T1                   | All MCs      | 669                 | 2.7                  | 669                 | 2.7                   | 0.230        | 1.2            | LOS A               | 1.6                | 11.4               | 0.10         | 0.10                 | 0.10                      | 56.9           |
| 23b       | R3                   | All MCs      | 92                  | 2.3                  | 92                  | 2.3                   | *0.649       | 54.2           | LOS D               | 4.3                | 30.5               | 1.00         | 0.82                 | 1.09                      | 12.8           |
| Appro     | Approach 779 2.6 779 |              |                     |                      |                     |                       | 0.649        | 7.5            | LOS A               | 4.3                | 30.5               | 0.21         | 0.19                 | 0.22                      | 45.1           |
| North     | West:                | Pacific H    | łwy (NV             | V)                   |                     |                       |              |                |                     |                    |                    |              |                      |                           |                |
| 27a       | L1                   | All MCs      | 457                 | 3.2                  | 457                 | 3.2                   | 0.161        | 8.0            | LOS A               | 2.6                | 18.8               | 0.28         | 0.65                 | 0.28                      | 34.6           |
| 8         | T1                   | All MCs      | 348                 | 0.9                  | 348                 | 0.9                   | 0.325        | 11.5           | LOS A               | 8.2                | 57.9               | 0.58         | 0.50                 | 0.58                      | 29.0           |
| Appro     | ach                  |              | 805                 | 2.2                  | 805                 | 2.2                   | 0.325        | 9.5            | LOS A               | 8.2                | 57.9               | 0.41         | 0.59                 | 0.41                      | 31.9           |
| South     | West                 | Berry St     | : (SW)              |                      |                     |                       |              |                |                     |                    |                    |              |                      |                           |                |
| 10        | L2                   | All MCs      | 34                  | 0.0                  | 34                  | 0.0                   | 0.024        | 4.4            | LOS A               | 0.1                | 0.7                | 0.14         | 0.50                 | 0.14                      | 38.1           |
| Appro     | ach                  |              | 34                  | 0.0                  | 34                  | 0.0                   | 0.024        | 4.4            | LOS A               | 0.1                | 0.7                | 0.14         | 0.50                 | 0.14                      | 38.1           |
| All Ve    | hicles               |              | 1618                | 2.3                  | 1618                | 2.3                   | 0.649        | 8.4            | LOS A               | 8.2                | 57.9               | 0.31         | 0.39                 | 0.31                      | 39.8           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pec       | lestrian Mov    | vement       | Perform        | nance               |                |                |              |              |                |                 |                |
|-----------|-----------------|--------------|----------------|---------------------|----------------|----------------|--------------|--------------|----------------|-----------------|----------------|
| Mo∨<br>ID | ,<br>Crossing   | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>EUE | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|           |                 | ped/h        | sec            |                     | [ Ped<br>ped   | Dist ]<br>m    |              | Rate         | sec            | m               | m/sec          |
| Sou       | thEast: Pacifi  | c Hwy (S     | SE)            |                     |                |                |              |              |                |                 |                |
| P1        | Full            | 122          | 38.5           | LOS D               | 0.3            | 0.3            | 0.93         | 0.93         | 55.1           | 20.0            | 0.36           |
| Eas       | t: Berry St (E) |              |                |                     |                |                |              |              |                |                 |                |
| P2        | Full            | 153          | 38.5           | LOS D               | 0.4            | 0.4            | 0.93         | 0.93         | 205.2          | 200.0           | 0.97           |
| Nor       | thWest: Pacifi  | c Hwy (N     | W)             |                     |                |                |              |              |                |                 |                |
| P3E       | Slip/<br>Bypass | 1            | 38.3           | LOS D               | 0.0            | 0.0            | 0.92         | 0.92         | 54.9           | 20.0            | 0.36           |
| Sou       | thWest: Berry   | St (SW)      | )              |                     |                |                |              |              |                |                 |                |
| P4        | Full            | 142          | 1.6            | LOS A               | 0.0            | 0.0            | 0.27         | 0.27         | 18.3           | 20.0            | 1.09           |

| All Pedestrians | 418 | 26.0 | LOS C | 0.4 | 0.4 | 0.70 | 0.70 | 97.4 | 85.7 | 0.88 |
|-----------------|-----|------|-------|-----|-----|------|------|------|------|------|
|-----------------|-----|------|-------|-----|-----|------|------|------|------|------|

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Wednesday, 6 November 2024 4:33:20 РŇ

Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\03 SM C&SW\_VIC (Block 4).sip9

Site: VIC02 [VIC02 Miller St / Berry St (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101 [VIC Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

### TCS 874

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehic     | le M    | ovemen       | t Perfo             | orma                 | nce                 |                       |              |                |                     |                    |                    |                |                      |                           |                |
|-----------|---------|--------------|---------------------|----------------------|---------------------|-----------------------|--------------|----------------|---------------------|--------------------|--------------------|----------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn    | Mov<br>Class | Dem<br>F<br>[ Total | nand<br>lows<br>HV ] | Ar<br>Fl<br>[ Total | rival<br>lows<br>HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh. | Of Queue<br>Dist ] | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| South     | · Mille | er St (S)    | veh/h               | %                    | veh/h               | %                     | V/C          | sec            | _                   | veh                | m                  | _              | _                    | _                         | km/h           |
| 0         | . mine  |              | 000                 | <b>F</b> 0           | 000                 | <b>F</b> 0            | 0.000        | 47.0           |                     | 0.4                | 00.4               | 0.70           | 0.05                 | 0.70                      | 40.0           |
| 2         | 11      |              | 293                 | 5.0                  | 293                 | 5.0                   | 0.682        | 17.2           | LOSB                | 9.4                | 69.1               | 0.76           | 0.65                 | 0.76                      | 18.9           |
| 3         | R2      | All MCs      | 199                 | 5.3                  | 199                 | 5.3                   | *0.682       | 34.3           | LOS C               | 9.4                | 69.1               | 0.88           | 0.93                 | 0.91                      | 20.2           |
| Appro     | ach     |              | 492                 | 5.1                  | 492                 | 5.1                   | 0.682        | 24.1           | LOS B               | 9.4                | 69.1               | 0.81           | 0.76                 | 0.82                      | 19.6           |
| North     | Mille   | r St (N)     |                     |                      |                     |                       |              |                |                     |                    |                    |                |                      |                           |                |
| 7         | L2      | All MCs      | 119                 | 1.8                  | 119                 | 1.8                   | 0.839        | 60.6           | LOS E               | 5.9                | 42.0               | 1.00           | 1.02                 | 1.38                      | 15.0           |
| 8         | T1      | All MCs      | 211                 | 5.5                  | 211                 | 5.5                   | 0.609        | 40.8           | LOS C               | 8.7                | 63.4               | 0.96           | 0.80                 | 0.96                      | 13.8           |
| Appro     | ach     |              | 329                 | 4.2                  | 329                 | 4.2                   | 0.839        | 48.0           | LOS D               | 8.7                | 63.4               | 0.98           | 0.87                 | 1.11                      | 13.5           |
| West:     | Berry   | st (W)       |                     |                      |                     |                       |              |                |                     |                    |                    |                |                      |                           |                |
| 10        | L2      | All MCs      | 82                  | 1.3                  | 82                  | 1.3                   | 0.192        | 37.8           | LOS C               | 3.3                | 23.1               | 0.94           | 0.76                 | 0.94                      | 9.2            |
| 11        | T1      | All MCs      | 505                 | 1.3                  | 505                 | 1.3                   | 0.431        | 30.3           | LOS C               | 10.5               | 74.6               | 0.93           | 0.78                 | 0.93                      | 18.2           |
| 12        | R2      | All MCs      | 25                  | 37.5                 | 25                  | 37.5                  | *0.431       | 44.1           | LOS D               | 10.1               | 73.6               | 0.95           | 0.79                 | 0.95                      | 10.5           |
| Appro     | ach     |              | 613                 | 2.7                  | 613                 | 2.7                   | 0.431        | 31.9           | LOS C               | 10.5               | 74.6               | 0.93           | 0.78                 | 0.93                      | 16.9           |
| All Ve    | hicles  |              | 1434                | 3.9                  | 1434                | 3.9                   | 0.839        | 32.9           | LOS C               | 10.5               | 74.6               | 0.90           | 0.79                 | 0.94                      | 16.7           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedest   | rian Movemer  | nt Perfor | mance    |         |         |       |      |        |        |       |
|----------|---------------|-----------|----------|---------|---------|-------|------|--------|--------|-------|
| Mov      | Dem.          | Aver.     | Level of | AVERAGE | BACK OF | Prop. | Eff. | Travel | Travel | Aver. |
|          | FIOW          | Delay     | Service  | [Ped    | Dist ]  | Que   | Rate | Time   | DISI.  | Speed |
|          | ped/h         | sec       |          | ped     | m       |       |      | sec    | m      | m/sec |
| South: M | liller St (S) |           |          |         |         |       |      |        |        |       |
| P1 Full  | 232           | 38.6      | LOS D    | 0.6     | 0.6     | 0.93  | 0.93 | 55.3   | 20.0   | 0.36  |
| East: Be | rry St (E)    |           |          |         |         |       |      |        |        |       |
| P2 Full  | 337           | 38.8      | LOS D    | 0.8     | 0.8     | 0.94  | 0.94 | 55.5   | 20.0   | 0.36  |
| North: M | liller St (N) |           |          |         |         |       |      |        |        |       |
| P3 Full  | 145           | 38.5      | LOS D    | 0.3     | 0.3     | 0.93  | 0.93 | 55.2   | 20.0   | 0.36  |
| West: Be | erry St (W)   |           |          |         |         |       |      |        |        |       |
| P4 Full  | 348           | 38.8      | LOS D    | 0.8     | 0.8     | 0.94  | 0.94 | 55.5   | 20.0   | 0.36  |

| All Pedestrians | 1062 | 38.7 | LOS D | 0.8 | 0.8 | 0.93 | 0.93 | 55.4 | 20.0 | 0.36 |
|-----------------|------|------|-------|-----|-----|------|------|------|------|------|
|-----------------|------|------|-------|-----|-----|------|------|------|------|------|

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Wednesday, 6 November 2024 4:33:20 РŇ

Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\03 SM C&SW\_VIC (Block 4).sip9

Site: VIC03 [VIC03 Miller St / McLaren St (Site Folder: Block 4 Model - 2024 Weekend Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101 [VIC Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

#### TCS 1156

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site User-Given Phase Times)

| Vehic  | le M     | ovemen     | t Perfo               | orma      | nce              |           |        |       |          |               |            |       |      |        |               |
|--------|----------|------------|-----------------------|-----------|------------------|-----------|--------|-------|----------|---------------|------------|-------|------|--------|---------------|
| Mov    | Turn     | Mov        | Dem                   | hand      | Ar               | rival     | Deg.   | Aver. | Level of | 95% Back      | Of Queue   | Prop. | Eff. | Aver.  | Aver.         |
|        |          | Class      | ٦<br>[ Total<br>veh/h | HV ]<br>% | Total  <br>veh/h | HV ]<br>% | v/c    | sec   | Service  | [ Veh.<br>veh | Dist]<br>m | Que   | Rate | Cycles | speed<br>km/h |
| South  | : Mille  | er St (S)  |                       |           |                  |           |        |       |          |               |            |       |      |        |               |
| 1      | L2       | All MCs    | 71                    | 1.5       | 71               | 1.5       | 0.063  | 9.4   | LOS A    | 1.2           | 8.2        | 0.38  | 0.57 | 0.38   | 34.3          |
| 2      | T1       | All MCs    | 256                   | 5.3       | 256              | 5.3       | 0.317  | 9.5   | LOS A    | 6.8           | 49.3       | 0.55  | 0.51 | 0.55   | 33.2          |
| 3      | R2       | All MCs    | 48                    | 2.2       | 48               | 2.2       | 0.317  | 19.1  | LOS B    | 6.8           | 49.3       | 0.55  | 0.51 | 0.55   | 27.5          |
| Appro  | ach      |            | 375                   | 4.2       | 375              | 4.2       | 0.317  | 10.7  | LOS A    | 6.8           | 49.3       | 0.52  | 0.52 | 0.52   | 32.8          |
| East:  | McLa     | ren St (E) | )                     |           |                  |           |        |       |          |               |            |       |      |        |               |
| 4      | L2       | All MCs    | 40                    | 0.0       | 40               | 0.0       | 0.485  | 54.8  | LOS D    | 1.9           | 13.3       | 1.00  | 0.74 | 1.02   | 9.4           |
| 5      | T1       | All MCs    | 78                    | 1.4       | 78               | 1.4       | *0.331 | 40.5  | LOS C    | 3.3           | 23.1       | 0.96  | 0.73 | 0.96   | 21.1          |
| Appro  | Approach |            |                       | 0.9       | 118              | 0.9       | 0.485  | 45.3  | LOS D    | 3.3           | 23.1       | 0.97  | 0.74 | 0.98   | 17.3          |
| North  | Mille    | r St (N)   |                       |           |                  |           |        |       |          |               |            |       |      |        |               |
| 7      | L2       | All MCs    | 73                    | 0.0       | 73               | 0.0       | 0.080  | 16.3  | LOS B    | 1.6           | 11.6       | 0.52  | 0.66 | 0.52   | 18.3          |
| 8      | T1       | All MCs    | 267                   | 5.5       | 267              | 5.5       | 0.402  | 11.7  | LOS A    | 8.6           | 62.5       | 0.60  | 0.65 | 0.60   | 26.4          |
| 9      | R2       | All MCs    | 87                    | 0.0       | 87               | 0.0       | *0.402 | 21.0  | LOS B    | 8.6           | 62.5       | 0.60  | 0.65 | 0.60   | 33.7          |
| Appro  | ach      |            | 427                   | 3.4       | 427              | 3.4       | 0.402  | 14.4  | LOS A    | 8.6           | 62.5       | 0.59  | 0.65 | 0.59   | 26.1          |
| West:  | McLa     | aren St (V | V)                    |           |                  |           |        |       |          |               |            |       |      |        |               |
| 10     | L2       | All MCs    | 48                    | 0.0       | 48               | 0.0       | 0.147  | 39.3  | LOS C    | 1.8           | 12.8       | 0.88  | 0.73 | 0.88   | 22.2          |
| 11     | T1       | All MCs    | 66                    | 1.6       | 66               | 1.6       | 0.330  | 30.6  | LOS C    | 3.4           | 23.8       | 0.93  | 0.73 | 0.93   | 20.7          |
| 12     | R2       | All MCs    | 23                    | 0.0       | 23               | 0.0       | *0.330 | 38.4  | LOS C    | 3.4           | 23.8       | 0.93  | 0.73 | 0.93   | 17.8          |
| Appro  | Approach |            |                       | 0.8       | 138              | 0.8       | 0.330  | 34.9  | LOS C    | 3.4           | 23.8       | 0.91  | 0.73 | 0.91   | 20.9          |
| All Ve | hicles   |            | 1058                  | 3.1       | 1058             | 3.1       | 0.485  | 19.2  | LOS B    | 8.6           | 62.5       | 0.65  | 0.62 | 0.65   | 26.0          |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pede  | strian Mo       | /ement | Perform | nance    |         |         |       |      |        |        |       |
|-------|-----------------|--------|---------|----------|---------|---------|-------|------|--------|--------|-------|
| Mov   | Crossina        | Dem.   | Aver.   | Level of | AVERAGE | BACK OF | Prop. | Eff. | Travel | Travel | Aver. |
|       | Jiessing        | FIOW   | Delay   | Service  | [Ped    | Dist ]  | Que   | Rate | Time   | DISI.  | Speed |
|       |                 | ped/h  | sec     |          | ped     | m       |       |      | sec    | m      | m/sec |
| South | n: Miller St (S | 5)     |         |          |         |         |       |      |        |        |       |
| P1 F  | Full            | 75     | 38.4    | LOS D    | 0.2     | 0.2     | 0.93  | 0.93 | 55.1   | 20.0   | 0.36  |
| East: | McLaren St      | (E)    |         |          |         |         |       |      |        |        |       |

| P2 Full              | 307 | 38.8 | LOS D | 0.7 | 0.7 | 0.93 | 0.93 | 55.4 | 20.0 | 0.36 |
|----------------------|-----|------|-------|-----|-----|------|------|------|------|------|
| North: Miller St (N) |     |      |       |     |     |      |      |      |      |      |
| P3 Full              | 142 | 38.5 | LOS D | 0.3 | 0.3 | 0.93 | 0.93 | 55.2 | 20.0 | 0.36 |
| West: McLaren St     | (W) |      |       |     |     |      |      |      |      |      |
| P4 Full              | 161 | 38.5 | LOS D | 0.4 | 0.4 | 0.93 | 0.93 | 55.2 | 20.0 | 0.36 |
| All Pedestrians      | 685 | 38.6 | LOS D | 0.7 | 0.7 | 0.93 | 0.93 | 55.3 | 20.0 | 0.36 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Wednesday, 6 November 2024 4:33:20 PM

Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\03 SM C&SW\_VIC (Block 4).sip9

Site: VIC04 [VIC04 Pacific Hwy / Miller St (Site Folder: Block 4 Model - 2024 Weekend Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101 [VIC Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

TCS 630

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehic  | cle M   | ovemen    | t Perfo       | orma     | nce             |       |         |       |          |          |          |       |              |                  |       |
|--------|---------|-----------|---------------|----------|-----------------|-------|---------|-------|----------|----------|----------|-------|--------------|------------------|-------|
| Mov    | Turn    | Mov       | Dem           | nand     | Ar              | rival | Deg.    | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff.         | Aver.            | Aver. |
| U      |         | Class     | FI<br>[ Total | IOWS     | FI<br>[ Total ] | IOWS  | Sath    | Delay | Service  | [ \/eh   | Dist 1   | Que   | Stop<br>Rate | NO. Of<br>Cycles | Speed |
|        |         |           | veh/h         | <u>%</u> | veh/h           | %     | v/c     | sec   |          | veh      | m        |       | rtato        | Cycles           | km/h  |
| South  | : Mille | er St (S) |               |          |                 |       |         |       |          |          |          |       |              |                  |       |
| 1      | L2      | All MCs   | 1             | 0.0      | 1               | 0.0   | 0.344   | 23.0  | LOS B    | 4.9      | 37.5     | 0.88  | 0.74         | 0.88             | 22.8  |
| 1a     | L1      | All MCs   | 97            | 13.0     | 97              | 13.0  | 0.344   | 26.2  | LOS B    | 4.9      | 37.5     | 0.88  | 0.74         | 0.88             | 14.4  |
| 2      | T1      | All MCs   | 202           | 6.8      | 202             | 6.8   | *0.573  | 39.8  | LOS C    | 7.5      | 55.8     | 0.95  | 0.78         | 0.95             | 13.6  |
| 3b     | R3      | All MCs   | 13            | 8.3      | 13              | 8.3   | 0.573   | 46.9  | LOS D    | 7.5      | 55.8     | 0.96  | 0.79         | 0.96             | 21.4  |
| Appro  | ach     |           | 313           | 8.8      | 313             | 8.8   | 0.573   | 35.8  | LOS C    | 7.5      | 55.8     | 0.93  | 0.77         | 0.93             | 14.3  |
| South  | East:   | Pacific H | wy (SE        | )        |                 |       |         |       |          |          |          |       |              |                  |       |
| 21b    | L3      | All MCs   | 61            | 6.9      | 61              | 6.9   | 0.133   | 11.2  | LOS A    | 1.8      | 12.9     | 0.64  | 0.68         | 0.64             | 32.4  |
| 21a    | L1      | All MCs   | 12            | 0.0      | 12              | 0.0   | 0.133   | 35.1  | LOS C    | 1.8      | 12.9     | 0.64  | 0.68         | 0.64             | 33.8  |
| 22     | T1      | All MCs   | 579           | 1.6      | 579             | 1.6   | * 0.507 | 29.1  | LOS C    | 10.4     | 73.8     | 0.88  | 0.75         | 0.88             | 19.6  |
| 23a    | R1      | All MCs   | 289           | 4.0      | 289             | 4.0   | *0.676  | 39.2  | LOS C    | 12.0     | 86.6     | 0.97  | 0.84         | 0.99             | 16.1  |
| Appro  | ach     |           | 941           | 2.7      | 941             | 2.7   | 0.676   | 31.1  | LOS C    | 12.0     | 86.6     | 0.89  | 0.77         | 0.89             | 19.4  |
| North  | Mille   | r St (N)  |               |          |                 |       |         |       |          |          |          |       |              |                  |       |
| 7a     | L1      | All MCs   | 64            | 18.0     | 64              | 18.0  | 0.086   | 6.1   | LOS A    | 0.4      | 3.6      | 0.17  | 0.42         | 0.17             | 38.2  |
| 8      | T1      | All MCs   | 149           | 6.3      | 149             | 6.3   | 0.478   | 32.4  | LOS C    | 5.0      | 36.5     | 0.87  | 0.69         | 0.87             | 20.6  |
| 9      | R2      | All MCs   | 4             | 0.0      | 4               | 0.0   | 0.478   | 44.9  | LOS D    | 5.0      | 36.5     | 0.90  | 0.73         | 0.90             | 22.3  |
| 9b     | R3      | All MCs   | 18            | 0.0      | 18              | 0.0   | 0.478   | 44.5  | LOS D    | 5.0      | 36.5     | 0.90  | 0.73         | 0.90             | 13.9  |
| Appro  | ach     |           | 236           | 8.9      | 236             | 8.9   | 0.478   | 26.4  | LOS B    | 5.0      | 36.5     | 0.68  | 0.62         | 0.68             | 23.3  |
| North  | West:   | Pacific H | wy (NV        | V)       |                 |       |         |       |          |          |          |       |              |                  |       |
| 28     | T1      | All MCs   | 176           | 1.8      | 176             | 1.8   | 0.159   | 13.7  | LOS A    | 1.7      | 11.8     | 0.45  | 0.35         | 0.45             | 40.1  |
| 29a    | R1      | All MCs   | 183           | 0.6      | 183             | 0.6   | 0.413   | 45.1  | LOS D    | 8.1      | 56.9     | 1.00  | 0.85         | 1.00             | 20.6  |
| Appro  | ach     |           | 359           | 1.2      | 359             | 1.2   | 0.413   | 29.7  | LOS C    | 8.1      | 56.9     | 0.73  | 0.61         | 0.73             | 27.2  |
| All Ve | hicles  |           | 1848          | 4.2      | 1848            | 4.2   | 0.676   | 31.0  | LOS C    | 12.0     | 86.6     | 0.84  | 0.72         | 0.84             | 20.8  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian Mo      | vement       | Perform        | nance               |                |         |              |              |                |                 |                |
|--------------------|--------------|----------------|---------------------|----------------|---------|--------------|--------------|----------------|-----------------|----------------|
| Mov<br>ID Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|                    | nod/h        |                |                     | [Ped Dist]     |         |              | Rate         |                | m               | mlaaa          |
|                    | peu/n        | sec            |                     | pea            | m       |              |              | sec            | m               | m/sec          |

| South: Miller St (S  | )       |      |       |     |     |      |      |      |      |      |
|----------------------|---------|------|-------|-----|-----|------|------|------|------|------|
| P1 Full              | 148     | 38.5 | LOS D | 0.4 | 0.4 | 0.93 | 0.93 | 55.2 | 20.0 | 0.36 |
| SouthEast: Pacific   | Hwy (Sl | E)   |       |     |     |      |      |      |      |      |
| P5 Full              | 216     | 38.6 | LOS D | 0.5 | 0.5 | 0.93 | 0.93 | 55.3 | 20.0 | 0.36 |
| North: Miller St (N) | )       |      |       |     |     |      |      |      |      |      |
| P3 Full              | 459     | 39.0 | LOS D | 1.1 | 1.1 | 0.94 | 0.94 | 55.7 | 20.0 | 0.36 |
| NorthWest: Pacific   | Hwy (N  | W)   |       |     |     |      |      |      |      |      |
| P7 Full              | 166     | 38.5 | LOS D | 0.4 | 0.4 | 0.93 | 0.93 | 55.2 | 20.0 | 0.36 |
| All Pedestrians      | 989     | 38.8 | LOS D | 1.1 | 1.1 | 0.93 | 0.93 | 55.4 | 20.0 | 0.36 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Wednesday, 6 November 2024 4:33:20 PM

Troject: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\03 SM C&SW\_VIC (Block 4).sip9

V Site: BGU01 [BGU01 Hickson Rd / Towns PI (Site Folder: Block 4 - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Site Category: (None) Give-Way (Two-Way)

| Vehic     | cle M  | ovemen       | t Performa                                   | nce                                         |                     |                       |                     |                           |                         |                |                      |                           |                        |
|-----------|--------|--------------|----------------------------------------------|---------------------------------------------|---------------------|-----------------------|---------------------|---------------------------|-------------------------|----------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Demand<br>Flows<br>[ Total HV ]  <br>veh/h % | Arrival<br>Flows<br>[ Total HV ]<br>veh/h % | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| East:     | Hicks  | on Rd (E     | )                                            |                                             |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 4a        | L1     | All MCs      | 95 13.3                                      | 95 13.3                                     | 0.147               | 4.3                   | LOS A               | 0.6                       | 4.9                     | 0.38           | 0.53                 | 0.38                      | 34.8                   |
| 6a        | R1     | All MCs      | 56 13.2                                      | 56 13.2                                     | 0.147               | 6.3                   | LOS A               | 0.6                       | 4.9                     | 0.38           | 0.53                 | 0.38                      | 34.8                   |
| Appro     | ach    |              | 151 13.3                                     | 151 13.3                                    | 0.147               | 5.0                   | NA                  | 0.6                       | 4.9                     | 0.38           | 0.53                 | 0.38                      | 34.8                   |
| North     | West:  | Towns P      | I (NW)                                       |                                             |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 27a       | L1     | All MCs      | 82 11.5                                      | 82 11.5                                     | 0.246               | 5.1                   | LOS A               | 0.9                       | 7.0                     | 0.56           | 0.74                 | 0.59                      | 33.8                   |
| 29        | R2     | All MCs      | 91 7.0                                       | 91 7.0                                      | 0.246               | 8.5                   | LOS A               | 0.9                       | 7.0                     | 0.56           | 0.74                 | 0.59                      | 24.1                   |
| Appro     | ach    |              | 173 9.1                                      | 173 9.1                                     | 0.246               | 6.9                   | LOS A               | 0.9                       | 7.0                     | 0.56           | 0.74                 | 0.59                      | 31.2                   |
| South     | West   | Hickson      | Rd (SW)                                      |                                             |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 30        | L2     | All MCs      | 85 11.1                                      | 85 11.1                                     | 0.205               | 5.3                   | LOS A               | 1.0                       | 7.6                     | 0.35           | 0.47                 | 0.35                      | 33.1                   |
| 32a       | R1     | All MCs      | 173 11.6                                     | 173 11.6                                    | 0.205               | 3.1                   | LOS A               | 1.0                       | 7.6                     | 0.35           | 0.47                 | 0.35                      | 36.6                   |
| Appro     | ach    |              | 258 11.4                                     | 258 11.4                                    | 0.205               | 3.8                   | NA                  | 1.0                       | 7.6                     | 0.35           | 0.47                 | 0.35                      | 36.0                   |
| All Ve    | hicles |              | 581 11.2                                     | 581 11.2                                    | 0.246               | 5.0                   | NA                  | 1.0                       | 7.6                     | 0.42           | 0.57                 | 0.43                      | 34.5                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 3:02:14 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

V Site: BGU02 [BGU02 Dalgety Rd / Towns PI (Site Folder: Block 4 - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Site Category: (None) Roundabout

| Vehi      | cle M  | ovemen       | t Perfo                      | orma                      | nce                         |                            |                     |                       |                     |                         |                          |                 |                      |                           |                        |
|-----------|--------|--------------|------------------------------|---------------------------|-----------------------------|----------------------------|---------------------|-----------------------|---------------------|-------------------------|--------------------------|-----------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F<br>[ Total<br>veh/h | nand<br>lows<br>HV ]<br>% | Ar<br>F<br>[ Total<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>[ Veh.<br>veh | ck Of Que<br>Dist ]<br>m | ue Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Dalg | ety Rd (S    | S)                           |                           |                             |                            |                     |                       |                     |                         |                          |                 |                      |                           |                        |
| 30        | L2     | All MCs      | 31                           | 0.0                       | 31                          | 0.0                        | 0.138               | 6.1                   | LOS A               | 0.8                     | 6.0                      | 0.14            | 0.57                 | 0.14                      | 24.4                   |
| 3b        | R3     | All MCs      | 161                          | 9.2                       | 161                         | 9.2                        | 0.138               | 6.4                   | LOS A               | 0.8                     | 6.0                      | 0.14            | 0.57                 | 0.14                      | 32.0                   |
| 32u       | U      | All MCs      | 1                            | 0.0                       | 1                           | 0.0                        | 0.138               | 7.0                   | LOS A               | 0.8                     | 6.0                      | 0.14            | 0.57                 | 0.14                      | 34.6                   |
| Appro     | bach   |              | 193                          | 7.7                       | 193                         | 7.7                        | 0.138               | 6.4                   | LOS A               | 0.8                     | 6.0                      | 0.14            | 0.57                 | 0.14                      | 30.3                   |
| South     | East:  | Towns Pl     | (SE)                         |                           |                             |                            |                     |                       |                     |                         |                          |                 |                      |                           |                        |
| 21b       | L3     | All MCs      | 115                          | 13.8                      | 115                         | 13.8                       | 0.092               | 2.7                   | LOS A               | 0.5                     | 4.2                      | 0.04            | 0.49                 | 0.04                      | 35.1                   |
| 21a       | L1     | All MCs      | 17                           | 6.3                       | 17                          | 6.3                        | 0.092               | 8.2                   | LOS A               | 0.5                     | 4.2                      | 0.04            | 0.49                 | 0.04                      | 18.8                   |
| 23u       | U      | All MCs      | 9                            | 0.0                       | 9                           | 0.0                        | 0.092               | 6.9                   | LOS A               | 0.5                     | 4.2                      | 0.04            | 0.49                 | 0.04                      | 29.7                   |
| Appro     | bach   |              | 141                          | 11.9                      | 141                         | 11.9                       | 0.092               | 3.6                   | LOS A               | 0.5                     | 4.2                      | 0.04            | 0.49                 | 0.04                      | 33.3                   |
| West      | Parki  | ng Acces     | s (W)                        |                           |                             |                            |                     |                       |                     |                         |                          |                 |                      |                           |                        |
| 12a       | R1     | All MCs      | 2                            | 50.0                      | 2                           | 50.0                       | 0.004               | 1.5                   | LOS A               | 0.0                     | 0.2                      | 0.38            | 0.16                 | 0.38                      | 9.6                    |
| 29        | R2     | All MCs      | 1                            | 0.0                       | 1                           | 0.0                        | 0.004               | 1.0                   | LOS A               | 0.0                     | 0.2                      | 0.38            | 0.16                 | 0.38                      | 21.2                   |
| 29u       | U      | All MCs      | 1                            | 0.0                       | 1                           | 0.0                        | 0.004               | 1.0                   | LOS A               | 0.0                     | 0.2                      | 0.38            | 0.16                 | 0.38                      | 9.8                    |
| Appro     | bach   |              | 4                            | 25.0                      | 4                           | 25.0                       | 0.004               | 1.2                   | LOS A               | 0.0                     | 0.2                      | 0.38            | 0.16                 | 0.38                      | 13.5                   |
| All Ve    | hicles |              | 338                          | 9.7                       | 338                         | 9.7                        | 0.138               | 5.1                   | LOS A               | 0.8                     | 6.0                      | 0.10            | 0.53                 | 0.10                      | 31.3                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 3:02:14 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

# V Site: BGU03 [BGU03 Kent St / Argyle St (Site Folder: Block 4 - 2024 AM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Site Category: (None) Give-Way (Two-Way)

| Vehic        | le M   | ovement  | t Performa            | nce                   |       |       |          |            |               |       |              |                  |       |
|--------------|--------|----------|-----------------------|-----------------------|-------|-------|----------|------------|---------------|-------|--------------|------------------|-------|
| Mov          | Turn   | Mov      | Demand                | Arrival               | Deg.  | Aver. | Level of | 95% E      | ack Of        | Prop. | Eff.         | Aver.            | Aver. |
| שו           |        | Class    | Flows<br>[ Total HV ] | FIOWS<br>[ Total HV ] | Sath  | Delay | Service  | Qu<br>[Veh | eue<br>Dist 1 | Que   | Stop<br>Rate | NO. OT<br>Cvcles | Speed |
|              |        |          | veh/h %               | veh/h %               | v/c   | sec   |          | veh        | m             |       |              |                  | km/h  |
| South        | : Kent | : St (S) |                       |                       |       |       |          |            |               |       |              |                  |       |
| 1            | L2     | All MCs  | 84 5.0                | 84 5.0                | 0.750 | 10.0  | LOS A    | 7.5        | 55.6          | 0.81  | 1.32         | 1.84             | 31.5  |
| 2            | T1     | All MCs  | 35 6.1                | 35 6.1                | 0.750 | 12.3  | LOS A    | 7.5        | 55.6          | 0.81  | 1.32         | 1.84             | 29.5  |
| 3            | R2     | All MCs  | 308 7.8               | 308 7.8               | 0.750 | 18.3  | LOS B    | 7.5        | 55.6          | 0.81  | 1.32         | 1.84             | 30.0  |
| Appro        | ach    |          | 427 7.1               | 427 7.1               | 0.750 | 16.2  | LOS B    | 7.5        | 55.6          | 0.81  | 1.32         | 1.84             | 30.3  |
| East: /      | Argyle | e St (E) |                       |                       |       |       |          |            |               |       |              |                  |       |
| 4            | L2     | All MCs  | 279 3.0               | 279 3.0               | 0.349 | 4.9   | LOS A    | 1.9        | 13.6          | 0.42  | 0.48         | 0.42             | 36.3  |
| 5            | T1     | All MCs  | 86 11.0               | 86 11.0               | 0.349 | 1.5   | LOS A    | 1.9        | 13.6          | 0.42  | 0.48         | 0.42             | 35.8  |
| 6            | R2     | All MCs  | 8 25.0                | 8 25.0                | 0.349 | 5.0   | LOS A    | 1.9        | 13.6          | 0.42  | 0.48         | 0.42             | 29.9  |
| Approach 374 |        |          | 374 5.4               | 374 5.4               | 0.349 | 4.1   | NA       | 1.9        | 13.6          | 0.42  | 0.48         | 0.42             | 36.1  |
| North:       | Kent   | St (N)   |                       |                       |       |       |          |            |               |       |              |                  |       |
| 7            | L2     | All MCs  | 5 0.0                 | 5 0.0                 | 0.034 | 7.5   | LOS A    | 0.1        | 0.8           | 0.49  | 0.92         | 0.49             | 26.4  |
| 8            | T1     | All MCs  | 14 0.0                | 14 0.0                | 0.034 | 11.0  | LOS A    | 0.1        | 0.8           | 0.49  | 0.92         | 0.49             | 33.0  |
| 9            | R2     | All MCs  | 2 50.0                | 2 50.0                | 0.034 | 11.9  | LOS A    | 0.1        | 0.8           | 0.49  | 0.92         | 0.49             | 29.6  |
| Appro        | ach    |          | 21 5.0                | 21 5.0                | 0.034 | 10.2  | LOS A    | 0.1        | 0.8           | 0.49  | 0.92         | 0.49             | 31.7  |
| West:        | Argyl  | e PI (W) |                       |                       |       |       |          |            |               |       |              |                  |       |
| 10           | L2     | All MCs  | 4 0.0                 | 4 0.0                 | 0.143 | 5.2   | LOS A    | 0.7        | 5.1           | 0.41  | 0.41         | 0.41             | 34.7  |
| 11           | T1     | All MCs  | 69 15.2               | 69 15.2               | 0.143 | 1.2   | LOS A    | 0.7        | 5.1           | 0.41  | 0.41         | 0.41             | 36.4  |
| 12           | R2     | All MCs  | 65 8.1                | 65 8.1                | 0.143 | 6.0   | LOS A    | 0.7        | 5.1           | 0.41  | 0.41         | 0.41             | 37.1  |
| Appro        | ach    |          | 139 11.4              | 139 11.4              | 0.143 | 3.6   | NA       | 0.7        | 5.1           | 0.41  | 0.41         | 0.41             | 36.8  |
| All Ve       | hicles |          | 961 7.0               | 961 7.0               | 0.750 | 9.5   | NA       | 7.5        | 55.6          | 0.59  | 0.85         | 1.05             | 33.1  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 5:35:22 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

# CCG MOVEMENT SUMMARY

### □+□ Common Control Group: CCG1 [TCS 4272] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

### Network: BGU-N2 [BGU Network 2 (Network Folder: Block 4 Network - 2024 AM Peak)]

EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (CCG User-Given Phase Times)

| Vehi      | cle M  | ovemen       | t Perfo                | orma                 | nce (CC                      | G)                     |                   |                     |                    |                    |                |                      |                           |                |
|-----------|--------|--------------|------------------------|----------------------|------------------------------|------------------------|-------------------|---------------------|--------------------|--------------------|----------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl<br>[ Total ] | nand<br>lows<br>HV ] | Arriva<br>Flow<br>[ Total HV | al Deg.<br>s Satn<br>] | Aver.<br>Delay    | Level of<br>Service | 95% Back<br>[ Veh. | Of Queue<br>Dist ] | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| Site: I   | BGU0   | 4 [BGU04     | ven/n<br>Pedes         | %<br>strian          | Mid-block                    | ° V/C<br>Crossing      | sec<br>st Kent St | near Gas            | l nl               | m                  | -              | -                    | _                         | Km/n           |
| South     | n Ken  | t St         | i i ouoc               | , and an             |                              | Crocollig              |                   | nour ouo            |                    |                    |                |                      |                           |                |
| 2         | T1     | All MCs      | 519                    | 73                   | 519 7                        | 3 0.486                | 48                | LOSA                | 7 1                | 52.6               | 0.38           | 0.33                 | 0.38                      | 36.2           |
| Appro     | bach   |              | 519                    | 7.3                  | 519 7.                       | 3 0.486                | 4.8               | LOSA                | 7.1                | 52.6               | 0.38           | 0.33                 | 0.38                      | 36.2           |
| North     | : Kent | St           |                        |                      |                              |                        |                   |                     |                    |                    |                |                      |                           |                |
| 8         | T1     | All MCs      | 316                    | 11.3                 | 316 11.                      | 3 0.555                | 34.7              | LOS C               | 5.9                | 45.5               | 0.97           | 0.78                 | 0.97                      | 21.5           |
| Appro     | bach   |              | 316                    | 11.3                 | 316 11.                      | 3 0.555                | 34.7              | LOS C               | 5.9                | 45.5               | 0.97           | 0.78                 | 0.97                      | 21.5           |
| All Ve    | hicles | ;            | 835                    | 8.8                  | 835 8.                       | 8 0.555                | 16.1              | LOS B               | 7.1                | 52.6               | 0.60           | 0.50                 | 0.60                      | 29.2           |
| Site: I   | BGU0   | 5 [BGU05     | 5 Kent S               | St / S               | ydney Ha                     | bour Bridg             | e (SHB) (         | On-ramp]            |                    |                    |                |                      |                           |                |
| South     | n: Ken | t St (S)     |                        |                      |                              |                        |                   |                     |                    |                    |                |                      |                           |                |
| 2         | T1     | All MCs      | 560                    | 4.1                  | 560 4.                       | 1 0.563                | 8.1               | LOS A               | 11.4               | 82.7               | 0.56           | 0.50                 | 0.56                      | 28.6           |
| 3a        | R1     | All MCs      | 285                    | 9.2                  | 285 9.                       | 2 * 0.456              | 28.7              | LOS C               | 9.1                | 68.9               | 0.92           | 0.79                 | 0.92                      | 21.4           |
| Appro     | bach   |              | 845                    | 5.9                  | 845 5.                       | 9 0.563                | 15.1              | LOS B               | 11.4               | 82.7               | 0.68           | 0.60                 | 0.68                      | 24.9           |
| East:     | Clare  | nce St (E)   | )                      |                      |                              |                        |                   |                     |                    |                    |                |                      |                           |                |
| 4         | L2     | All MCs      | 134                    | 6.3                  | 134 6.                       | 3 0.324                | 31.2              | LOS C               | 4.4                | 32.6               | 0.87           | 0.76                 | 0.87                      | 13.7           |
| 6         | R2     | All MCs      | 180                    | 8.2                  | 180 8.                       | 2 *0.491               | 32.8              | LOS C               | 6.3                | 47.0               | 0.91           | 0.79                 | 0.91                      | 13.2           |
| Appro     | bach   |              | 314                    | 7.4                  | 314 7.                       | 4 0.491                | 32.1              | LOS C               | 6.3                | 47.0               | 0.89           | 0.78                 | 0.89                      | 13.4           |
| North     | East:  | SHB On-I     | ramp (N                | IE)                  |                              |                        |                   |                     |                    |                    |                |                      |                           |                |
| 24a       | L1     | All MCs      | 38                     | 0.0                  | 38 0.                        | 0 0.037                | 30.5              | LOS C               | 1.2                | 3.3                | 0.87           | 0.64                 | 0.87                      | 20.1           |
| Appro     | bach   |              | 38                     | 0.0                  | 38 0.                        | 0 0.037                | 30.5              | LOS C               | 1.2                | 3.3                | 0.87           | 0.64                 | 0.87                      | 20.1           |
| North     | : Kent | St (N)       |                        |                      |                              |                        |                   |                     |                    |                    |                |                      |                           |                |
| 7b        | L3     | All MCs      | 139                    | 5.3                  | 139 5.                       | 3 0.379                | 40.4              | LOS C               | 5.5                | 40.4               | 1.00           | 0.84                 | 1.00                      | 12.9           |
| 8         | T1     | All MCs      | 83                     | 34.2                 | 83 34.                       | 2 * 0.509              | 26.0              | LOS B               | 2.6                | 23.9               | 0.79           | 0.61                 | 0.79                      | 7.5            |
| Appro     | bach   |              | 222                    | 16.1                 | 222 16.                      | 1 0.509                | 35.0              | LOS C               | 5.5                | 40.4               | 0.92           | 0.75                 | 0.92                      | 11.5           |
| All Ve    | hicles | ;            | 1419                   | 7.6                  | 1419 7.                      | 6 0.563                | 22.4              | LOS B               | 11.4               | 82.7               | 0.77           | 0.66                 | 0.77                      | 19.5           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian Mo | vement | Perform | nance (C | CG)             |       |      |        |        |       |
|---------------|--------|---------|----------|-----------------|-------|------|--------|--------|-------|
| Mov           | Dem.   | Aver.   | Level of | AVERAGE BACK OF | Prop. | Eff. | Travel | Travel | Aver. |
| ID Crossing   | Flow   | Delay   | Service  | QUEUE           | Que   | Stop | Time   | Dist.  | Speed |

|                    |          |          |                | [Ped         | Dist ]      |         | Rate |       |       |       |
|--------------------|----------|----------|----------------|--------------|-------------|---------|------|-------|-------|-------|
|                    | ped/h    | sec      |                | ped          | m           |         |      | sec   | m     | m/sec |
| Site: BGU04 [BGU   | 04 Pede  | strian N | /lid-block Cro | ossing at K  | ent St near | Gas Ln] |      |       |       |       |
| South: Kent St     |          |          |                |              |             |         |      |       |       |       |
| P1 Full            | 299      | 33.7     | LOS D          | 0.6          | 0.6         | 0.92    | 0.92 | 200.4 | 200.0 | 1.00  |
| All Pedestrians    | 299      | 33.7     | LOS D          | 0.6          | 0.6         | 0.92    | 0.92 | 200.4 | 200.0 | 1.00  |
| Site: BGU05 [BGU   | 105 Kent | St / Syd | dney Harbou    | ır Bridge (S | SHB) On-ram | ıp]     |      |       |       |       |
| South: Kent St (S) |          |          |                |              |             |         |      |       |       |       |
| P1 Full            | 2        | 29.8     | LOS C          | 0.0          | 0.0         | 0.86    | 0.86 | 46.4  | 20.0  | 0.43  |
| All Pedestrians    | 2        | 29.8     | LOS C          | 0.0          | 0.0         | 0.86    | 0.86 | 46.4  | 20.0  | 0.43  |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 2:42:12 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: BGU06 [BGU06 Hickson Rd / Napoleon St / Sussex St (Site Folder: Block 4 - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: BGU-N2 [BGU Network 3 (Network Folder: Block 4 Network - 2024 AM Peak)]

TCS 4625

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 75 seconds (Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfo          | orma         | nce               |               |              |                |                     |               |             |                |              |                 |                |
|-----------|--------|--------------|------------------|--------------|-------------------|---------------|--------------|----------------|---------------------|---------------|-------------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl        | nand<br>Iows | Ar<br>Fl          | rival<br>lows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back      | Of Queue    | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ lotal<br>veh/h | HV J<br>%    | [ Iotal∶<br>veh/h | HV J<br>%     | v/c          | sec            |                     | [ Veh.<br>veh | Dist J<br>m |                | Rate         | Cycles          | km/h           |
| South     | Sus    | sex St (S)   | )                |              |                   |               |              |                |                     |               |             |                |              |                 |                |
| 2         | T1     | All MCs      | 337              | 6.3          | 337               | 6.3           | 0.336        | 10.1           | LOS A               | 6.8           | 50.4        | 0.59           | 0.51         | 0.59            | 30.4           |
| 3         | R2     | All MCs      | 151              | 3.5          | 151               | 3.5           | *0.347       | 18.3           | LOS B               | 3.6           | 26.0        | 0.79           | 0.74         | 0.79            | 22.3           |
| Appro     | ach    |              | 487              | 5.4          | 487               | 5.4           | 0.347        | 12.7           | LOS A               | 6.8           | 50.4        | 0.65           | 0.58         | 0.65            | 27.8           |
| East: I   | Napol  | ean St (E    | )                |              |                   |               |              |                |                     |               |             |                |              |                 |                |
| 4         | L2     | All MCs      | 197              | 18.2         | 197               | 18.2          | 0.352        | 22.9           | LOS B               | 5.4           | 43.5        | 0.78           | 0.75         | 0.78            | 15.0           |
| 6         | R2     | All MCs      | 160              | 9.9          | 160               | 9.9           | *0.420       | 30.9           | LOS C               | 5.2           | 39.3        | 0.90           | 0.78         | 0.90            | 20.7           |
| Appro     | ach    |              | 357              | 14.5         | 357               | 14.5          | 0.420        | 26.5           | LOS B               | 5.4           | 43.5        | 0.83           | 0.76         | 0.83            | 18.4           |
| North:    | Hick   | son Rd (N    | 1)               |              |                   |               |              |                |                     |               |             |                |              |                 |                |
| 7         | L2     | All MCs      | 93               | 8.0          | 93                | 8.0           | 0.156        | 21.9           | LOS B               | 2.4           | 17.6        | 0.73           | 0.70         | 0.73            | 23.7           |
| 8         | T1     | All MCs      | 247              | 9.8          | 247               | 9.8           | *0.360       | 18.2           | LOS B               | 6.5           | 49.4        | 0.76           | 0.64         | 0.76            | 21.9           |
| Appro     | ach    |              | 340              | 9.3          | 340               | 9.3           | 0.360        | 19.2           | LOS B               | 6.5           | 49.4        | 0.75           | 0.66         | 0.75            | 22.5           |
| West:     | Car F  | Park Acce    | ss (W)           |              |                   |               |              |                |                     |               |             |                |              |                 |                |
| 10        | L2     | All MCs      | 1                | 0.0          | 1                 | 0.0           | 0.051        | 46.3           | LOS D               | 0.1           | 0.4         | 1.00           | 0.57         | 1.00            | 11.3           |
| 11        | T1     | All MCs      | 2                | 0.0          | 2                 | 0.0           | *0.243       | 47.9           | LOS D               | 0.3           | 1.9         | 1.00           | 0.63         | 1.00            | 8.2            |
| 12        | R2     | All MCs      | 4                | 0.0          | 4                 | 0.0           | 0.243        | 48.0           | LOS D               | 0.3           | 1.9         | 1.00           | 0.64         | 1.00            | 2.1            |
| Appro     | ach    |              | 7                | 0.0          | 7                 | 0.0           | 0.243        | 47.8           | LOS D               | 0.3           | 1.9         | 1.00           | 0.63         | 1.00            | 5.6            |
| All Vel   | nicles |              | 1192             | 9.2          | 1192              | 9.2           | 0.420        | 18.9           | LOS B               | 6.8           | 50.4        | 0.74           | 0.66         | 0.74            | 23.0           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pede    | strian Mov  | vement | Perform | nance    |         |         |       |      |        |        |       |
|---------|-------------|--------|---------|----------|---------|---------|-------|------|--------|--------|-------|
| Mov     |             | Dem.   | Aver.   | Level of | AVERAGE | BACK OF | Prop. | Eff. | Travel | Travel | Aver. |
| ID C    | crossing    | Flow   | Delay   | Service  | QUI     | EUE     | Que   | Stop | Time   | Dist.  | Speed |
|         |             |        |         |          | [Ped    | Dist ]  |       | Rate |        |        |       |
|         |             | ped/h  | sec     |          | ped     | m       |       |      | sec    | m      | m/sec |
| South   | : Sussex St | (S)    |         |          |         |         |       |      |        |        |       |
| P1 F    | ull         | 86     | 30.9    | LOS D    | 0.2     | 0.2     | 0.91  | 0.91 | 47.6   | 20.0   | 0.42  |
| East: I | Napolean St | t (E)  |         |          |         |         |       |      |        |        |       |
| P2 F    | ull         | 312    | 31.2    | LOS D    | 0.6     | 0.6     | 0.92  | 0.92 | 47.9   | 20.0   | 0.42  |

| North: Hickson Rd         | (N) |      |       |     |     |      |      |      |      |      |  |
|---------------------------|-----|------|-------|-----|-----|------|------|------|------|------|--|
| P3 Full                   | 40  | 30.9 | LOS D | 0.1 | 0.1 | 0.91 | 0.91 | 47.5 | 20.0 | 0.42 |  |
| West: Car Park Access (W) |     |      |       |     |     |      |      |      |      |      |  |
| P4 Full                   | 161 | 31.0 | LOS D | 0.3 | 0.3 | 0.91 | 0.91 | 47.7 | 20.0 | 0.42 |  |
| All Pedestrians           | 599 | 31.1 | LOS D | 0.6 | 0.6 | 0.92 | 0.92 | 47.8 | 20.0 | 0.42 |  |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 3:54:09 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: BGU07 [BGU07 Margaret St / Kent St / Napoleon St (Site Folder: Block 4 - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

### TCS 308

### Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Network Site User-Given Phase Times)

| Vehic  | cle M  | ovemen     | t Perfori       | manc         | 9       |        |       |          |          |          |       |              |                  |       |
|--------|--------|------------|-----------------|--------------|---------|--------|-------|----------|----------|----------|-------|--------------|------------------|-------|
| Mov    | Turn   | Mov        | Dema            | nd           | Arrival | Deg.   | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff.         | Aver.            | Aver. |
| ID     |        | Class      | /IOH<br>Total H | WS<br>V/1[Tc | Flows   | Satn   | Delay | Service  | [ \/eh   | Dist 1   | Que   | Stop<br>Rate | No. of<br>Cycles | Speed |
|        |        |            | veh/h           | % ve         | n/h %   | v/c    | sec   |          | veh      | m        |       | Titato       | Cycleo           | km/h  |
| South  | : Kent | t St (S)   |                 |              |         |        |       |          |          |          |       |              |                  |       |
| 1a     | L1     | All MCs    | 71 22           | 2.4          | 71 22.4 | *0.674 | 34.2  | LOS C    | 16.5     | 124.2    | 0.86  | 0.77         | 0.86             | 18.6  |
| 2      | T1     | All MCs    | 688 5           | 5.7 6        | 88 5.7  | 0.674  | 21.5  | LOS B    | 16.5     | 124.2    | 0.89  | 0.78         | 0.91             | 7.8   |
| 3      | R2     | All MCs    | 42 2            | 2.5          | 42 2.5  | 0.674  | 67.0  | LOS E    | 7.1      | 51.8     | 0.98  | 0.87         | 1.06             | 6.0   |
| Appro  | ach    |            | 801 7           | 7.0 8        | 01 7.0  | 0.674  | 25.0  | LOS B    | 16.5     | 124.2    | 0.89  | 0.78         | 0.91             | 8.9   |
| East:  | Marga  | aret St (E | )               |              |         |        |       |          |          |          |       |              |                  |       |
| 4      | L2     | All MCs    | 84 3            | 3.8          | 84 3.8  | 0.290  | 38.3  | LOS C    | 3.1      | 22.7     | 0.97  | 0.77         | 0.97             | 8.1   |
| 6a     | R1     | All MCs    | 233 14          | 4.9 2        | 33 14.9 | 0.744  | 29.1  | LOS C    | 8.4      | 65.3     | 0.94  | 0.88         | 1.02             | 15.0  |
| 6      | R2     | All MCs    | 78 5            | 5.4          | 78 5.4  | *0.744 | 33.0  | LOS C    | 8.4      | 65.3     | 0.94  | 0.88         | 1.02             | 6.6   |
| Appro  | ach    |            | 395 10          | ).7 3        | 95 10.7 | 0.744  | 31.8  | LOS C    | 8.4      | 65.3     | 0.95  | 0.86         | 1.01             | 12.1  |
| North  | Kent   | St (N)     |                 |              |         |        |       |          |          |          |       |              |                  |       |
| 7      | L2     | All MCs    | 46 13           | 3.6          | 46 13.6 | 0.432  | 40.5  | LOS C    | 5.9      | 43.8     | 0.82  | 0.70         | 0.82             | 18.3  |
| 8      | T1     | All MCs    | 240 2           | 2.6 2        | 40 2.6  | 0.432  | 25.5  | LOS B    | 5.9      | 43.8     | 0.88  | 0.71         | 0.88             | 17.6  |
| 9b     | R3     | All MCs    | 71 9            | 9.0          | 71 9.0  | 0.346  | 25.3  | LOS B    | 1.9      | 14.5     | 0.69  | 0.71         | 0.69             | 22.1  |
| Appro  | ach    |            | 357 5           | 5.3 3        | 57 5.3  | 0.432  | 27.4  | LOS B    | 5.9      | 43.8     | 0.83  | 0.71         | 0.83             | 18.6  |
| North  | West:  | Napoleo    | n St (NW)       | )            |         |        |       |          |          |          |       |              |                  |       |
| 27b    | L3     | All MCs    | 161 3           | 3.9 1        | 61 3.9  | 0.665  | 18.0  | LOS B    | 7.1      | 52.7     | 0.84  | 0.91         | 0.89             | 16.8  |
| 27a    | L1     | All MCs    | 98 14           | 4.0          | 98 14.0 | 0.665  | 34.6  | LOS C    | 7.1      | 52.7     | 0.84  | 0.91         | 0.89             | 16.8  |
| Appro  | ach    |            | 259 7           | 7.7 2        | 59 7.7  | 0.665  | 24.3  | LOS B    | 7.1      | 52.7     | 0.84  | 0.91         | 0.89             | 16.8  |
| All Ve | hicles |            | 1812 7          | 7.6 18       | 12 7.6  | 0.744  | 26.8  | LOS B    | 16.5     | 124.2    | 0.89  | 0.80         | 0.91             | 13.3  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian Mo                                                          | vement | Perform | nance   |       |        |     |      |      |       |       |  |  |  |  |
|------------------------------------------------------------------------|--------|---------|---------|-------|--------|-----|------|------|-------|-------|--|--|--|--|
| Mov Dem. Aver. Level of AVERAGE BACK OF Prop. Eff. Travel Travel Aver. |        |         |         |       |        |     |      |      |       |       |  |  |  |  |
| ID Crossing                                                            | Flow   | Delay   | Service | QUEUE |        | Que | Stop | Time | Dist. | Speed |  |  |  |  |
|                                                                        |        |         |         | [Ped  | Dist ] |     | Rate |      |       |       |  |  |  |  |
|                                                                        | ped/h  | sec     |         | ped   | m      |     |      | sec  | m     | m/sec |  |  |  |  |
| South: Kent St (S                                                      | 5)     |         |         |       |        |     |      |      |       |       |  |  |  |  |

| P1 Full           | 1965       | 29.7 | LOS C | 4.0 | 4.0 | 0.90 | 0.90 | 46.3  | 20.0  | 0.43 |
|-------------------|------------|------|-------|-----|-----|------|------|-------|-------|------|
| East: Margaret St | t (E)      |      |       |     |     |      |      |       |       |      |
| P2 Full           | 152        | 31.7 | LOS D | 0.3 | 0.3 | 0.89 | 0.89 | 48.4  | 20.0  | 0.41 |
| North: Kent St (N | )          |      |       |     |     |      |      |       |       |      |
| P3 Full           | 338        | 26.8 | LOS C | 0.6 | 0.6 | 0.82 | 0.82 | 43.5  | 20.0  | 0.46 |
| NorthWest: Napo   | leon St (I | WV)  |       |     |     |      |      |       |       |      |
| P7 Full           | 1361       | 28.0 | LOS C | 2.7 | 2.7 | 0.86 | 0.86 | 194.7 | 200.0 | 1.03 |
| All Pedestrians   | 3816       | 28.9 | LOS C | 4.0 | 4.0 | 0.88 | 0.88 | 99.1  | 84.2  | 0.85 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 2:42:12 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&W Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: BGU08 [BGU08 Margaret St / Clarence St (Site Folder: Block 4 - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

■ Network: BGU-N2 [BGU Network 2 (Network Folder: Block 4 Network - 2024 AM Peak)]

TCS 319

Site Category: NA

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Network Site User-Given Phase Times)

| Vehio     | cle M  | ovemen       | t Performa                                 | nce                                         |                     |                       |                     |                           |                         |              |                      |                           |                        |
|-----------|--------|--------------|--------------------------------------------|---------------------------------------------|---------------------|-----------------------|---------------------|---------------------------|-------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Demand<br>Flows<br>[ Total HV ]<br>veh/h % | Arrival<br>Flows<br>[ Total HV ]<br>veh/h % | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Clar | ence St (S   | S)                                         |                                             |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 1         | L2     | All MCs      | 77 2.7                                     | 77 2.7                                      | 0.166               | 31.9                  | LOS C               | 3.0                       | 24.1                    | 0.84         | 0.72                 | 0.84                      | 13.4                   |
| 2         | T1     | All MCs      | 569 35.7                                   | 569 35.7                                    | *0.706              | 21.4                  | LOS B               | 11.9                      | 83.5                    | 0.81         | 0.71                 | 0.83                      | 19.2                   |
| 3         | R2     | All MCs      | 2 <sup>100.</sup><br>0                     | 2 <sup>100.</sup><br>0                      | *0.706              | 43.3                  | LOS D               | 11.9                      | 83.5                    | 0.85         | 0.77                 | 0.89                      | 15.7                   |
| Appro     | ach    |              | 648 32.0                                   | 648 32.0                                    | 0.706               | 22.7                  | LOS B               | 11.9                      | 83.5                    | 0.81         | 0.71                 | 0.84                      | 18.4                   |
| East:     | Marga  | aret St (E)  | )                                          |                                             |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 5         | T1     | All MCs      | 318 12.6                                   | 318 12.6                                    | 0.505               | 17.6                  | LOS B               | 6.3                       | 48.6                    | 0.75         | 0.64                 | 0.75                      | 9.3                    |
| 6         | R2     | All MCs      | 75 78.9                                    | 75 78.9                                     | 0.505               | 37.3                  | LOS C               | 5.7                       | 55.4                    | 0.99         | 0.80                 | 0.99                      | 9.3                    |
| Appro     | ach    |              | 393 25.2                                   | 393 25.2                                    | 0.505               | 21.4                  | LOS B               | 6.3                       | 55.4                    | 0.80         | 0.67                 | 0.80                      | 9.3                    |
| West:     | Marg   | aret St (V   | V)                                         |                                             |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 10        | L2     | All MCs      | 91 11.6                                    | 91 11.6                                     | *0.862              | 55.2                  | LOS D               | 8.3                       | 63.1                    | 1.00         | 1.05                 | 1.32                      | 6.9                    |
| 11        | T1     | All MCs      | 95 10.0                                    | 95 10.0                                     | 0.862               | 42.2                  | LOS C               | 8.3                       | 63.1                    | 1.00         | 1.05                 | 1.32                      | 3.8                    |
| Appro     | ach    |              | 185 10.8                                   | 185 10.8                                    | 0.862               | 48.5                  | LOS D               | 8.3                       | 63.1                    | 1.00         | 1.05                 | 1.32                      | 5.4                    |
| All Ve    | hicles |              | 1226 26.6                                  | <mark>1247</mark> 26.2                      | 0.862               | 25.8                  | LOS B               | 11.9                      | 83.5                    | 0.82         | 0.74                 | 0.88                      | 13.6                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pec | lestrian Mov   | vement | Perforn | nance    |               |              |       |              |        |        |       |
|-----|----------------|--------|---------|----------|---------------|--------------|-------|--------------|--------|--------|-------|
| Mo  | 0              | Dem.   | Aver.   | Level of | AVERAGE E     | ACK OF       | Prop. | Eff.         | Travel | Travel | Aver. |
| ID  | Crossing       | Flow   | Delay   | Service  | QUEL<br>[ Ped | JE<br>Dist ] | Que   | Stop<br>Rate | Time   | Dist.  | Speed |
|     |                | ped/h  | sec     |          | ped           | m            |       |              | sec    | m      | m/sec |
| Sou | th: Clarence S | St (S) |         |          |               |              |       |              |        |        |       |
| P1  | Full           | 1717   | 34.9    | LOS D    | 3.8           | 3.8          | 0.97  | 0.97         | 51.6   | 20.0   | 0.39  |
| Eas | t: Margaret St | (E)    |         |          |               |              |       |              |        |        |       |
| P2  | Full           | 445    | 33.0    | LOS D    | 0.9           | 0.9          | 0.92  | 0.92         | 49.7   | 20.0   | 0.40  |
| Nor | th: Clarence S | st (N) |         |          |               |              |       |              |        |        |       |
| P3  | Full           | 508    | 31.3    | LOS D    | 1.0           | 1.0          | 0.89  | 0.89         | 48.0   | 20.0   | 0.42  |
| Wes | st: Margaret S | t (W)  |         |          |               |              |       |              |        |        |       |

| P4 Full         | 937  | 29.2 | LOS C | 1.9 | 1.9 | 0.87 | 0.87 | 45.9 | 20.0 | 0.44 |
|-----------------|------|------|-------|-----|-----|------|------|------|------|------|
| All Pedestrians | 3607 | 32.7 | LOS D | 3.8 | 3.8 | 0.93 | 0.93 | 49.3 | 20.0 | 0.41 |

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 2:42:12 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

# Site: BGU09 [BGU09 Margaret St / York St (Site Folder: Block 4 - 2024 AM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

■ Network: BGU-N2 [BGU Network 2 (Network Folder: Block 4 Network - 2024 AM Peak)]

TCS 3042 Site Cetegory

Site Category: NA

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Network User-Given Cycle Time)

| Vehic     | le M   | ovemen       | t Performa                      | nce                              |              |                |                     |                   |                    |                |                      |                           |                |
|-----------|--------|--------------|---------------------------------|----------------------------------|--------------|----------------|---------------------|-------------------|--------------------|----------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Demand<br>Flows<br>[ Total HV ] | Arrival<br>Flows<br>[ Total HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh | Of Queue<br>Dist 1 | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
|           |        |              | veh/h %                         | veh/h %                          | v/c          | sec            |                     | veh               | m                  |                |                      |                           | km/h           |
| East:     | Marga  | aret St (E   | )                               |                                  |              |                |                     |                   |                    |                |                      |                           |                |
| 4         | L2     | All MCs      | 58 16.4                         | 58 16.4                          | 0.194        | 24.8           | LOS B               | 2.5               | 22.3               | 0.76           | 0.68                 | 0.76                      | 17.8           |
| 5         | T1     | All MCs      | 89 63.5                         | 89 63.5                          | 0.194        | 21.6           | LOS B               | 2.5               | 22.3               | 0.76           | 0.62                 | 0.76                      | 9.4            |
| Appro     | ach    |              | 147 45.0                        | 147 45.0                         | 0.194        | 22.8           | LOS B               | 2.5               | 22.3               | 0.76           | 0.65                 | 0.76                      | 13.6           |
| North:    | York   | St (N)       |                                 |                                  |              |                |                     |                   |                    |                |                      |                           |                |
| 8         | T1     | All MCs      | 766 31.5                        | 766 31.5                         | 0.336        | 12.4           | LOS A               | 5.9               | 52.4               | 0.63           | 0.54                 | 0.63                      | 25.1           |
| 9         | R2     | All MCs      | 298 13.4                        | 298 13.4                         | *0.407       | 17.0           | LOS B               | 7.2               | 56.4               | 0.66           | 0.75                 | 0.66                      | 11.9           |
| Appro     | ach    |              | 1064 26.4                       | 1064 26.4                        | 0.407        | 13.7           | LOS A               | 7.2               | 56.4               | 0.64           | 0.60                 | 0.64                      | 22.2           |
| West:     | Marg   | aret St (V   | V)                              |                                  |              |                |                     |                   |                    |                |                      |                           |                |
| 12        | R2     | All MCs      | 75 11.3                         | <mark>62</mark> 13.7             | 0.170        | 35.6           | LOS C               | 2.4               | 18.9               | 1.00           | 0.75                 | 1.00                      | 13.1           |
| Appro     | ach    |              | 75 11.3                         | <mark>62</mark> 13.7             | 0.170        | 35.6           | LOS C               | 2.4               | 18.9               | 1.00           | 0.75                 | 1.00                      | 13.1           |
| All Ve    | hicles |              | 1286 27.7                       | <mark>1273</mark> 27.9           | 0.407        | 15.8           | LOS B               | 7.2               | 56.4               | 0.67           | 0.61                 | 0.67                      | 20.4           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian Mov        | vement       | Perforn        | nance               |                |         |              |                      |                |                 |                |  |
|-----------------------|--------------|----------------|---------------------|----------------|---------|--------------|----------------------|----------------|-----------------|----------------|--|
| Mov<br>ID Crossing    | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF | Prop.<br>Que | Eff.<br>Stop<br>Rate | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |  |
|                       | ped/h        | sec            |                     | ped            | m       |              | Trate                | sec            | m               | m/sec          |  |
| South: York St (S)    | )            |                |                     |                |         |              |                      |                |                 |                |  |
| P1 Full               | 1448         | 29.9           | LOS C               | 2.9            | 2.9     | 0.89         | 0.89                 | 46.5           | 20.0            | 0.43           |  |
| East: Margaret St (E) |              |                |                     |                |         |              |                      |                |                 |                |  |
| P2 Full               | 1907         | 30.5           | LOS D               | 3.9            | 3.9     | 0.91         | 0.91                 | 47.1           | 20.0            | 0.42           |  |
| North: York St (N)    |              |                |                     |                |         |              |                      |                |                 |                |  |
| P3 Full               | 884          | 27.4           | LOS C               | 1.7            | 1.7     | 0.84         | 0.84                 | 44.1           | 20.0            | 0.45           |  |
| West: Margaret S      | t (W)        |                |                     |                |         |              |                      |                |                 |                |  |
| P4 Full               | 606          | 31.4           | LOS D               | 1.2            | 1.2     | 0.90         | 0.90                 | 48.1           | 20.0            | 0.42           |  |
| All Pedestrians       | 4846         | 29.9           | LOS C               | 3.9            | 3.9     | 0.89         | 0.89                 | 46.5           | 20.0            | 0.43           |  |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 2:42:12 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: BGU10 [BGU10 Pedestrian Mid-block Crossing at Sussex St under Exchange PI (Site Folder: Block 4 - 2024 AM Peak)]

**Output produced by SIDRA INTERSECTION Version: 9.1.6.228** 

### TCS 3939 (?)

Site Category: (None)

Pedestrian Crossing (Signalised) - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfo            | orma       | nce                |             |              |                |                     |               |            |                |              |                 |                |
|-----------|--------|--------------|--------------------|------------|--------------------|-------------|--------------|----------------|---------------------|---------------|------------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl          | and<br>ows | Arri<br>Flo        | ival<br>bws | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back      | Of Queue   | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total l<br>veh/h | HV ]<br>%  | [ Total H<br>veh/h | IV ]<br>%   | v/c          | sec            |                     | [ Veh.<br>veh | Dist]<br>m |                | Rate         | Cycles          | km/h           |
| South     | : Sus  | sex St (S)   | )                  |            |                    |             |              |                |                     |               |            |                |              |                 |                |
| 2         | T1     | All MCs      | 432                | 3.7        | 432                | 3.7         | 0.191        | 6.8            | LOS A               | 3.3           | 23.9       | 0.48           | 0.40         | 0.48            | 26.7           |
| Appro     | ach    |              | 432                | 3.7        | 432                | 3.7         | 0.191        | 6.8            | LOS A               | 3.3           | 23.9       | 0.48           | 0.40         | 0.48            | 26.7           |
| North:    | Suss   | sex St (N)   |                    |            |                    |             |              |                |                     |               |            |                |              |                 |                |
| 8         | T1     | All MCs      | 404                | 16.7       | 404 1              | 6.7         | *0.202       | 6.8            | LOS A               | 3.1           | 25.1       | 0.48           | 0.41         | 0.48            | 24.9           |
| Appro     | ach    |              | 404                | 16.7       | 404 1              | 6.7         | 0.202        | 6.8            | LOS A               | 3.1           | 25.1       | 0.48           | 0.41         | 0.48            | 24.9           |
| All Ve    | hicles |              | 836                | 9.9        | 836                | 9.9         | 0.202        | 6.8            | LOS A               | 3.3           | 25.1       | 0.48           | 0.40         | 0.48            | 25.8           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Movement Performance |              |                |                     |             |             |              |              |                |                 |                |  |  |  |  |
|---------------------------------|--------------|----------------|---------------------|-------------|-------------|--------------|--------------|----------------|-----------------|----------------|--|--|--|--|
| Mov<br>ID Crossing              | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service |             | BACK OF     | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |  |  |  |  |
|                                 | ped/h        | sec            |                     | [Ped<br>ped | Dist J<br>m |              | Rate         | sec            | m               | m/sec          |  |  |  |  |
| South: Sussex St                | (S)          |                |                     |             |             |              |              |                |                 |                |  |  |  |  |
| P1 Full                         | 499          | 29.0           | LOS C               | 0.9         | 0.9         | 0.92         | 0.92         | 45.6           | 20.0            | 0.44           |  |  |  |  |
| All Pedestrians                 | 499          | 29.0           | LOS C               | 0.9         | 0.9         | 0.92         | 0.92         | 45.6           | 20.0            | 0.44           |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 3:54:09 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: BGU11 [BGU11 Pedestrian Mid-block Crossing at Kent St near Margaret St (Site Folder: Block 4 - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TCS 4109

Site Category: (None)

Pedestrian Crossing (Signalised) - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 45 seconds (Site User-Given Phase Times)

| Vehio              | cle M  | ovemen       | t Perfc          | orma         | nce              |               |              |                |                     |               |            |                |              |                 |                |
|--------------------|--------|--------------|------------------|--------------|------------------|---------------|--------------|----------------|---------------------|---------------|------------|----------------|--------------|-----------------|----------------|
| Mov<br>ID          | Turn   | Mov<br>Class | Dem<br>Fl        | nand<br>Iows | Ar<br>Fl         | rival<br>lows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back      | Of Queue   | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|                    |        |              | [ Total<br>veh/h | HV ]<br>%    | [ Total<br>veh/h | HV ]<br>%     | v/c          | sec            |                     | [ Veh.<br>veh | Dist]<br>m |                | Rate         | Cycles          | km/h           |
| South: Kent St (S) |        |              |                  |              |                  |               |              |                |                     |               |            |                |              |                 |                |
| 2                  | T1     | All MCs      | 719              | 8.8          | 719              | 8.8           | *0.445       | 10.7           | LOS A               | 5.2           | 39.7       | 0.76           | 0.63         | 0.76            | 21.5           |
| Appro              | ach    |              | 719              | 8.8          | 719              | 8.8           | 0.445        | 10.7           | LOS A               | 5.2           | 39.7       | 0.76           | 0.63         | 0.76            | 21.5           |
| North              | Kent   | St (N)       |                  |              |                  |               |              |                |                     |               |            |                |              |                 |                |
| 8                  | T1     | All MCs      | 266              | 1.6          | 266              | 1.6           | 0.255        | 9.6            | LOS A               | 2.9           | 20.7       | 0.68           | 0.55         | 0.68            | 14.7           |
| Appro              | ach    |              | 266              | 1.6          | 266              | 1.6           | 0.255        | 9.6            | LOS A               | 2.9           | 20.7       | 0.68           | 0.55         | 0.68            | 14.7           |
| All Ve             | hicles |              | 985              | 6.8          | 985              | 6.8           | 0.445        | 10.4           | LOS A               | 5.2           | 39.7       | 0.74           | 0.61         | 0.74            | 20.2           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov     | Pedestrian Movement Performance |                |                     |                |                          |              |                      |                |                 |                |  |  |  |  |  |
|--------------------|---------------------------------|----------------|---------------------|----------------|--------------------------|--------------|----------------------|----------------|-----------------|----------------|--|--|--|--|--|
| Mov<br>ID Crossing | Dem.<br>Flow                    | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>EUE<br>Dist 1 | Prop.<br>Que | Eff.<br>Stop<br>Rate | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |  |  |  |  |  |
|                    | ped/h                           | sec            |                     | ped            | m                        |              | Trate                | sec            | m               | m/sec          |  |  |  |  |  |
| South: Kent St (S  | )                               |                |                     |                |                          |              |                      |                |                 |                |  |  |  |  |  |
| P1 Full            | 2375                            | 16.0           | LOS B               | 2.7            | 2.7                      | 0.89         | 0.89                 | 32.6           | 20.0            | 0.61           |  |  |  |  |  |
| All Pedestrians    | 2375                            | 16.0           | LOS B               | 2.7            | 2.7                      | 0.89         | 0.89                 | 32.6           | 20.0            | 0.61           |  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 3:54:09 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

# Site: BGU12 [BGU12 Sussex St / Erskine St (Site Folder: Block 4 - 2024 AM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: BGU-N2 [BGU Network 3 (Network Folder: Block 4 Network - 2024 AM Peak)]

### TCS 310

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehic      | le M   | ovemen     | t Perfo       | orma         | nce             |             |        |       |          |          |          |       |              |                  |       |
|------------|--------|------------|---------------|--------------|-----------------|-------------|--------|-------|----------|----------|----------|-------|--------------|------------------|-------|
| Mov        | Turn   | Mov        | Dem           | nand         | Ar              | rival       | Deg.   | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff.         | Aver.            | Aver. |
| <b>ט</b> ו |        | Class      | ۲۱<br>Total آ | IOWS<br>HV 1 | ۲۱<br>  Total آ | ows<br>HV 1 | Sath   | Delay | Service  | [Veh.    | Dist 1   | Que   | Stop<br>Rate | NO. OF<br>Cvcles | Speed |
|            |        |            | veh/h         | %            | veh/h           | %           | v/c    | sec   |          | veh      | m        |       |              | - 5              | km/h  |
| South      | : Sus  | sex St (S) |               |              |                 |             |        |       |          |          |          |       |              |                  |       |
| 1          | L2     | All MCs    | 58            | 7.3          | 58              | 7.3         | 0.360  | 36.4  | LOS C    | 5.7      | 42.0     | 0.87  | 0.73         | 0.87             | 15.1  |
| 2          | T1     | All MCs    | 286           | 4.0          | 286             | 4.0         | *0.360 | 28.4  | LOS B    | 6.7      | 48.4     | 0.85  | 0.71         | 0.85             | 15.7  |
| Appro      | ach    |            | 344           | 4.6          | 344             | 4.6         | 0.360  | 29.7  | LOS C    | 6.7      | 48.4     | 0.86  | 0.71         | 0.86             | 15.6  |
| East:      | Erskir | ne St (E)  |               |              |                 |             |        |       |          |          |          |       |              |                  |       |
| 4          | L2     | All MCs    | 474           | 3.3          | 474             | 3.3         | 0.528  | 10.5  | LOS A    | 8.3      | 60.1     | 0.43  | 0.64         | 0.43             | 27.3  |
| 5          | T1     | All MCs    | 109           | 4.8          | 109             | 4.8         | 0.225  | 2.1   | LOS A    | 0.8      | 5.8      | 0.12  | 0.20         | 0.12             | 28.7  |
| 6          | R2     | All MCs    | 38            | 19.4         | 38              | 19.4        | 0.225  | 6.5   | LOS A    | 0.8      | 5.8      | 0.12  | 0.20         | 0.12             | 28.7  |
| Appro      | ach    |            | 621           | 4.6          | 621             | 4.6         | 0.528  | 8.8   | LOS A    | 8.3      | 60.1     | 0.36  | 0.54         | 0.36             | 27.4  |
| North:     | Suss   | ex St (N)  |               |              |                 |             |        |       |          |          |          |       |              |                  |       |
| 7          | L2     | All MCs    | 43            | 51.2         | 43              | 51.2        | 0.110  | 26.3  | LOS B    | 1.3      | 13.4     | 0.72  | 0.68         | 0.72             | 14.0  |
| 8          | T1     | All MCs    | 386           | 8.7          | 386             | 8.7         | 0.294  | 21.8  | LOS B    | 6.0      | 45.4     | 0.75  | 0.63         | 0.75             | 23.7  |
| 9          | R2     | All MCs    | 21            | 20.0         | 21              | 20.0        | *0.096 | 30.8  | LOS C    | 0.7      | 5.8      | 0.84  | 0.69         | 0.84             | 12.5  |
| Appro      | ach    |            | 451           | 13.3         | 451             | 13.3        | 0.294  | 22.7  | LOS B    | 6.0      | 45.4     | 0.75  | 0.63         | 0.75             | 22.5  |
| West:      | Erski  | ne St (W)  |               |              |                 |             |        |       |          |          |          |       |              |                  |       |
| 10         | L2     | All MCs    | 165           | 4.5          | 165             | 4.5         | 0.394  | 14.2  | LOS A    | 9.6      | 70.7     | 0.61  | 0.61         | 0.61             | 12.0  |
| 11         | T1     | All MCs    | 222           | 7.1          | 222             | 7.1         | 0.394  | 13.2  | LOS A    | 9.6      | 70.7     | 0.61  | 0.61         | 0.61             | 12.0  |
| 12         | R2     | All MCs    | 221           | 5.2          | 221             | 5.2         | *0.563 | 24.7  | LOS B    | 7.5      | 54.9     | 0.80  | 0.79         | 0.80             | 18.7  |
| Appro      | ach    |            | 608           | 5.7          | 608             | 5.7         | 0.563  | 17.6  | LOS B    | 9.6      | 70.7     | 0.68  | 0.67         | 0.68             | 15.9  |
| All Ve     | hicles |            | 2024          | 6.9          | 2024            | 6.9         | 0.563  | 18.1  | LOS B    | 9.6      | 70.7     | 0.63  | 0.63         | 0.63             | 20.6  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian Mo      | vement       | Perform        | nance               |                |                |              |              |                |                 |                |
|--------------------|--------------|----------------|---------------------|----------------|----------------|--------------|--------------|----------------|-----------------|----------------|
| Mov<br>ID Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>EUE | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|                    | ped/h        | sec            |                     | [ Ped<br>ped   | Dist ]<br>m    |              | Rate         | sec            | m               | m/sec          |
| South: Sussex S    | t (S)        |                |                     |                |                |              |              |                |                 |                |
| P1 Full            | 224          | 38.6           | LOS D               | 0.5            | 0.5            | 0.93         | 0.93         | 55.3           | 20.0            | 0.36           |

| East: Erskine St ( | E)   |      |       |     |     |      |      |      |      |      |
|--------------------|------|------|-------|-----|-----|------|------|------|------|------|
| P2 Full            | 192  | 38.6 | LOS D | 0.5 | 0.5 | 0.93 | 0.93 | 55.2 | 20.0 | 0.36 |
| North: Sussex St   | (N)  |      |       |     |     |      |      |      |      |      |
| P3 Full            | 498  | 39.1 | LOS D | 1.2 | 1.2 | 0.94 | 0.94 | 55.7 | 20.0 | 0.36 |
| West: Erskine St   | (W)  |      |       |     |     |      |      |      |      |      |
| P4 Full            | 198  | 38.6 | LOS D | 0.5 | 0.5 | 0.93 | 0.93 | 55.3 | 20.0 | 0.36 |
| All Pedestrians    | 1112 | 38.8 | LOS D | 1.2 | 1.2 | 0.94 | 0.94 | 55.5 | 20.0 | 0.36 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 3:54:09 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: BGU13 [BGU13 Kent St / Erskine St (Site Folder: Block 4 - 2024 AM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: BGU-N2 [BGU Network 3 (Network Folder: Block 4 Network - 2024 AM Peak)]

TCS 307

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfo  | orma         | nce      |               |              |                |                     |          |          |              |              |                 |                |
|-----------|--------|--------------|----------|--------------|----------|---------------|--------------|----------------|---------------------|----------|----------|--------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F | nand<br>Iows | Ar<br>Fl | rival<br>Iows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back | Of Queue | Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total  | HV]          | [ Total  | HV ]          |              |                |                     | [Veh.    | Dist ]   |              | Rate         | Cycles          |                |
| 0         |        |              | veh/h    | %            | veh/h    | %             | V/C          | sec            | _                   | veh      | m        | _            | _            | _               | km/h           |
| South     | : Ken  | (S)          |          |              |          |               |              |                |                     |          |          |              |              |                 |                |
| 1         | L2     | All MCs      | 144      | 7.3          | 144      | 7.3           | 0.171        | 17.2           | LOS B               | 3.5      | 26.1     | 0.59         | 0.67         | 0.59            | 21.3           |
| 2         | T1     | All MCs      | 592      | 8.4          | 592      | 8.4           | *0.278       | 12.7           | LOS A               | 6.2      | 47.2     | 0.58         | 0.49         | 0.58            | 23.3           |
| 3         | R2     | All MCs      | 3        | 0.0          | 3        | 0.0           | 0.029        | 7.0            | LOS A               | 1.6      | 4.3      | 0.35         | 0.28         | 0.35            | 25.5           |
| Appro     | ach    |              | 739      | 8.1          | 739      | 8.1           | 0.278        | 13.6           | LOS A               | 6.2      | 47.2     | 0.58         | 0.52         | 0.58            | 22.9           |
| East:     | Erskir | ne St (E)    |          |              |          |               |              |                |                     |          |          |              |              |                 |                |
| 5         | T1     | All MCs      | 286      | 4.8          | 286      | 4.8           | *0.452       | 35.6           | LOS C               | 6.4      | 46.3     | 0.93         | 0.76         | 0.93            | 5.2            |
| 6         | R2     | All MCs      | 15       | 7.1          | 15       | 7.1           | 0.452        | 43.6           | LOS D               | 5.7      | 41.7     | 0.93         | 0.76         | 0.93            | 5.2            |
| Appro     | ach    |              | 301      | 4.9          | 301      | 4.9           | 0.452        | 36.0           | LOS C               | 6.4      | 46.3     | 0.93         | 0.76         | 0.93            | 5.2            |
| North:    | Kent   | St (N)       |          |              |          |               |              |                |                     |          |          |              |              |                 |                |
| 7         | L2     | All MCs      | 6        | 0.0          | 6        | 0.0           | 0.022        | 6.8            | LOS A               | 1.3      | 3.6      | 0.34         | 0.28         | 0.34            | 22.6           |
| 8         | T1     | All MCs      | 92       | 0.0          | 92       | 0.0           | 0.022        | 4.9            | LOS A               | 1.3      | 3.6      | 0.34         | 0.28         | 0.34            | 26.3           |
| 9         | R2     | All MCs      | 191      | 2.2          | 191      | 2.2           | *0.940       | 65.7           | LOS E               | 10.8     | 76.7     | 1.00         | 1.22         | 1.61            | 4.8            |
| Appro     | ach    |              | 288      | 1.5          | 288      | 1.5           | 0.940        | 45.1           | LOS D               | 10.8     | 76.7     | 0.78         | 0.90         | 1.18            | 9.3            |
| West:     | Erski  | ne St (W     | )        |              |          |               |              |                |                     |          |          |              |              |                 |                |
| 10        | L2     | All MCs      | 97       | 7.6          | 97       | 7.6           | 0.422        | 33.7           | LOS C               | 4.9      | 37.2     | 0.84         | 0.73         | 0.84            | 7.3            |
| 11        | T1     | All MCs      | 169      | 18.6         | 169      | 18.6          | 0.422        | 32.1           | LOS C               | 5.0      | 40.3     | 0.87         | 0.71         | 0.87            | 10.2           |
| Appro     | ach    |              | 266      | 14.6         | 266      | 14.6          | 0.422        | 32.7           | LOS C               | 5.0      | 40.3     | 0.86         | 0.72         | 0.86            | 9.2            |
| All Ve    | hicles |              | 1595     | 7.4          | 1595     | 7.4           | 0.940        | 26.7           | LOS B               | 10.8     | 76.7     | 0.73         | 0.67         | 0.80            | 13.6           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Peo       | destrian Mov    | /ement       | Perform        | nance               |                |               |              |              |                |                 |                |
|-----------|-----------------|--------------|----------------|---------------------|----------------|---------------|--------------|--------------|----------------|-----------------|----------------|
| Mo\<br>ID | ′<br>Crossing   | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>UE | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|           |                 |              |                |                     | [Ped           | Dist ]        |              | Rate         |                |                 |                |
|           |                 | ped/h        | sec            |                     | ped            | m             |              |              | sec            | m               | m/sec          |
| Sou       | th: Kent St (S  | )            |                |                     |                |               |              |              |                |                 |                |
| P1        | Full            | 398          | 38.9           | LOS D               | 1.0            | 1.0           | 0.94         | 0.94         | 55.6           | 20.0            | 0.36           |
| Eas       | t: Erskine St ( | E)           |                |                     |                |               |              |              |                |                 |                |

| P2 Full            | 314  | 38.8 | LOS D | 0.7 | 0.7 | 0.93 | 0.93 | 55.4 | 20.0 | 0.36 |
|--------------------|------|------|-------|-----|-----|------|------|------|------|------|
| North: Kent St (N) |      |      |       |     |     |      |      |      |      |      |
| P3 Full            | 409  | 38.9 | LOS D | 1.0 | 1.0 | 0.94 | 0.94 | 55.6 | 20.0 | 0.36 |
| West: Erskine St ( | (W)  |      |       |     |     |      |      |      |      |      |
| P4 Full            | 524  | 39.1 | LOS D | 1.3 | 1.3 | 0.94 | 0.94 | 55.8 | 20.0 | 0.36 |
| All Pedestrians    | 1645 | 39.0 | LOS D | 1.3 | 1.3 | 0.94 | 0.94 | 55.6 | 20.0 | 0.36 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 3:54:09 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: BGU14 [BGU14 Sussex St / King St (Site Folder: Block 4 - 2024 AM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: BGU-N2 [BGU Network 4 (Network Folder: Block 4 Network - 2024 AM Peak)]

### TCS 284

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfo                       | orma                      | nce                          |                            |                     |                       |                     |                           |                         |              |                      |                           |                        |
|-----------|--------|--------------|-------------------------------|---------------------------|------------------------------|----------------------------|---------------------|-----------------------|---------------------|---------------------------|-------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl<br>[ Total<br>veh/h | nand<br>lows<br>HV ]<br>% | Ar<br>Fl<br>[ Total<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| East:     | King S | St (E)       |                               |                           |                              |                            |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 4a        | L1     | All MCs      | 27                            | 0.0                       | 27                           | 0.0                        | 0.064               | 44.8                  | LOS D               | 1.2                       | 3.2                     | 1.00         | 0.69                 | 1.00                      | 18.3                   |
| Appro     | ach    |              | 27                            | 0.0                       | 27                           | 0.0                        | 0.064               | 44.8                  | LOS D               | 1.2                       | 3.2                     | 1.00         | 0.69                 | 1.00                      | 18.3                   |
| North:    | Suss   | ex St (N)    |                               |                           |                              |                            |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 7         | L2     | All MCs      | 78                            | 14.9                      | 78                           | 14.9                       | 0.658               | 31.6                  | LOS C               | 15.8                      | 117.0                   | 0.89         | 0.79                 | 0.89                      | 16.8                   |
| 8         | T1     | All MCs      | 799                           | 4.7                       | 799                          | 4.7                        | 0.658               | 25.6                  | LOS B               | 16.6                      | 120.7                   | 0.89         | 0.78                 | 0.89                      | 24.1                   |
| Appro     | ach    |              | 877                           | 5.6                       | 877                          | 5.6                        | 0.658               | 26.1                  | LOS B               | 16.6                      | 120.7                   | 0.89         | 0.78                 | 0.89                      | 23.6                   |
| South     | West:  | King St (    | (SW)                          |                           |                              |                            |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 30a       | L1     | All MCs      | 404                           | 4.2                       | 404                          | 4.2                        | *0.462              | 17.3                  | LOS B               | 8.2                       | 59.4                    | 0.71         | 0.75                 | 0.71                      | 37.0                   |
| 32a       | R1     | All MCs      | 1519                          | 3.7                       | 1519                         | 3.7                        | *0.802              | 31.1                  | LOS C               | 26.7                      | 193.4                   | 0.91         | 0.87                 | 0.96                      | 27.1                   |
| 32b       | R3     | All MCs      | 376                           | 8.4                       | 376                          | 8.4                        | 0.501               | 23.1                  | LOS B               | 11.1                      | 83.0                    | 0.71         | 0.80                 | 0.71                      | 33.1                   |
| Appro     | ach    |              | 2299                          | 4.5                       | 2299                         | 4.5                        | 0.802               | 27.3                  | LOS B               | 26.7                      | 193.4                   | 0.85         | 0.84                 | 0.88                      | 28.8                   |
| All Ve    | hicles |              | 3203                          | 4.8                       | 3203                         | 4.8                        | 0.802               | 27.2                  | LOS B               | 26.7                      | 193.4                   | 0.86         | 0.82                 | 0.88                      | 27.4                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestriar       | n Movement   | Perforr | nance    |         |         |       |      |        |        |       |
|------------------|--------------|---------|----------|---------|---------|-------|------|--------|--------|-------|
| Mov<br>D Crossir | Dem.         | Aver.   | Level of | AVERAGE | BACK OF | Prop. | Eff. | Travel | Travel | Aver. |
|                  | '9 FIOW      | Delay   | Service  | [ Ped   | Dist ]  | Que   | Rate | Time   | DISI.  | Speed |
|                  | ped/h        | sec     |          | ped     | m       |       |      | sec    | m      | m/sec |
| South: Suss      | ex St (S)    |         |          |         |         |       |      |        |        |       |
| P1 Full          | 164          | 40.4    | LOS E    | 0.4     | 0.4     | 0.95  | 0.95 | 57.1   | 20.0   | 0.35  |
| East: King S     | St (E)       |         |          |         |         |       |      |        |        |       |
| P2 Full          | 245          | 38.7    | LOS D    | 0.6     | 0.6     | 0.93  | 0.93 | 55.3   | 20.0   | 0.36  |
| North: Suss      | ex St (N)    |         |          |         |         |       |      |        |        |       |
| P3 Full          | 440          | 39.0    | LOS D    | 1.1     | 1.1     | 0.94  | 0.94 | 55.7   | 20.0   | 0.36  |
| SouthWest:       | King St (SW) |         |          |         |         |       |      |        |        |       |
| P8 Full          | 288          | 38.7    | LOS D    | 0.7     | 0.7     | 0.93  | 0.93 | 205.4  | 200.0  | 0.97  |

| P8B Slip/<br>Bypass | 212  | 40.5 | LOS E | 0.5 | 0.5 | 0.95 | 0.95 | 207.2 | 200.0 | 0.97 |
|---------------------|------|------|-------|-----|-----|------|------|-------|-------|------|
| All Pedestrians     | 1349 | 39.3 | LOS D | 1.1 | 1.1 | 0.94 | 0.94 | 111.5 | 86.7  | 0.78 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 4 November 2024 3:11:33 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: BGU15 [BGU15 Kent St / King St (Site Folder: Block 4 - 2024 AM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: BGU-N2 [BGU Network 4 (Network Folder: Block 4 Network - 2024 AM Peak)]

TCS 283

Site Category: NA

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehic    | le M   | ovemen       | t Perfc   | orma | nce      |       |              |                |                     |          |          |       |              |        |                |
|----------|--------|--------------|-----------|------|----------|-------|--------------|----------------|---------------------|----------|----------|-------|--------------|--------|----------------|
| Mov<br>D | Turn   | Mov<br>Class | Derr<br>F | nand | Ar<br>Fl | rival | Deg.<br>Satn | Aver.<br>Delav | Level of<br>Service | 95% Back | Of Queue | Prop. | Eff.<br>Stop | Aver.  | Aver.<br>Speed |
|          |        | 01000        | [ Total   | HV]  | [ Total  | HV ]  | Call         | Delay          | 0011100             | [Veh.    | Dist]    | Que   | Rate         | Cycles | opeca          |
|          |        |              | veh/h     | %    | veh/h    | %     | v/c          | sec            |                     | veh      | m        |       |              |        | km/h           |
| South    | : Ken  | t St (S)     |           |      |          |       |              |                |                     |          |          |       |              |        |                |
| 1        | L2     | All MCs      | 3         | 0.0  | 3        | 0.0   | 0.219        | 46.4           | LOS D               | 4.0      | 10.7     | 0.98  | 0.72         | 0.98   | 13.2           |
| 2        | T1     | All MCs      | 496       | 11.0 | 496      | 11.0  | *0.623       | 38.5           | LOS C               | 8.5      | 66.1     | 0.97  | 0.79         | 0.98   | 20.2           |
| 3        | R2     | All MCs      | 171       | 7.4  | 171      | 7.4   | *0.616       | 44.9           | LOS D               | 6.6      | 49.4     | 0.99  | 0.80         | 1.01   | 13.6           |
| Appro    | ach    |              | 669       | 10.1 | 669      | 10.1  | 0.623        | 40.2           | LOS C               | 8.5      | 66.1     | 0.98  | 0.80         | 0.99   | 18.6           |
| East:    | King S | St (E)       |           |      |          |       |              |                |                     |          |          |       |              |        |                |
| 5        | T1     | All MCs      | 12        | 0.0  | 12       | 0.0   | 0.084        | 44.2           | LOS D               | 0.8      | 2.1      | 0.99  | 0.66         | 0.99   | 4.4            |
| 6        | R2     | All MCs      | 6         | 0.0  | 6        | 0.0   | 0.084        | 50.4           | LOS D               | 0.8      | 2.1      | 0.99  | 0.66         | 0.99   | 13.4           |
| Appro    | ach    |              | 18        | 0.0  | 18       | 0.0   | 0.084        | 46.4           | LOS D               | 0.8      | 2.1      | 0.99  | 0.66         | 0.99   | 8.2            |
| North    | Kent   | St (N)       |           |      |          |       |              |                |                     |          |          |       |              |        |                |
| 7        | L2     | All MCs      | 17        | 0.0  | 17       | 0.0   | 0.174        | 46.2           | LOS D               | 3.1      | 8.4      | 0.98  | 0.71         | 0.98   | 10.7           |
| 8        | T1     | All MCs      | 58        | 0.0  | 58       | 0.0   | 0.174        | 42.8           | LOS D               | 3.1      | 8.4      | 0.98  | 0.71         | 0.98   | 18.9           |
| 9        | R2     | All MCs      | 17        | 0.0  | 17       | 0.0   | 0.075        | 47.4           | LOS D               | 0.7      | 1.9      | 0.97  | 0.66         | 0.97   | 11.9           |
| Appro    | ach    |              | 92        | 0.0  | 92       | 0.0   | 0.174        | 44.2           | LOS D               | 3.1      | 8.4      | 0.98  | 0.70         | 0.98   | 16.2           |
| West:    | King   | St (W)       |           |      |          |       |              |                |                     |          |          |       |              |        |                |
| 10       | L2     | All MCs      | 276       | 2.3  | 276      | 2.3   | * 0.553      | 15.2           | LOS B               | 5.8      | 37.8     | 0.42  | 0.49         | 0.42   | 26.4           |
| 11       | T1     | All MCs      | 1304      | 4.7  | 1304     | 4.7   | *0.553       | 4.1            | LOS A               | 5.8      | 37.8     | 0.20  | 0.19         | 0.20   | 28.7           |
| Appro    | ach    |              | 1580      | 4.3  | 1580     | 4.3   | 0.553        | 6.0            | LOS A               | 5.8      | 37.8     | 0.24  | 0.25         | 0.24   | 27.9           |
| All Ve   | hicles |              | 2359      | 5.7  | 2359     | 5.7   | 0.623        | 17.5           | LOS B               | 8.5      | 66.1     | 0.48  | 0.42         | 0.49   | 21.6           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Peo       | destrian Mov   | vement       | Perform        | nance               |                |               |              |              |                |                 |                |
|-----------|----------------|--------------|----------------|---------------------|----------------|---------------|--------------|--------------|----------------|-----------------|----------------|
| Mo\<br>ID | /<br>Crossing  | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>UE | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|           |                |              |                |                     | [Ped           | Dist ]        |              | Rate         |                |                 |                |
|           |                | ped/h        | sec            |                     | ped            | m             |              |              | sec            | m               | m/sec          |
| Sou       | th: Kent St (S | )            |                |                     |                |               |              |              |                |                 |                |
| P1        | Full           | 404          | 38.9           | LOS D               | 1.0            | 1.0           | 0.94         | 0.94         | 55.6           | 20.0            | 0.36           |
| Eas       | t: King St (E) |              |                |                     |                |               |              |              |                |                 |                |

| P2 Full            | 397  | 38.9 | LOS D | 1.0 | 1.0 | 0.94 | 0.94 | 55.6 | 20.0 | 0.36 |
|--------------------|------|------|-------|-----|-----|------|------|------|------|------|
| North: Kent St (N) |      |      |       |     |     |      |      |      |      |      |
| P3 Full            | 577  | 39.2 | LOS D | 1.4 | 1.4 | 0.94 | 0.94 | 55.9 | 20.0 | 0.36 |
| West: King St (W)  |      |      |       |     |     |      |      |      |      |      |
| P4 Full            | 494  | 39.1 | LOS D | 1.2 | 1.2 | 0.94 | 0.94 | 55.7 | 20.0 | 0.36 |
| All Pedestrians    | 1872 | 39.1 | LOS D | 1.4 | 1.4 | 0.94 | 0.94 | 55.7 | 20.0 | 0.36 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 4 November 2024 3:11:33 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

★ Site: BGU16 [BGU16 Pedestrian Mid-block Crossing at Hickson Rd (North of Metro) (Site Folder: Block 4 - 2024 AM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: BGU-N1 [BGU Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

NA

Site Category: (None) Pedestrian Crossing (Unsignalised)

| Vehic     | cle M  | ovemen       | t Perfo   | orma        | nce      |               |              |                |                     |              |           |                |              |                 |                |
|-----------|--------|--------------|-----------|-------------|----------|---------------|--------------|----------------|---------------------|--------------|-----------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl | and<br>lows | Ar<br>Fl | rival<br>lows | Deg.<br>Satn | Aver.<br>Delav | Level of<br>Service | 95% Bac      | k Of Queu | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total   | HV ]        | [ Total  | HV ]          | v/c          | sec            |                     | [Veh.<br>veh | Dist ]    |                | Rate         | Cycles          | km/h           |
| South     | : Hick | son Rd (     | S)        | 70          | veni/m   | 70            | 10           | 000            |                     | Von          |           |                |              |                 | KIII/II        |
| 2         | T1     | All MCs      | 284       | 9.6         | 284      | 9.6           | 0.178        | 2.1            | LOS A               | 0.8          | 5.7       | 0.01           | 0.36         | 0.01            | 37.6           |
| Appro     | ach    |              | 284       | 9.6         | 284      | 9.6           | 0.178        | 2.1            | LOS A               | 0.8          | 5.7       | 0.01           | 0.36         | 0.01            | 37.6           |
| North     | Hick   | son Rd (N    | 1)        |             |          |               |              |                |                     |              |           |                |              |                 |                |
| 8         | T1     | All MCs      | 162       | 11.0        | 162      | 11.0          | 0.102        | 2.1            | LOS A               | 0.4          | 3.0       | 0.01           | 0.36         | 0.01            | 36.1           |
| Appro     | ach    |              | 162       | 11.0        | 162      | 11.0          | 0.102        | 2.1            | LOS A               | 0.4          | 3.0       | 0.01           | 0.36         | 0.01            | 36.1           |
| All Ve    | hicles |              | 446       | 10.1        | 446      | 10.1          | 0.178        | 2.1            | NA                  | 0.8          | 5.7       | 0.01           | 0.36         | 0.01            | 37.2           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Akçelik M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 3:02:14 PM Project: C:\Users\\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: BGU17 [BGU17 Pedestrian Mid-block Crossing at Hickson Rd (South of Metro) (Site Folder: Block 4 - 2024 AM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: BGU-N1 [BGU Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

New Site Site Category: (None) Pedestrian Crossing (Unsignalised)

### Vehicle Movement Performance

|           |        |              |                    | ina        |                    |              |             |              |              |                     |     |             |      |             |              |         |             |               |                    |
|-----------|--------|--------------|--------------------|------------|--------------------|--------------|-------------|--------------|--------------|---------------------|-----|-------------|------|-------------|--------------|---------|-------------|---------------|--------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl          | and<br>ows | Ar<br>Fl           | rival<br>ows | Deg<br>Satr | . Av<br>1 De | ver.<br>elay | Level of<br>Service | 959 | % Bac       | k O1 | Queue       | Prop.<br>Que | l<br>St | Eff.<br>top | Aver<br>No. o | . Aver.<br>f Speed |
|           |        |              | [ Total ł<br>veh/h | HV ]<br>%  | [ Total l<br>veh/h | HV ]<br>%    | v/c         | ; ;          | sec          |                     |     | Veh.<br>veh |      | Dist ]<br>m |              | R       | ate         | Cycles        | s<br>km/h          |
| South     | : Hick | son Rd (S    | 5)                 |            |                    |              |             |              |              |                     |     |             |      |             |              |         |             |               |                    |
| 2         | T1     | All MCs      | 284                | 9.6        | 284                | 9.6          | 0.183       | 3            | 2.2          | LOS A               |     | 0.8         |      | 5.9         | 0.12         | 0       | .35         | 0.12          | 35.7               |
| Appro     | ach    |              | 284                | 9.6        | 284                | 9.6          | 0.183       | 3            | 2.2          | LOS A               |     | 0.8         |      | 5.9         | 0.12         | 0.      | .35         | 0.12          | 35.7               |
| North     | Hick   | son Rd (N    | )                  |            |                    |              |             |              |              |                     |     |             |      |             |              |         |             |               |                    |
| 8         | T1     | All MCs      | 162                | 11.0       | 162                | 11.0         | 0.105       | 5            | 2.2          | LOS A               |     | 0.4         |      | 3.1         | 0.11         | 0       | .35         | 0.11          | 37.8               |
| Appro     | ach    |              | 162                | 11.0       | 162                | 11.0         | 0.105       | 5            | 2.2          | LOS A               |     | 0.4         |      | 3.1         | 0.11         | 0       | .35         | 0.11          | 37.8               |
| All Ve    | hicles | ;            | 446 <sup>-</sup>   | 10.1       | 446                | 10.1         | 0.183       | 3            | 2.2          | NA                  |     | 0.8         |      | 5.9         | 0.11         | 0       | .35         | 0.11          | 36.9               |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Akçelik M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 3:02:14 PM Project: C:\Users\\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

## Site: BGU18 [BGU18 Shelley St / Erskine St (Site Folder: Block 4 - 2024 AM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: BGU-N2 [BGU Network 3 (Network Folder: Block 4 Network - 2024 AM Peak)]

TCS 305

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site User-Given Phase Times)

| Vehic  | cle M  | ovemen      | t Perform  | ance       |        |       |          |          |          |       |      |        |       |
|--------|--------|-------------|------------|------------|--------|-------|----------|----------|----------|-------|------|--------|-------|
| Mov    | Turn   | Mov         | Demand     | Arrival    | Deg.   | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff. | Aver.  | Aver. |
| שו     |        | Class       | [ Total HV | [ Total HV | Sain   | Delay | Service  | [Veh.    | Dist ]   | Que   | Rate | Cycles | Speed |
|        |        |             | veh/h %    | veh/h %    | v/c    | sec   |          | veh      | m        |       |      |        | km/h  |
| South  | : She  | lley St (S) | )          |            |        |       |          |          |          |       |      |        |       |
| 1      | L2     | All MCs     | 20 15.8    | 20 15.8    | 0.082  | 10.7  | LOS A    | 1.5      | 11.2     | 0.38  | 0.37 | 0.38   | 20.3  |
| 2      | T1     | All MCs     | 75 7.0     | 75 7.0     | 0.082  | 5.6   | LOS A    | 1.5      | 11.2     | 0.38  | 0.37 | 0.38   | 28.9  |
| 3      | R2     | All MCs     | 376 2.0    | 376 2.0    | *0.554 | 13.6  | LOS A    | 9.4      | 67.0     | 0.61  | 0.73 | 0.61   | 17.1  |
| Appro  | ach    |             | 471 3.4    | 471 3.4    | 0.554  | 12.2  | LOS A    | 9.4      | 67.0     | 0.56  | 0.66 | 0.56   | 19.1  |
| East:  | Erskir | ne St (E)   |            |            |        |       |          |          |          |       |      |        |       |
| 4      | L2     | All MCs     | 37 2.9     | 37 2.9     | 0.131  | 40.6  | LOS C    | 1.4      | 10.2     | 0.90  | 0.71 | 0.90   | 10.5  |
| 5      | T1     | All MCs     | 120 8.8    | 120 8.8    | *0.547 | 37.3  | LOS C    | 6.3      | 47.3     | 0.96  | 0.78 | 0.96   | 8.3   |
| 6      | R2     | All MCs     | 32 6.7     | 32 6.7     | 0.547  | 48.1  | LOS D    | 6.3      | 47.3     | 0.96  | 0.78 | 0.96   | 9.4   |
| Appro  | ach    |             | 188 7.3    | 188 7.3    | 0.547  | 39.8  | LOS C    | 6.3      | 47.3     | 0.95  | 0.77 | 0.95   | 8.7   |
| North  | : Shel | ley St (N)  | )          |            |        |       |          |          |          |       |      |        |       |
| 7      | L2     | All MCs     | 54 5.9     | 54 5.9     | 0.091  | 10.4  | LOS A    | 0.9      | 6.8      | 0.41  | 0.60 | 0.41   | 17.7  |
| 8      | T1     | All MCs     | 4 0.0      | 4 0.0      | 0.021  | 6.2   | LOS A    | 0.3      | 2.2      | 0.39  | 0.49 | 0.39   | 26.4  |
| 9      | R2     | All MCs     | 13 25.0    | 13 25.0    | 0.021  | 10.1  | LOS A    | 0.3      | 2.2      | 0.39  | 0.49 | 0.39   | 16.0  |
| Appro  | ach    |             | 71 9.0     | 71 9.0     | 0.091  | 10.1  | LOS A    | 0.9      | 6.8      | 0.40  | 0.57 | 0.40   | 17.8  |
| West:  | Erski  | ne St (W)   | )          |            |        |       |          |          |          |       |      |        |       |
| 10     | L2     | All MCs     | 17 12.5    | 17 12.5    | 0.457  | 43.8  | LOS D    | 3.6      | 27.9     | 0.93  | 0.75 | 0.93   | 9.9   |
| 11     | T1     | All MCs     | 179 13.5   | 179 13.5   | 0.457  | 35.7  | LOS C    | 4.7      | 37.1     | 0.93  | 0.75 | 0.93   | 5.6   |
| 12     | R2     | All MCs     | 6 50.0     | 6 50.0     | 0.457  | 44.0  | LOS D    | 4.7      | 37.1     | 0.93  | 0.75 | 0.93   | 11.5  |
| Appro  | ach    |             | 202 14.6   | 202 14.6   | 0.457  | 36.7  | LOS C    | 4.7      | 37.1     | 0.93  | 0.75 | 0.93   | 6.3   |
| All Ve | hicles | i           | 932 7.0    | 932 7.0    | 0.554  | 22.9  | LOS B    | 9.4      | 67.0     | 0.71  | 0.69 | 0.71   | 12.2  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian Movement Performance |              |                |                     |                |                |              |              |                |                 |                |  |  |
|---------------------------------|--------------|----------------|---------------------|----------------|----------------|--------------|--------------|----------------|-----------------|----------------|--|--|
| Mov<br>ID Crossing              | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>EUE | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |  |  |
|                                 | ned/h        | 500            |                     | [Ped           | Dist ]         |              | Rate         | 202            | m               | mleec          |  |  |
| South: Shelley St (S)           |              |                |                     |                |                |              |              |                |                 |                |  |  |
| P1 Full                         | 102          | 38.4           | LOS D               | 0.2            | 0.2            | 0.93         | 0.93         | 205.1          | 200.0           | 0.98           |  |  |

| East: Erskine St (E)  |     |      |       |     |     |      |      |       |       |      |  |  |
|-----------------------|-----|------|-------|-----|-----|------|------|-------|-------|------|--|--|
| P2 Full               | 75  | 38.4 | LOS D | 0.2 | 0.2 | 0.93 | 0.93 | 205.1 | 200.0 | 0.98 |  |  |
| North: Shelley St (N) |     |      |       |     |     |      |      |       |       |      |  |  |
| P3 Full               | 161 | 38.5 | LOS D | 0.4 | 0.4 | 0.93 | 0.93 | 205.2 | 200.0 | 0.97 |  |  |
| West: Erskine St (W)  |     |      |       |     |     |      |      |       |       |      |  |  |
| P4 Full               | 140 | 38.5 | LOS D | 0.3 | 0.3 | 0.93 | 0.93 | 205.2 | 200.0 | 0.97 |  |  |
| All Pedestrians       | 478 | 38.5 | LOS D | 0.4 | 0.4 | 0.93 | 0.93 | 205.1 | 200.0 | 0.97 |  |  |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 3:54:09 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

V Site: BUG01 [BGU01 Hickson Rd / Towns PI (Site Folder: Block 4 - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Site Category: (None) Give-Way (Two-Way)

| Vehicle Movement Performance |        |              |                      |                      |                                |                      |              |                |                     |                    |                    |              |                      |                           |                |
|------------------------------|--------|--------------|----------------------|----------------------|--------------------------------|----------------------|--------------|----------------|---------------------|--------------------|--------------------|--------------|----------------------|---------------------------|----------------|
| Mov<br>ID                    | Turn   | Mov<br>Class | Dem<br>Fi<br>[ Total | nand<br>lows<br>HV ] | Ar<br>Fl<br>[ Total ]<br>veb/b | rival<br>ows<br>HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh. | Of Queue<br>Dist ] | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| East: Hickson Rd (E)         |        |              |                      |                      |                                |                      |              | 300            |                     | VCIT               |                    |              |                      |                           | K111/11        |
| 4a                           | L1     | All MCs      | 182                  | 4.6                  | 182                            | 4.6                  | 0.289        | 4.4            | LOS A               | 1.4                | 9.7                | 0.48         | 0.57                 | 0.48                      | 34.1           |
| 6a                           | R1     | All MCs      | 95                   | 0.0                  | 95                             | 0.0                  | 0.289        | 8.4            | LOS A               | 1.4                | 9.7                | 0.48         | 0.57                 | 0.48                      | 34.1           |
| Appro                        | ach    |              | 277                  | 3.0                  | 277                            | 3.0                  | 0.289        | 5.8            | NA                  | 1.4                | 9.7                | 0.48         | 0.57                 | 0.48                      | 34.1           |
| NorthWest: Towns PI (NW)     |        |              |                      |                      |                                |                      |              |                |                     |                    |                    |              |                      |                           |                |
| 27a                          | L1     | All MCs      | 134                  | 1.6                  | 134                            | 1.6                  | 0.351        | 6.8            | LOS A               | 1.5                | 10.9               | 0.67         | 0.90                 | 0.86                      | 32.5           |
| 29                           | R2     | All MCs      | 73                   | 7.2                  | 73                             | 7.2                  | 0.351        | 13.3           | LOS A               | 1.5                | 10.9               | 0.67         | 0.90                 | 0.86                      | 21.4           |
| Appro                        | ach    |              | 206                  | 3.6                  | 206                            | 3.6                  | 0.351        | 9.1            | LOS A               | 1.5                | 10.9               | 0.67         | 0.90                 | 0.86                      | 30.6           |
| SouthWest: Hickson Rd (SW)   |        |              |                      |                      |                                |                      |              |                |                     |                    |                    |              |                      |                           |                |
| 30                           | L2     | All MCs      | 145                  | 5.1                  | 145                            | 5.1                  | 0.319        | 5.7            | LOS A               | 1.7                | 12.2               | 0.42         | 0.50                 | 0.42                      | 32.7           |
| 32a                          | R1     | All MCs      | 254                  | 2.9                  | 254                            | 2.9                  | 0.319        | 3.2            | LOS A               | 1.7                | 12.2               | 0.42         | 0.50                 | 0.42                      | 36.4           |
| Appro                        | ach    |              | 399                  | 3.7                  | 399                            | 3.7                  | 0.319        | 4.1            | NA                  | 1.7                | 12.2               | 0.42         | 0.50                 | 0.42                      | 35.7           |
| All Ve                       | hicles |              | 882                  | 3.5                  | 882                            | 3.5                  | 0.351        | 5.8            | NA                  | 1.7                | 12.2               | 0.49         | 0.61                 | 0.54                      | 34.1           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 3:02:18 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9
V Site: BGU02 [BGU02 Dalgety Rd / Towns PI (Site Folder: Block 4 - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: BGU-N1 [BGU Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

Site Category: (None) Roundabout

| Vehic     | cle M  | ovemen       | t Perfo                      | orma                      | nce                         |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
|-----------|--------|--------------|------------------------------|---------------------------|-----------------------------|----------------------------|---------------------|-----------------------|---------------------|---------------------------|-------------------------|----------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F<br>[ Total<br>veh/h | nand<br>lows<br>HV ]<br>% | Ar<br>F<br>[ Total<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Dalg | ety Rd (S    | S)                           |                           |                             |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 30        | L2     | All MCs      | 1                            | 0.0                       | 1                           | 0.0                        | 0.130               | 6.1                   | LOS A               | 0.8                       | 5.6                     | 0.12           | 0.56                 | 0.12                      | 24.5                   |
| 3b        | R3     | All MCs      | 181                          | 4.1                       | 181                         | 4.1                        | 0.130               | 6.3                   | LOS A               | 0.8                       | 5.6                     | 0.12           | 0.56                 | 0.12                      | 32.2                   |
| 32u       | U      | All MCs      | 6                            | 0.0                       | 6                           | 0.0                        | 0.130               | 7.0                   | LOS A               | 0.8                       | 5.6                     | 0.12           | 0.56                 | 0.12                      | 34.7                   |
| Appro     | ach    |              | 188                          | 3.9                       | 188                         | 3.9                        | 0.130               | 6.3                   | LOS A               | 0.8                       | 5.6                     | 0.12           | 0.56                 | 0.12                      | 32.3                   |
| South     | East:  | Towns P      | I (SE)                       |                           |                             |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 21b       | L3     | All MCs      | 220                          | 3.3                       | 220                         | 3.3                        | 0.165               | 2.7                   | LOS A               | 1.1                       | 7.6                     | 0.14           | 0.42                 | 0.14                      | 35.4                   |
| 21a       | L1     | All MCs      | 5                            | 0.0                       | 5                           | 0.0                        | 0.165               | 8.3                   | LOS A               | 1.1                       | 7.6                     | 0.14           | 0.42                 | 0.14                      | 18.8                   |
| 23u       | U      | All MCs      | 15                           | 0.0                       | 15                          | 0.0                        | 0.165               | 7.0                   | LOS A               | 1.1                       | 7.6                     | 0.14           | 0.42                 | 0.14                      | 30.1                   |
| Appro     | ach    |              | 240                          | 3.1                       | 240                         | 3.1                        | 0.165               | 3.1                   | LOS A               | 1.1                       | 7.6                     | 0.14           | 0.42                 | 0.14                      | 35.0                   |
| West:     | Parki  | ng Acces     | s (W)                        |                           |                             |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 12a       | R1     | All MCs      | 11                           | 0.0                       | 11                          | 0.0                        | 0.025               | 1.2                   | LOS A               | 0.1                       | 0.9                     | 0.39           | 0.20                 | 0.39                      | 9.6                    |
| 29        | R2     | All MCs      | 16                           | 0.0                       | 16                          | 0.0                        | 0.025               | 1.2                   | LOS A               | 0.1                       | 0.9                     | 0.39           | 0.20                 | 0.39                      | 21.6                   |
| 29u       | U      | All MCs      | 1                            | 0.0                       | 1                           | 0.0                        | 0.025               | 1.2                   | LOS A               | 0.1                       | 0.9                     | 0.39           | 0.20                 | 0.39                      | 9.8                    |
| Appro     | ach    |              | 27                           | 0.0                       | 27                          | 0.0                        | 0.025               | 1.2                   | LOS A               | 0.1                       | 0.9                     | 0.39           | 0.20                 | 0.39                      | 18.0                   |
| All Ve    | hicles | i            | 456                          | 3.2                       | 456                         | 3.2                        | 0.165               | 4.3                   | LOS A               | 1.1                       | 7.6                     | 0.14           | 0.46                 | 0.14                      | 32.6                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 3:02:18 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

# V Site: BGU03 [BGU03 Kent St / Argyle St (Site Folder: Block 4 - 2024 PM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Site Category: (None) Give-Way (Two-Way)

| Vehic  | cle M  | ovement  | t Perfo         | rma         | nce            |            |      |       |          |      |                |       |              |                  |       |
|--------|--------|----------|-----------------|-------------|----------------|------------|------|-------|----------|------|----------------|-------|--------------|------------------|-------|
| Mov    | Turn   | Mov      | Dem             | hand        | Arriv          | /al [      | Deg. | Aver. | Level of | 95%  | Back Of        | Prop. | Eff.         | Aver.            | Aver. |
| שו     |        | Class    | FI<br>[ Total ] | ows<br>HV 1 | FIO<br>Total H | ws :<br>V1 | Sath | Delay | Service  | [Veh | ueue<br>Dist 1 | Que   | Stop<br>Rate | NO. OT<br>Cycles | Speed |
|        |        |          | veh/h           | %           | veh/h          | %          | v/c  | sec   |          | veh  | m              |       |              |                  | km/h  |
| South  | : Kent | : St (S) |                 |             |                |            |      |       |          |      |                |       |              |                  |       |
| 1      | L2     | All MCs  | 72              | 7.4         | 72 7           | 7.4 0.     | 454  | 6.4   | LOS A    | 2.4  | 17.5           | 0.66  | 0.93         | 0.96             | 33.9  |
| 2      | T1     | All MCs  | 29 <sup>-</sup> | 14.3        | 29 14          | 1.3 0.     | 454  | 8.8   | LOS A    | 2.4  | 17.5           | 0.66  | 0.93         | 0.96             | 32.4  |
| 3      | R2     | All MCs  | 158             | 0.0         | 158 (          | ).0 0.     | 454  | 12.6  | LOS A    | 2.4  | 17.5           | 0.66  | 0.93         | 0.96             | 32.7  |
| Appro  | ach    |          | 259             | 3.7         | 259 3          | 3.7 0      | 454  | 10.4  | LOS A    | 2.4  | 17.5           | 0.66  | 0.93         | 0.96             | 33.0  |
| East:  | Argyle | e St (E) |                 |             |                |            |      |       |          |      |                |       |              |                  |       |
| 4      | L2     | All MCs  | 185             | 1.1         | 185 1          | l.1 0.     | 280  | 5.4   | LOS A    | 1.4  | 9.8            | 0.44  | 0.47         | 0.44             | 36.5  |
| 5      | T1     | All MCs  | 91              | 0.0         | 91 (           | ).0 0.     | 280  | 1.2   | LOS A    | 1.4  | 9.8            | 0.44  | 0.47         | 0.44             | 36.0  |
| 6      | R2     | All MCs  | 63              | 33.3        | 6 33           | 3.3 0.     | 280  | 5.3   | LOS A    | 1.4  | 9.8            | 0.44  | 0.47         | 0.44             | 30.0  |
| Appro  | ach    |          | 282             | 1.5         | 282 1          | 1.5 0.     | 280  | 4.0   | NA       | 1.4  | 9.8            | 0.44  | 0.47         | 0.44             | 36.3  |
| North: | Kent   | St (N)   |                 |             |                |            |      |       |          |      |                |       |              |                  |       |
| 7      | L2     | All MCs  | 8               | 12.5        | 8 12           | 2.5 0      | 039  | 8.2   | LOS A    | 0.1  | 1.0            | 0.50  | 0.91         | 0.50             | 26.3  |
| 8      | T1     | All MCs  | 15              | 0.0         | 15 (           | ).0 0.     | 039  | 11.6  | LOS A    | 0.1  | 1.0            | 0.50  | 0.91         | 0.50             | 32.9  |
| 9      | R2     | All MCs  | 1               | 0.0         | 1 (            | ).0 0.     | 039  | 8.8   | LOS A    | 0.1  | 1.0            | 0.50  | 0.91         | 0.50             | 29.9  |
| Appro  | ach    |          | 24              | 4.3         | 24 4           | 1.3 0.     | 039  | 10.3  | LOS A    | 0.1  | 1.0            | 0.50  | 0.91         | 0.50             | 31.4  |
| West:  | Argyl  | e PI (W) |                 |             |                |            |      |       |          |      |                |       |              |                  |       |
| 10     | L2     | All MCs  | 8               | 0.0         | 8 (            | 0.0 0.     | 186  | 5.1   | LOS A    | 0.9  | 6.5            | 0.42  | 0.41         | 0.42             | 34.8  |
| 11     | T1     | All MCs  | 97              | 4.3         | 97 4           | 1.3 0.     | 186  | 1.2   | LOS A    | 0.9  | 6.5            | 0.42  | 0.41         | 0.42             | 36.5  |
| 12     | R2     | All MCs  | 87              | 0.0         | 87 (           | ).0 0.     | 186  | 5.9   | LOS A    | 0.9  | 6.5            | 0.42  | 0.41         | 0.42             | 37.2  |
| Appro  | ach    |          | 193             | 2.2         | 193 2          | 2.2 0      | 186  | 3.5   | NA       | 0.9  | 6.5            | 0.42  | 0.41         | 0.42             | 36.8  |
| All Ve | hicles |          | 758             | 2.5         | 758 2          | 2.5 0.     | 454  | 6.3   | NA       | 2.4  | 17.5           | 0.51  | 0.62         | 0.61             | 35.0  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 5:36:37 PM Project: C:\Users\\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

# CCG MOVEMENT SUMMARY

### □ Common Control Group: CCG1 [TCS 4272] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

### Network: BGU-N2 [BGU Network 2 (Network Folder: Block 4 Network - 2024 PM Peak)]

EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (CCG User-Given Phase Times)

| Vehio     | cle M  | ovement      | t Perfo                                 | orma                            | nce <u>(</u> C                         | CG)                        |                             |                               |                     |                           |                         |                |                      |                           |                                |
|-----------|--------|--------------|-----------------------------------------|---------------------------------|----------------------------------------|----------------------------|-----------------------------|-------------------------------|---------------------|---------------------------|-------------------------|----------------|----------------------|---------------------------|--------------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl<br>[ Total ]<br>veh/ <u>h</u> | nand<br>lows<br>HV]<br><u>%</u> | Ar<br>Fl<br>[ Total ]<br>veh/ <u>h</u> | rival<br>ows<br>HV ]<br>%_ | Deg.<br>Satn<br>v/ <u>c</u> | Aver.<br>Delay<br>se <u>c</u> | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/ <u>h</u> |
| Site: E   | 3GU0   | 4 [BGU04     | Pedes                                   | strian                          | Mid-bl                                 | ock C                      | crossing at                 | t Kent St                     | near Gas            | Ln]                       |                         |                |                      |                           |                                |
| South     | : Ken  | t St         |                                         |                                 |                                        |                            |                             |                               |                     |                           |                         |                |                      |                           |                                |
| 2         | T1     | All MCs      | 353                                     | 3.0                             | 353                                    | 3.0                        | 0.275                       | 1.6                           | LOS A               | 2.0                       | 14.1                    | 0.14           | 0.12                 | 0.14                      | 38.6                           |
| Appro     | bach   |              | 353                                     | 3.0                             | 353                                    | 3.0                        | 0.275                       | 1.6                           | LOS A               | 2.0                       | 14.1                    | 0.14           | 0.12                 | 0.14                      | 38.6                           |
| North     | : Kent | St           |                                         |                                 |                                        |                            |                             |                               |                     |                           |                         |                |                      |                           |                                |
| 8         | T1     | All MCs      | 368                                     | 2.0                             | 368                                    | 2.0                        | 0.413                       | 32.0                          | LOS C               | 7.0                       | 49.7                    | 0.90           | 0.74                 | 0.90                      | 22.3                           |
| Appro     | bach   |              | 368                                     | 2.0                             | 368                                    | 2.0                        | 0.413                       | 32.0                          | LOS C               | 7.0                       | 49.7                    | 0.90           | 0.74                 | 0.90                      | 22.3                           |
| All Ve    | hicles | i            | 721                                     | 2.5                             | 721                                    | 2.5                        | 0.413                       | 17.2                          | LOS B               | 7.0                       | 49.7                    | 0.52           | 0.43                 | 0.52                      | 28.5                           |
| Site: E   | 3GU0   | 5 [BGU05     | Kent S                                  | St / S                          | ydney l                                | Harbo                      | our Bridge                  | (SHB) C                       | n-ramp ]            |                           |                         |                |                      |                           |                                |
| South     | : Ken  | t St (S)     |                                         |                                 |                                        |                            |                             |                               |                     |                           |                         |                |                      |                           |                                |
| 2         | T1     | All MCs      | 560                                     | 4.1                             | 560                                    | 4.1                        | 0.441                       | 4.9                           | LOS A               | 8.7                       | 63.4                    | 0.39           | 0.35                 | 0.39                      | 32.2                           |
| 3a        | R1     | All MCs      | 285                                     | 9.2                             | 285                                    | 9.2                        | *0.420                      | 18.9                          | LOS B               | 6.9                       | 52.1                    | 0.65           | 0.63                 | 0.65                      | 25.7                           |
| Appro     | bach   |              | 845                                     | 5.9                             | 845                                    | 5.9                        | 0.441                       | 9.6                           | LOS A               | 8.7                       | 63.4                    | 0.48           | 0.44                 | 0.48                      | 28.9                           |
| East:     | Clare  | nce St (E)   | )                                       |                                 |                                        |                            |                             |                               |                     |                           |                         |                |                      |                           |                                |
| 4         | L2     | All MCs      | 134                                     | 6.3                             | 134                                    | 6.3                        | 0.494                       | 42.3                          | LOS C               | 5.6                       | 41.2                    | 0.96           | 0.79                 | 0.96                      | 11.1                           |
| 6         | R2     | All MCs      | 180                                     | 8.2                             | 180                                    | 8.2                        | *0.633                      | 42.9                          | LOS D               | 7.7                       | 57.8                    | 0.98           | 0.83                 | 1.01                      | 11.0                           |
| Appro     | bach   |              | 314                                     | 7.4                             | 314                                    | 7.4                        | 0.633                       | 42.7                          | LOS D               | 7.7                       | 57.8                    | 0.97           | 0.81                 | 0.99                      | 11.0                           |
| North     | East:  | SHB On-r     | amp (N                                  | IE)                             |                                        |                            |                             |                               |                     |                           |                         |                |                      |                           |                                |
| 24a       | L1     | All MCs      | 38                                      | 0.0                             | 38                                     | 0.0                        | 0.025                       | 28.5                          | LOS B               | 1.2                       | 3.3                     | 0.80           | 0.60                 | 0.80                      | 20.5                           |
| Appro     | bach   |              | 38                                      | 0.0                             | 38                                     | 0.0                        | 0.025                       | 28.5                          | LOS B               | 1.2                       | 3.3                     | 0.80           | 0.60                 | 0.80                      | 20.5                           |
| North     | : Kent | St (N)       |                                         |                                 |                                        |                            |                             |                               |                     |                           |                         |                |                      |                           |                                |
| 7b        | L3     | All MCs      | 139                                     | 5.3                             | 139                                    | 5.3                        | 0.540                       | 49.3                          | LOS D               | 6.3                       | 46.2                    | 1.00           | 0.84                 | 1.00                      | 11.1                           |
| 8         | T1     | All MCs      | 83                                      | 34.2                            | 83                                     | 34.2                       | *0.303                      | 13.8                          | LOS A               | 1.6                       | 14.1                    | 0.43           | 0.34                 | 0.43                      | 12.1                           |
| Appro     | bach   |              | 222                                     | 16.1                            | 222                                    | 16.1                       | 0.540                       | 36.0                          | LOS C               | 6.3                       | 46.2                    | 0.79           | 0.65                 | 0.79                      | 11.3                           |
| All Ve    | hicles |              | 1419                                    | 7.6                             | 1419                                   | 7.6                        | 0.633                       | 21.6                          | LOS B               | 8.7                       | 63.4                    | 0.64           | 0.56                 | 0.65                      | 19.9                           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian Mo | vement | Perform | nance (C | CG)             |       |      |        |        |       |
|---------------|--------|---------|----------|-----------------|-------|------|--------|--------|-------|
| Mov           | Dem.   | Aver.   | Level of | AVERAGE BACK OF | Prop. | Eff. | Travel | Travel | Aver. |
| ID Crossing   | Flow   | Delay   | Service  | QUEUE           | Que   | Stop | Time   | Dist.  | Speed |

|                    |          |           |                | [Ped         | Dist ]       |         | Rate |       |       |       |
|--------------------|----------|-----------|----------------|--------------|--------------|---------|------|-------|-------|-------|
|                    | ped/h    | sec       |                | ped          | m            |         |      | sec   | m     | m/sec |
| Site: BGU04 [BGU   | J04 Pede | estrian N | /lid-block Cro | ossing at K  | (ent St near | Gas Ln] |      |       |       |       |
| South: Kent St     |          |           |                |              |              |         |      |       |       |       |
| P1 Full            | 212      | 38.6      | LOS D          | 0.5          | 0.5          | 0.93    | 0.93 | 205.3 | 200.0 | 0.97  |
| All Pedestrians    | 212      | 38.6      | LOS D          | 0.5          | 0.5          | 0.93    | 0.93 | 205.3 | 200.0 | 0.97  |
| Site: BGU05 [BGL   | J05 Kent | St / Syd  | dney Harbou    | ır Bridge (S | SHB) On-ram  | ıp ]    |      |       |       |       |
| South: Kent St (S) |          |           |                |              |              |         |      |       |       |       |
| P1 Full            | 18       | 34.7      | LOS D          | 0.0          | 0.0          | 0.88    | 0.88 | 51.4  | 20.0  | 0.39  |
| All Pedestrians    | 18       | 34.7      | LOS D          | 0.0          | 0.0          | 0.88    | 0.88 | 51.4  | 20.0  | 0.39  |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 2:42:15 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: BGU06 [BGU06 Hickson Rd / Napoleon St / Sussex St (Site Folder: Block 4 - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: BGU-N2 [BGU Network 3 (Network Folder: Block 4 Network - 2024 PM Peak)]

TCS 4625

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfo          | orma         | nce               |              |              |                |                     |               |             |                |              |                 |                |
|-----------|--------|--------------|------------------|--------------|-------------------|--------------|--------------|----------------|---------------------|---------------|-------------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F         | nand<br>Iows | Ar<br>Fl          | rival<br>ows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back      | Of Queue    | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Iotal<br>veh/h | HV J<br>%    | [ Iotal∶<br>veh/h | HV J<br>%    | v/c          | sec            |                     | [ Veh.<br>veh | Dist J<br>m |                | Rate         | Cycles          | km/h           |
| South     | : Sus  | sex St (S)   | )                |              |                   |              |              |                |                     |               |             |                |              |                 |                |
| 2         | T1     | All MCs      | 385              | 0.8          | 385               | 0.8          | 0.409        | 14.1           | LOS A               | 9.6           | 67.7        | 0.68           | 0.59         | 0.68            | 27.7           |
| 3         | R2     | All MCs      | 131              | 1.6          | 131               | 1.6          | *0.492       | 28.2           | LOS B               | 4.2           | 29.8        | 0.93           | 0.78         | 0.93            | 18.2           |
| Appro     | ach    |              | 516              | 1.0          | 516               | 1.0          | 0.492        | 17.7           | LOS B               | 9.6           | 67.7        | 0.75           | 0.64         | 0.75            | 25.0           |
| East:     | Napol  | ean St (E    | )                |              |                   |              |              |                |                     |               |             |                |              |                 |                |
| 4         | L2     | All MCs      | 148              | 12.1         | 148               | 12.1         | 0.314        | 28.0           | LOS B               | 4.6           | 35.7        | 0.83           | 0.75         | 0.83            | 13.1           |
| 6         | R2     | All MCs      | 155              | 4.1          | 155               | 4.1          | *0.464       | 35.5           | LOS C               | 5.6           | 40.3        | 0.94           | 0.78         | 0.94            | 19.3           |
| Appro     | ach    |              | 303              | 8.0          | 303               | 8.0          | 0.464        | 31.8           | LOS C               | 5.6           | 40.3        | 0.88           | 0.77         | 0.88            | 17.1           |
| North:    | Hick   | son Rd (N    | 1)               |              |                   |              |              |                |                     |               |             |                |              |                 |                |
| 7         | L2     | All MCs      | 113              | 0.0          | 113               | 0.0          | 0.180        | 29.3           | LOS C               | 3.1           | 21.8        | 0.74           | 0.71         | 0.74            | 23.0           |
| 8         | T1     | All MCs      | 375              | 3.7          | 375               | 3.7          | * 0.597      | 28.1           | LOS B               | 12.0          | 86.8        | 0.87           | 0.75         | 0.87            | 19.5           |
| Appro     | ach    |              | 487              | 2.8          | 487               | 2.8          | 0.597        | 28.4           | LOS B               | 12.0          | 86.8        | 0.84           | 0.74         | 0.84            | 18.4           |
| West:     | Car F  | Park Acce    | ss (W)           |              |                   |              |              |                |                     |               |             |                |              |                 |                |
| 10        | L2     | All MCs      | 2                | 0.0          | 2                 | 0.0          | 0.122        | 40.7           | LOS C               | 0.6           | 4.1         | 0.97           | 0.67         | 0.97            | 12.1           |
| 11        | T1     | All MCs      | 49               | 0.0          | 49                | 0.0          | *0.583       | 42.7           | LOS D               | 2.9           | 20.3        | 0.99           | 0.79         | 1.05            | 8.8            |
| 12        | R2     | All MCs      | 33               | 0.0          | 33                | 0.0          | 0.583        | 43.2           | LOS D               | 2.9           | 20.3        | 1.00           | 0.83         | 1.08            | 2.3            |
| Appro     | ach    |              | 84               | 0.0          | 84                | 0.0          | 0.583        | 42.9           | LOS D               | 2.9           | 20.3        | 1.00           | 0.80         | 1.06            | 6.7            |
| All Ve    | hicles |              | 1391             | 3.1          | 1391              | 3.1          | 0.597        | 26.0           | LOS B               | 12.0          | 86.8        | 0.82           | 0.71         | 0.83            | 19.4           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Peo | destrian Mov  | vement | Perform | nance    |         |         |       |      |        |        |       |
|-----|---------------|--------|---------|----------|---------|---------|-------|------|--------|--------|-------|
| Mov |               | Dem.   | Aver.   | Level of | AVERAGE | BACK OF | Prop. | Eff. | Travel | Travel | Aver. |
| ID  | Crossing      | Flow   | Delay   | Service  | QUE     | EUE     | Que   | Stop | Time   | Dist.  | Speed |
|     |               |        |         |          | [Ped    | Dist ]  |       | Rate |        |        |       |
|     |               | ped/h  | sec     |          | ped     | m       |       |      | sec    | m      | m/sec |
| Sou | th: Sussex St | (S)    |         |          |         |         |       |      |        |        |       |
| P1  | Full          | 56     | 33.4    | LOS D    | 0.1     | 0.1     | 0.91  | 0.91 | 50.1   | 20.0   | 0.40  |
| Eas | t: Napolean S | st (E) |         |          |         |         |       |      |        |        |       |
| P2  | Full          | 102    | 33.4    | LOS D    | 0.2     | 0.2     | 0.92  | 0.92 | 50.1   | 20.0   | 0.40  |

| North: Hickson Rd  | (N)                       |      |       |     |     |      |      |      |      |      |  |  |  |
|--------------------|---------------------------|------|-------|-----|-----|------|------|------|------|------|--|--|--|
| P3 Full            | 57                        | 33.4 | LOS D | 0.1 | 0.1 | 0.91 | 0.91 | 50.1 | 20.0 | 0.40 |  |  |  |
| West: Car Park Acc | Vest: Car Park Access (W) |      |       |     |     |      |      |      |      |      |  |  |  |
| P4 Full            | 171                       | 33.5 | LOS D | 0.4 | 0.4 | 0.92 | 0.92 | 50.2 | 20.0 | 0.40 |  |  |  |
| All Pedestrians    | 385                       | 33.5 | LOS D | 0.4 | 0.4 | 0.92 | 0.92 | 50.1 | 20.0 | 0.40 |  |  |  |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 3:56:18 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: BGU07 [BGU07 Margaret St / Kent St / Napoleon St (Site Folder: Block 4 - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

### TCS 308

#### Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehic  | le M   | ovemen     | t Perfo       | orma         | nce           |             |        |       |          |          |          |       |              |                  |       |
|--------|--------|------------|---------------|--------------|---------------|-------------|--------|-------|----------|----------|----------|-------|--------------|------------------|-------|
| Mov    | Turn   | Mov        | Dem           | nand         | Ar            | rival       | Deg.   | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff.         | Aver.            | Aver. |
| ID     |        | Class      | FI<br>[ Total | lows<br>HV 1 | FI<br>  Total | ows<br>HV/1 | Satn   | Delay | Service  | [ Veh    | Dist 1   | Que   | Stop<br>Rate | No. of<br>Cycles | Speed |
|        |        |            | veh/h         | %            | veh/h         | %           | v/c    | sec   |          | veh      | m        |       | i tato       | 0,0100           | km/h  |
| South  | : Kent | t St (S)   |               |              |               |             |        |       |          |          |          |       |              |                  |       |
| 1a     | L1     | All MCs    | 59            | 17.9         | 59            | 17.9        | *0.400 | 25.8  | LOS B    | 9.7      | 72.1     | 0.68  | 0.61         | 0.68             | 20.5  |
| 2      | T1     | All MCs    | 469           | 4.3          | 469           | 4.3         | 0.400  | 19.5  | LOS B    | 9.7      | 72.1     | 0.76  | 0.65         | 0.76             | 8.4   |
| 3      | R2     | All MCs    | 45            | 2.3          | 45            | 2.3         | 0.400  | 52.3  | LOS D    | 5.5      | 40.2     | 0.86  | 0.73         | 0.86             | 6.9   |
| Appro  | ach    |            | 574           | 5.5          | 574           | 5.5         | 0.400  | 22.7  | LOS B    | 9.7      | 72.1     | 0.76  | 0.65         | 0.76             | 9.7   |
| East:  | Marga  | aret St (E | )             |              |               |             |        |       |          |          |          |       |              |                  |       |
| 4      | L2     | All MCs    | 37            | 2.9          | 37            | 2.9         | 0.108  | 24.6  | LOS B    | 0.9      | 6.6      | 0.58  | 0.62         | 0.58             | 11.2  |
| 6a     | R1     | All MCs    | 185           | 6.3          | 185           | 6.3         | 0.435  | 16.2  | LOS B    | 5.0      | 37.0     | 0.57  | 0.57         | 0.57             | 20.9  |
| 6      | R2     | All MCs    | 26            | 0.0          | 26            | 0.0         | *0.435 | 18.7  | LOS B    | 5.0      | 37.0     | 0.57  | 0.57         | 0.57             | 10.8  |
| Appro  | ach    |            | 248           | 5.1          | 248           | 5.1         | 0.435  | 17.7  | LOS B    | 5.0      | 37.0     | 0.57  | 0.57         | 0.57             | 18.7  |
| North  | Kent   | St (N)     |               |              |               |             |        |       |          |          |          |       |              |                  |       |
| 7      | L2     | All MCs    | 46            | 4.5          | 46            | 4.5         | 0.313  | 38.4  | LOS C    | 5.9      | 42.0     | 0.76  | 0.66         | 0.76             | 18.5  |
| 8      | T1     | All MCs    | 218           | 0.5          | 218           | 0.5         | 0.313  | 26.6  | LOS B    | 5.9      | 42.0     | 0.84  | 0.68         | 0.84             | 17.3  |
| 9b     | R3     | All MCs    | 59            | 3.6          | 59            | 3.6         | 0.177  | 8.8   | LOS A    | 0.4      | 3.1      | 0.17  | 0.56         | 0.17             | 30.6  |
| Appro  | ach    |            | 323           | 1.6          | 323           | 1.6         | 0.313  | 25.0  | LOS B    | 5.9      | 42.0     | 0.71  | 0.66         | 0.71             | 19.4  |
| North  | West:  | Napoleo    | n St (N\      | N)           |               |             |        |       |          |          |          |       |              |                  |       |
| 27b    | L3     | All MCs    | 201           | 1.0          | 201           | 1.0         | 0.455  | 9.0   | LOS A    | 5.5      | 38.6     | 0.67  | 0.71         | 0.67             | 23.0  |
| 27a    | L1     | All MCs    | 92            | 0.0          | 92            | 0.0         | 0.455  | 21.8  | LOS B    | 5.5      | 38.6     | 0.67  | 0.71         | 0.67             | 23.0  |
| Appro  | ach    |            | 293           | 0.7          | 293           | 0.7         | 0.455  | 13.0  | LOS A    | 5.5      | 38.6     | 0.67  | 0.71         | 0.67             | 23.0  |
| All Ve | hicles |            | 1438          | 3.6          | 1438          | 3.6         | 0.455  | 20.4  | LOS B    | 9.7      | 72.1     | 0.70  | 0.65         | 0.70             | 16.5  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian Mo      | vement       | Perform        | nance               |                         |                          |              |                      |                |                 |                |
|--------------------|--------------|----------------|---------------------|-------------------------|--------------------------|--------------|----------------------|----------------|-----------------|----------------|
| Mov<br>ID Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUI<br>[ Ped | BACK OF<br>EUE<br>Dist ] | Prop.<br>Que | Eff.<br>Stop<br>Rate | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|                    | ped/h        | sec            |                     | ped                     | m                        |              |                      | sec            | m               | m/sec          |
| South: Kent St (S  | 5)           |                |                     |                         |                          |              |                      |                |                 |                |

| P1 Full            | 635        | 33.0 | LOS D | 1.4 | 1.4 | 0.87 | 0.87 | 49.6  | 20.0  | 0.40 |
|--------------------|------------|------|-------|-----|-----|------|------|-------|-------|------|
| East: Margaret St  | :(E)       |      |       |     |     |      |      |       |       |      |
| P2 Full            | 146        | 36.7 | LOS D | 0.3 | 0.3 | 0.91 | 0.91 | 53.3  | 20.0  | 0.37 |
| North: Kent St (N) | )          |      |       |     |     |      |      |       |       |      |
| P3 Full            | 283        | 31.6 | LOS D | 0.6 | 0.6 | 0.84 | 0.84 | 48.3  | 20.0  | 0.41 |
| NorthWest: Napol   | leon St (N | WV)  |       |     |     |      |      |       |       |      |
| P7 Full            | 503        | 31.9 | LOS D | 1.1 | 1.1 | 0.85 | 0.85 | 198.6 | 200.0 | 1.01 |
| All Pedestrians    | 1567       | 32.7 | LOS D | 1.4 | 1.4 | 0.86 | 0.86 | 97.6  | 77.8  | 0.80 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 2:42:15 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&W Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

### Site: BGU08 [BGU08 Margaret St / Clarence St (Site Folder: Block 4 - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

■ Network: BGU-N2 [BGU Network 2 (Network Folder: Block 4 Network - 2024 PM Peak)]

TCS 319

Site Category: NA

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Performa                                 | ance                                        |                     |                       |                     |                           |                         |                |                      |                           |                        |
|-----------|--------|--------------|--------------------------------------------|---------------------------------------------|---------------------|-----------------------|---------------------|---------------------------|-------------------------|----------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Demand<br>Flows<br>[ Total HV ]<br>veh/h % | Arrival<br>Flows<br>[ Total HV ]<br>veh/h % | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Clar | ence St (    | S)                                         |                                             |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 1         | L2     | All MCs      | 0.0                                        | 0 0.0                                       | 0.000               | 0.0                   | NA                  | 0.0                       | 0.0                     | 0.00           | 0.00                 | 0.00                      | 0.0                    |
| 2         | T1     | All MCs      | 863 18.5                                   | 863 18.5                                    | *0.532              | 22.0                  | LOS B               | 13.5                      | 95.0                    | 0.79           | 0.68                 | 0.79                      | 19.0                   |
| 3         | R2     | All MCs      | 60 1.8                                     | 60 1.8                                      | *0.190              | 30.0                  | LOS C               | 3.4                       | 33.3                    | 0.76           | 0.69                 | 0.76                      | 14.5                   |
| Appro     | ach    |              | 923 17.4                                   | 923 17.4                                    | 0.532               | 22.5                  | LOS B               | 13.5                      | 95.0                    | 0.79           | 0.68                 | 0.79                      | 18.7                   |
| East:     | Marga  | aret St (E)  | )                                          |                                             |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 5         | T1     | All MCs      | 224 5.6                                    | 224 5.6                                     | 0.254               | 8.8                   | LOS A               | 3.8                       | 27.9                    | 0.41           | 0.35                 | 0.41                      | 15.4                   |
| 6         | R2     | All MCs      | 100 63.2                                   | 100 63.2                                    | 0.278               | 21.2                  | LOS B               | 2.7                       | 29.6                    | 0.82           | 0.75                 | 0.82                      | 12.0                   |
| Appro     | ach    |              | 324 23.4                                   | 324 23.4                                    | 0.278               | 12.6                  | LOS A               | 3.8                       | 29.6                    | 0.54           | 0.47                 | 0.54                      | 13.6                   |
| West:     | Marg   | aret St (V   | V)                                         |                                             |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 10        | L2     | All MCs      | 115 0.0                                    | 115 0.0                                     | *0.627              | 45.6                  | LOS D               | 7.8                       | 55.3                    | 0.98           | 0.82                 | 1.00                      | 8.0                    |
| 11        | T1     | All MCs      | 68 4.6                                     | 68 4.6                                      | 0.627               | 33.1                  | LOS C               | 7.8                       | 55.3                    | 0.98           | 0.82                 | 1.00                      | 4.4                    |
| Appro     | ach    |              | 183 1.7                                    | 183 1.7                                     | 0.627               | 40.9                  | LOS C               | 7.8                       | 55.3                    | 0.98           | 0.82                 | 1.00                      | 6.7                    |
| All Ve    | hicles |              | 1431 16.8                                  | <mark>1455</mark> 16.5                      | 0.627               | 22.3                  | LOS B               | 13.5                      | 95.0                    | 0.74           | 0.64                 | 0.74                      | 16.1                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Peo                                                                      | destrian Mov   | /ement       | Perforr        | nance               |                     |         |              |              |                |                 |                |  |
|--------------------------------------------------------------------------|----------------|--------------|----------------|---------------------|---------------------|---------|--------------|--------------|----------------|-----------------|----------------|--|
| Mov<br>ID                                                                | /<br>Crossing  | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service |                     | BACK OF | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |  |
|                                                                          |                | ned/h        | 200            |                     | [Ped Dist]<br>ped m |         |              | Rate         | 202            | m               | m/sec          |  |
| ped/h sec ped m sec   South: Clarence St (S) 22.2 2.7 2.7 0.00 0.00 55.8 |                |              |                |                     |                     |         |              |              |                |                 |                |  |
| P1                                                                       | Full           | 1108         | 39.2           | LOS D               | 2.7                 | 2.7     | 0.96         | 0.96         | 55.8           | 20.0            | 0.36           |  |
| Eas                                                                      | t: Margaret St | (E)          |                |                     |                     |         |              |              |                |                 |                |  |
| P2                                                                       | Full           | 511          | 38.2           | LOS D               | 1.2                 | 1.2     | 0.93         | 0.93         | 54.8           | 20.0            | 0.36           |  |
| Nor                                                                      | th: Clarence S | St (N)       |                |                     |                     |         |              |              |                |                 |                |  |
| P3                                                                       | Full           | 581          | 36.4           | LOS D               | 1.4                 | 1.4     | 0.91         | 0.91         | 53.1           | 20.0            | 0.38           |  |
| We                                                                       | st: Margaret S | t (W)        |                |                     |                     |         |              |              |                |                 |                |  |
| P4                                                                       | Full           | 609          | 33.8           | LOS D               | 1.4                 | 1.4     | 0.88         | 0.88         | 50.5           | 20.0            | 0.40           |  |

| All Pedestrians | 2809 | 37.3 | LOS D | 2.7 | 2.7 | 0.92 | 0.92 | 53.9 | 20.0 | 0.37 |
|-----------------|------|------|-------|-----|-----|------|------|------|------|------|
|-----------------|------|------|-------|-----|-----|------|------|------|------|------|

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 2:42:15 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

# Site: BGU09 [BGU09 Margaret St / York St (Site Folder: Block 4 - 2024 PM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

■ Network: BGU-N2 [BGU Network 2 (Network Folder: Block 4 Network - 2024 PM Peak)]

TCS 3042

Site Category: NA

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Performa              | nce                     |                |                |                     |               |             |                |              |                 |                |
|-----------|--------|--------------|-------------------------|-------------------------|----------------|----------------|---------------------|---------------|-------------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Demand<br>Flows         | Arrival<br>Flows        | Deg.<br>Satn   | Aver.<br>Delay | Level of<br>Service | 95% Back      | Of Queue    | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total HV ]<br>veh/h % | [ Total HV ]<br>veh/h % | v/c            | sec            |                     | [ Veh.<br>veh | Dist ]<br>m |                | Rate         | Cycles          | km/h           |
| East: I   | Marga  | aret St (E   | )                       |                         |                |                |                     |               |             |                |              |                 |                |
| 4         | L2     | All MCs      | 146 1.4                 | 146 1.4                 | 0.186          | 19.6           | LOS B               | 4.0           | 28.3        | 0.64           | 0.69         | 0.64            | 19.8           |
| 5         | T1     | All MCs      | 106 56.4                | 106 56.4                | 0.186          | 16.4           | LOS B               | 4.0           | 28.3        | 0.64           | 0.53         | 0.64            | 11.8           |
| Appro     | ach    |              | 253 24.6                | 253 24.6                | 0.186          | 18.3           | LOS B               | 4.0           | 28.7        | 0.64           | 0.62         | 0.64            | 17.5           |
| North:    | York   | St (N)       |                         |                         |                |                |                     |               |             |                |              |                 |                |
| 8         | T1     | All MCs      | 735 22.8                | 735 22.8                | <b>*</b> 0.375 | 20.0           | LOS B               | 7.5           | 63.0        | 0.74           | 0.63         | 0.74            | 20.5           |
| 9         | R2     | All MCs      | 218 7.2                 | 218 7.2                 | 0.308          | 23.2           | LOS B               | 6.5           | 48.0        | 0.72           | 0.76         | 0.72            | 9.5            |
| Appro     | ach    |              | 953 19.2                | 953 19.2                | 0.375          | 20.7           | LOS B               | 7.5           | 63.0        | 0.73           | 0.66         | 0.73            | 18.5           |
| West:     | Marg   | aret St (V   | V)                      |                         |                |                |                     |               |             |                |              |                 |                |
| 12        | R2     | All MCs      | 128 3.3                 | 128 3.3                 | 0.268          | 31.8           | LOS C               | 5.1           | 37.0        | 0.95           | 0.70         | 0.95            | 14.1           |
| Appro     | ach    |              | 128 3.3                 | 128 3.3                 | 0.268          | 31.8           | LOS C               | 5.1           | 37.0        | 0.95           | 0.70         | 0.95            | 14.1           |
| All Vel   | nicles |              | 1334 18.7               | 1334 18.7               | 0.375          | 21.3           | LOS B               | 7.5           | 63.0        | 0.74           | 0.66         | 0.74            | 17.8           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian Mo      | ovement      | Perfor         | nance               |                |                          |              |                      |                |                 |                |
|--------------------|--------------|----------------|---------------------|----------------|--------------------------|--------------|----------------------|----------------|-----------------|----------------|
| Mov<br>ID Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUI | BACK OF<br>EUE<br>Dist 1 | Prop.<br>Que | Eff.<br>Stop<br>Rate | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|                    | ped/h        | sec            |                     | ped            | m                        |              | 1 10.10              | sec            | m               | m/sec          |
| South: York St (   | S)           |                |                     |                |                          |              |                      |                |                 |                |
| P1 Full            | 1498         | 35.1           | LOS D               | 3.5            | 3.5                      | 0.91         | 0.91                 | 51.8           | 20.0            | 0.39           |
| East: Margaret     | St (E)       |                |                     |                |                          |              |                      |                |                 |                |
| P2 Full            | 1457         | 35.1           | LOS D               | 3.4            | 3.4                      | 0.91         | 0.91                 | 51.7           | 20.0            | 0.39           |
| North: York St (   | V)           |                |                     |                |                          |              |                      |                |                 |                |
| P3 Full            | 851          | 32.4           | LOS D               | 1.9            | 1.9                      | 0.86         | 0.86                 | 49.1           | 20.0            | 0.41           |
| West: Margaret     | St (W)       |                |                     |                |                          |              |                      |                |                 |                |
| P4 Full            | 809          | 36.8           | LOS D               | 1.9            | 1.9                      | 0.92         | 0.92                 | 53.5           | 20.0            | 0.37           |
| All Pedestrians    | 4615         | 34.9           | LOS D               | 3.5            | 3.5                      | 0.90         | 0.90                 | 51.6           | 20.0            | 0.39           |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 2:42:15 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: BGU10 [BGU10 Pedestrian Mid-block Crossing at Sussex St under Exchange PI (Site Folder: Block 4 - 2024 PM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

### TCS 3939 (?)

Site Category: (None)

Pedestrian Crossing (Signalised) - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 65 seconds (Site User-Given Phase Times)

| Vehic                | le M   | ovemen       | t Perfo            | orma         | nce                |              |              |                |                     |               |             |                |              |                 |                |
|----------------------|--------|--------------|--------------------|--------------|--------------------|--------------|--------------|----------------|---------------------|---------------|-------------|----------------|--------------|-----------------|----------------|
| Mov<br>ID            | Turn   | Mov<br>Class | Dem<br>Fl          | nand<br>Iows | Ar<br>Fl           | rival<br>ows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back      | Of Queue    | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|                      |        |              | [ Total  <br>veh/h | HV ]<br>%    | [ Total  <br>veh/h | HV ]<br>%    | v/c          | sec            |                     | [ Veh.<br>veh | Dist ]<br>m |                | Rate         | Cycles          | km/h           |
| South: Sussex St (S) |        |              |                    |              |                    |              |              |                |                     |               |             |                |              |                 |                |
| 2                    | T1     | All MCs      | 535                | 0.6          | 535                | 0.6          | 0.249        | 8.1            | LOS A               | 4.4           | 30.8        | 0.55           | 0.47         | 0.55            | 25.0           |
| Appro                | ach    |              | 535                | 0.6          | 535                | 0.6          | 0.249        | 8.1            | LOS A               | 4.4           | 30.8        | 0.55           | 0.47         | 0.55            | 25.0           |
| North                | Suss   | sex St (N)   |                    |              |                    |              |              |                |                     |               |             |                |              |                 |                |
| 8                    | T1     | All MCs      | 518                | 6.1          | 518                | 6.1          | *0.254       | 8.1            | LOS A               | 4.3           | 31.4        | 0.55           | 0.47         | 0.55            | 23.2           |
| Appro                | ach    |              | 518                | 6.1          | 518                | 6.1          | 0.254        | 8.1            | LOS A               | 4.3           | 31.4        | 0.55           | 0.47         | 0.55            | 23.2           |
| All Ve               | hicles | ;            | 1053               | 3.3          | 1053               | 3.3          | 0.254        | 8.1            | LOS A               | 4.4           | 31.4        | 0.55           | 0.47         | 0.55            | 24.2           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov     | Pedestrian Movement Performance |                |                     |             |             |              |              |                |                 |                |  |  |  |  |  |
|--------------------|---------------------------------|----------------|---------------------|-------------|-------------|--------------|--------------|----------------|-----------------|----------------|--|--|--|--|--|
| Mov<br>ID Crossing | Dem.<br>Flow                    | Aver.<br>Delay | Level of<br>Service |             | BACK OF     | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |  |  |  |  |  |
|                    | ped/h                           | sec            |                     | [Ped<br>ped | Dist ]<br>m |              | Rate         | sec            | m               | m/sec          |  |  |  |  |  |
| South: Sussex St   | (S)                             |                |                     |             |             |              |              |                |                 |                |  |  |  |  |  |
| P1 Full            | 306                             | 26.2           | LOS C               | 0.5         | 0.5         | 0.90         | 0.90         | 42.9           | 20.0            | 0.47           |  |  |  |  |  |
| All Pedestrians    | 306                             | 26.2           | LOS C               | 0.5         | 0.5         | 0.90         | 0.90         | 42.9           | 20.0            | 0.47           |  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 3:56:18 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: BGU11 [BGU11 Pedestrian Mid-block Crossing at Kent St near Margaret St (Site Folder: Block 4 - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TCS 4109

Site Category: (None)

Pedestrian Crossing (Signalised) - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 45 seconds (Site User-Given Phase Times)

| Vehic              | le M                   | ovemen       | t Perfc          | orma         | nce              |              |              |                |                     |               |            |                |              |                 |                |
|--------------------|------------------------|--------------|------------------|--------------|------------------|--------------|--------------|----------------|---------------------|---------------|------------|----------------|--------------|-----------------|----------------|
| Mov<br>ID          | Turn                   | Mov<br>Class | Dem<br>Fl        | nand<br>Iows | Ar<br>Fl         | rival<br>ows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back      | Of Queue   | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|                    |                        |              | [ Total<br>veh/h | HV ]<br>%    | [ Total<br>veh/h | HV ]<br>%    | v/c          | sec            |                     | [ Veh.<br>veh | Dist]<br>m |                | Rate         | Cycles          | km/h           |
| South: Kent St (S) |                        |              |                  |              |                  |              |              |                |                     |               |            |                |              |                 |                |
| 2                  | T1                     | All MCs      | 586              | 6.6          | 586              | 6.6          | *0.352       | 10.2           | LOS A               | 4.0           | 30.0       | 0.73           | 0.60         | 0.73            | 21.9           |
| Appro              | 2 T1 All M<br>Approach |              | 586              | 6.6          | 586              | 6.6          | 0.352        | 10.2           | LOS A               | 4.0           | 30.0       | 0.73           | 0.60         | 0.73            | 21.9           |
| North:             | Kent                   | St (N)       |                  |              |                  |              |              |                |                     |               |            |                |              |                 |                |
| 8                  | T1                     | All MCs      | 283              | 0.7          | 283              | 0.7          | 0.229        | 9.4            | LOS A               | 2.6           | 18.6       | 0.67           | 0.54         | 0.67            | 14.7           |
| Appro              | ach                    |              | 283              | 0.7          | 283              | 0.7          | 0.229        | 9.4            | LOS A               | 2.6           | 18.6       | 0.67           | 0.54         | 0.67            | 14.7           |
| All Ve             | hicles                 |              | 869              | 4.7          | 869              | 4.7          | 0.352        | 9.9            | LOS A               | 4.0           | 30.0       | 0.71           | 0.58         | 0.71            | 20.1           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov     | vement       | Perform        | nance               |                |                |              |              |                |                 |                |
|--------------------|--------------|----------------|---------------------|----------------|----------------|--------------|--------------|----------------|-----------------|----------------|
| Mov<br>ID Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>EUE | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|                    | ned/h        | 202            |                     | [Ped]          | Dist ]         |              | Rate         | 202            | m               | m/sec          |
| South: Kent St (S  | )<br>j)      | 360            |                     | peu            |                |              |              | 360            |                 | m/sec          |
| P1 Full            | 1607         | 15.4           | LOS B               | 1.8            | 1.8            | 0.86         | 0.86         | 32.1           | 20.0            | 0.62           |
| All Pedestrians    | 1607         | 15.4           | LOS B               | 1.8            | 1.8            | 0.86         | 0.86         | 32.1           | 20.0            | 0.62           |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 3:56:18 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

## Site: BGU12 [BGU12 Sussex St / Erskine St (Site Folder: Block 4 - 2024 PM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: BGU-N2 [BGU Network 3 (Network Folder: Block 4 Network - 2024 PM Peak)]

### TCS 310

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehic      | le M     | ovemen     | t Perfo      | orma         | nce           |              |        |       |          |          |          |       |              |                  |       |
|------------|----------|------------|--------------|--------------|---------------|--------------|--------|-------|----------|----------|----------|-------|--------------|------------------|-------|
| Mov        | Turn     | Mov        | Dem          | nand         | Ar            | rival        | Deg.   | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff.         | Aver.            | Aver. |
| <b>ט</b> ו |          | Class      | ٦<br>Total آ | IOWS<br>HV 1 | ۲۱<br>Total آ | lows<br>HV 1 | Sath   | Delay | Service  | [Veh.    | Dist 1   | Que   | Stop<br>Rate | NO. OT<br>Cvcles | Speed |
|            |          |            | veh/h        | %            | veh/h         | %            | v/c    | sec   |          | veh      | m        |       |              | - ,              | km/h  |
| South      | Sus      | sex St (S) | )            |              |               |              |        |       |          |          |          |       |              |                  |       |
| 1          | L2       | All MCs    | 49           | 4.3          | 49            | 4.3          | 0.424  | 37.6  | LOS C    | 7.2      | 51.5     | 0.89  | 0.75         | 0.89             | 14.8  |
| 2          | T1       | All MCs    | 353          | 0.9          | 353           | 0.9          | *0.424 | 30.5  | LOS C    | 7.8      | 55.0     | 0.89  | 0.74         | 0.89             | 15.1  |
| Appro      | ach      |            | 402          | 1.3          | 402           | 1.3          | 0.424  | 31.4  | LOS C    | 7.8      | 55.0     | 0.89  | 0.74         | 0.89             | 15.1  |
| East: I    | Erskir   | ne St (E)  |              |              |               |              |        |       |          |          |          |       |              |                  |       |
| 4          | L2       | All MCs    | 446          | 1.4          | 446           | 1.4          | 0.457  | 11.5  | LOS A    | 8.4      | 59.8     | 0.46  | 0.65         | 0.46             | 26.6  |
| 5          | T1       | All MCs    | 51           | 2.1          | 51            | 2.1          | 0.149  | 2.6   | LOS A    | 0.6      | 4.5      | 0.15  | 0.30         | 0.15             | 24.9  |
| 6          | R2       | All MCs    | 49           | 0.0          | 49            | 0.0          | 0.149  | 6.9   | LOS A    | 0.6      | 4.5      | 0.15  | 0.30         | 0.15             | 24.9  |
| Approach   |          |            | 546          | 1.3          | 546           | 1.3          | 0.457  | 10.2  | LOS A    | 8.4      | 59.8     | 0.41  | 0.59         | 0.41             | 26.4  |
| North:     | Suss     | ex St (N)  |              |              |               |              |        |       |          |          |          |       |              |                  |       |
| 7          | L2       | All MCs    | 45           | 25.6         | 45            | 25.6         | 0.097  | 26.6  | LOS B    | 1.4      | 11.9     | 0.73  | 0.68         | 0.73             | 13.8  |
| 8          | T1       | All MCs    | 496          | 3.8          | 496           | 3.8          | 0.383  | 24.1  | LOS B    | 8.3      | 59.7     | 0.80  | 0.68         | 0.80             | 22.7  |
| 9          | R2       | All MCs    | 17           | 6.3          | 17            | 6.3          | *0.072 | 32.0  | LOS C    | 0.6      | 4.3      | 0.85  | 0.68         | 0.85             | 12.2  |
| Appro      | ach      |            | 558          | 5.7          | 558           | 5.7          | 0.383  | 24.5  | LOS B    | 8.3      | 59.7     | 0.80  | 0.68         | 0.80             | 21.9  |
| West:      | Erski    | ne St (W)  | )            |              |               |              |        |       |          |          |          |       |              |                  |       |
| 10         | L2       | All MCs    | 116          | 1.8          | 116           | 1.8          | 0.338  | 12.9  | LOS A    | 8.3      | 59.3     | 0.56  | 0.55         | 0.56             | 13.4  |
| 11         | T1       | All MCs    | 247          | 3.0          | 247           | 3.0          | 0.338  | 11.1  | LOS A    | 8.3      | 59.3     | 0.56  | 0.55         | 0.56             | 13.4  |
| 12         | R2       | All MCs    | 223          | 4.7          | 223           | 4.7          | *0.493 | 21.8  | LOS B    | 7.0      | 50.7     | 0.74  | 0.76         | 0.74             | 19.9  |
| Appro      | Approach |            |              | 3.4          | 586           | 3.4          | 0.493  | 15.5  | LOS B    | 8.3      | 59.3     | 0.63  | 0.63         | 0.63             | 17.4  |
| All Vel    | nicles   |            | 2093         | 3.1          | 2093          | 3.1          | 0.493  | 19.6  | LOS B    | 8.4      | 59.8     | 0.67  | 0.65         | 0.67             | 20.4  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian Mo      | vement       | Perform        | nance               |                |                |              |              |                |                 |                |
|--------------------|--------------|----------------|---------------------|----------------|----------------|--------------|--------------|----------------|-----------------|----------------|
| Mov<br>ID Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>EUE | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|                    | ned/h        | ,<br>990       |                     | [Ped           | Dist ]         |              | Rate         | 992            | m               | m/sec          |
| South: Sussex S    | t (S)        | 300            | _                   | peu            |                |              | _            | 300            |                 | 11/300         |
| P1 Full            | 194          | 38.6           | LOS D               | 0.5            | 0.5            | 0.93         | 0.93         | 55.3           | 20.0            | 0.36           |

| East: Erskine St (E | Ξ)  |      |       |     |     |      |      |      |      |      |
|---------------------|-----|------|-------|-----|-----|------|------|------|------|------|
| P2 Full             | 137 | 38.5 | LOS D | 0.3 | 0.3 | 0.93 | 0.93 | 55.2 | 20.0 | 0.36 |
| North: Sussex St (  | N)  |      |       |     |     |      |      |      |      |      |
| P3 Full             | 265 | 38.7 | LOS D | 0.6 | 0.6 | 0.93 | 0.93 | 55.4 | 20.0 | 0.36 |
| West: Erskine St (  | W)  |      |       |     |     |      |      |      |      |      |
| P4 Full             | 144 | 38.5 | LOS D | 0.3 | 0.3 | 0.93 | 0.93 | 55.2 | 20.0 | 0.36 |
| All Pedestrians     | 740 | 38.6 | LOS D | 0.6 | 0.6 | 0.93 | 0.93 | 55.3 | 20.0 | 0.36 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 3:56:18 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: BGU13 [BGU13 Kent St / Erskine St (Site Folder: Block 4 - 2024 PM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: BGU-N2 [BGU Network 3 (Network Folder: Block 4 Network - 2024 PM Peak)]

TCS 307

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehic     | le M     | ovemen       | t Perfo  | orma         | nce      |               |              |                |                     |          |          |              |              |                 |                |
|-----------|----------|--------------|----------|--------------|----------|---------------|--------------|----------------|---------------------|----------|----------|--------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn     | Mov<br>Class | Dem<br>F | nand<br>Iows | Ar<br>Fl | rival<br>lows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back | Of Queue | Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |          |              | [ Total  | HV ]         | [ Total  | HV ]          | NIC          | 500            |                     | [Veh.    | Dist ]   |              | Rate         | Cycles          | km/h           |
| South     | Ken      | t St (S)     | ven/m    | 70           |          | 70            | v/C          | 360            |                     | VEIT     | 111      | _            | _            |                 | N111/11        |
| 1         | L2       | All MCs      | 121      | 1.7          | 121      | 1.7           | 0.230        | 29.8           | LOS C               | 4.1      | 29.0     | 0.80         | 0.74         | 0.80            | 15.8           |
| 2         | T1       | All MCs      | 472      | 6.9          | 472      | 6.9           | *0.362       | 24.0           | LOS B               | 6.6      | 49.7     | 0.77         | 0.63         | 0.77            | 17.4           |
| 3         | R2       | All MCs      | 2        | 0.0          | 2        | 0.0           | 0.030        | 11.9           | LOS A               | 1.9      | 5.2      | 0.49         | 0.38         | 0.49            | 22.5           |
| Appro     | ach      |              | 595      | 5.8          | 595      | 5.8           | 0.362        | 25.1           | LOS B               | 6.6      | 49.7     | 0.77         | 0.65         | 0.77            | 17.1           |
| East: I   | Erskir   | ne St (E)    |          |              |          |               |              |                |                     |          |          |              |              |                 |                |
| 5         | T1       | All MCs      | 252      | 2.1          | 252      | 2.1           | 0.220        | 23.9           | LOS B               | 4.3      | 31.0     | 0.77         | 0.63         | 0.77            | 7.3            |
| 6         | R2       | All MCs      | 9        | 0.0          | 9        | 0.0           | 0.220        | 31.0           | LOS C               | 4.0      | 28.8     | 0.77         | 0.63         | 0.77            | 7.3            |
| Appro     | ach      |              | 261      | 2.0          | 261      | 2.0           | 0.220        | 24.1           | LOS B               | 4.3      | 31.0     | 0.77         | 0.63         | 0.77            | 7.3            |
| North:    | Kent     | St (N)       |          |              |          |               |              |                |                     |          |          |              |              |                 |                |
| 7         | L2       | All MCs      | 1        | 0.0          | 1        | 0.0           | 0.034        | 11.7           | LOS A               | 2.3      | 6.3      | 0.49         | 0.38         | 0.49            | 18.5           |
| 8         | T1       | All MCs      | 119      | 0.0          | 119      | 0.0           | 0.034        | 9.8            | LOS A               | 2.3      | 6.3      | 0.49         | 0.38         | 0.49            | 23.5           |
| 9         | R2       | All MCs      | 176      | 1.2          | 176      | 1.2           | *0.601       | 40.8           | LOS C               | 7.4      | 52.0     | 0.97         | 0.81         | 0.97            | 7.2            |
| Appro     | ach      |              | 296      | 0.7          | 296      | 0.7           | 0.601        | 28.2           | LOS B               | 7.4      | 52.0     | 0.77         | 0.64         | 0.77            | 13.4           |
| West:     | Erski    | ne St (W)    | )        |              |          |               |              |                |                     |          |          |              |              |                 |                |
| 10        | L2       | All MCs      | 49       | 2.1          | 49       | 2.1           | 0.253        | 28.9           | LOS C               | 5.0      | 36.7     | 0.81         | 0.69         | 0.81            | 8.8            |
| 11        | T1       | All MCs      | 245      | 8.2          | 245      | 8.2           | *0.253       | 26.3           | LOS B               | 5.2      | 38.8     | 0.83         | 0.69         | 0.83            | 11.8           |
| Appro     | Approach |              | 295      | 7.1          | 295      | 7.1           | 0.253        | 26.7           | LOS B               | 5.2      | 38.8     | 0.82         | 0.69         | 0.82            | 11.4           |
| All Vel   | nicles   |              | 1446     | 4.4          | 1446     | 4.4           | 0.601        | 25.9           | LOS B               | 7.4      | 52.0     | 0.78         | 0.65         | 0.78            | 13.9           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Peo       | destrian Mov    | /ement       | Perform        | nance               |                |               |              |              |                |                 |                |
|-----------|-----------------|--------------|----------------|---------------------|----------------|---------------|--------------|--------------|----------------|-----------------|----------------|
| Mo∖<br>ID | /<br>Crossing   | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>UE | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|           |                 |              |                |                     | [Ped           | Dist ]        |              | Rate         |                |                 |                |
|           |                 | ped/h        | sec            |                     | ped            | m             |              |              | sec            | m               | m/sec          |
| Sou       | ith: Kent St (S | )            |                |                     |                |               |              |              |                |                 |                |
| P1        | Full            | 281          | 38.7           | LOS D               | 0.7            | 0.7           | 0.93         | 0.93         | 55.4           | 20.0            | 0.36           |
| Eas       | t: Erskine St ( | E)           |                |                     |                |               |              |              |                |                 |                |

| P2 Full            | 288  | 38.7 | LOS D | 0.7 | 0.7 | 0.93 | 0.93 | 55.4 | 20.0 | 0.36 |
|--------------------|------|------|-------|-----|-----|------|------|------|------|------|
| North: Kent St (N) | 1    |      |       |     |     |      |      |      |      |      |
| P3 Full            | 399  | 38.9 | LOS D | 1.0 | 1.0 | 0.94 | 0.94 | 55.6 | 20.0 | 0.36 |
| West: Erskine St ( | (W)  |      |       |     |     |      |      |      |      |      |
| P4 Full            | 289  | 38.7 | LOS D | 0.7 | 0.7 | 0.93 | 0.93 | 55.4 | 20.0 | 0.36 |
| All Pedestrians    | 1258 | 38.8 | LOS D | 1.0 | 1.0 | 0.93 | 0.93 | 55.5 | 20.0 | 0.36 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 3:56:18 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: BGU14 [BGU14 Sussex St / King St (Site Folder: Block 4 - 2024 PM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: BGU-N2 [BGU Network 4 (Network Folder: Block 4 Network - 2024 PM Peak)]

### TCS 284

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfo              | orma                 | nce                          |                            |              |                |                     |                    |                    |                |                      |                           |                |
|-----------|--------|--------------|----------------------|----------------------|------------------------------|----------------------------|--------------|----------------|---------------------|--------------------|--------------------|----------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl<br>[ Total | nand<br>lows<br>HV ] | Ar<br>Fl<br>[ Total<br>veb/b | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh. | Of Queue<br>Dist ] | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| East:     | King S | St (E)       | VON/IT               | /0                   | Veniin                       | 70                         | V/0          | 000            |                     | Von                |                    |                |                      |                           | 1X11/11        |
| 4a        | L1     | All MCs      | 182                  | 0.0                  | 182                          | 0.0                        | 0.429        | 46.5           | LOS D               | 8.0                | 21.5               | 1.00           | 0.79                 | 1.00                      | 18.1           |
| Appro     | ach    |              | 182                  | 0.0                  | 182                          | 0.0                        | 0.429        | 46.5           | LOS D               | 8.0                | 21.5               | 1.00           | 0.79                 | 1.00                      | 18.1           |
| North:    | Suss   | ex St (N)    |                      |                      |                              |                            |              |                |                     |                    |                    |                |                      |                           |                |
| 7         | L2     | All MCs      | 117                  | 12.6                 | 117                          | 12.6                       | *0.653       | 24.7           | LOS B               | 19.4               | 140.7              | 0.81           | 0.74                 | 0.81                      | 20.0           |
| 8         | T1     | All MCs      | 1097                 | 2.0                  | 1097                         | 2.0                        | 0.653        | 17.9           | LOS B               | 20.3               | 144.4              | 0.80           | 0.73                 | 0.80                      | 27.2           |
| Appro     | ach    |              | 1214                 | 3.0                  | 1214                         | 3.0                        | 0.653        | 18.6           | LOS B               | 20.3               | 144.4              | 0.80           | 0.73                 | 0.80                      | 26.7           |
| South     | West:  | King St (    | (SW)                 |                      |                              |                            |              |                |                     |                    |                    |                |                      |                           |                |
| 30a       | L1     | All MCs      | 359                  | 0.9                  | 359                          | 0.9                        | 0.437        | 14.4           | LOS A               | 7.4                | 51.9               | 0.74           | 0.76                 | 0.74                      | 36.5           |
| 32a       | R1     | All MCs      | 912                  | 1.8                  | 912                          | 1.8                        | *0.621       | 29.6           | LOS C               | 15.5               | 110.0              | 0.88           | 0.81                 | 0.88                      | 27.2           |
| 32b       | R3     | All MCs      | 225                  | 10.3                 | 225                          | 10.3                       | 0.417        | 28.5           | LOS B               | 7.5                | 57.1               | 0.79           | 0.80                 | 0.79                      | 30.4           |
| Appro     | ach    |              | 1496                 | 2.9                  | 1496                         | 2.9                        | 0.621        | 25.8           | LOS B               | 15.5               | 110.0              | 0.84           | 0.80                 | 0.84                      | 29.9           |
| All Ve    | hicles |              | 2892                 | 2.8                  | 2892                         | 2.8                        | 0.653        | 24.1           | LOS B               | 20.3               | 144.4              | 0.83           | 0.77                 | 0.83                      | 27.5           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pec       | lestrian Mov   | vement       | Perform        | nance               |                |         |              |              |                |                 |                |
|-----------|----------------|--------------|----------------|---------------------|----------------|---------|--------------|--------------|----------------|-----------------|----------------|
| Mov<br>ID | ,<br>Crossing  | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUI | BACK OF | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|           |                | 171          |                |                     | [Ped           | Dist ]  |              | Rate         |                |                 | ',             |
|           |                | ped/n        | sec            |                     | ped            | m       |              |              | sec            | m               | m/sec          |
| Sou       | th: Sussex St  | (S)          |                |                     |                |         |              |              |                |                 |                |
| P1        | Full           | 222          | 40.5           | LOS E               | 0.5            | 0.5     | 0.95         | 0.95         | 57.2           | 20.0            | 0.35           |
| Eas       | t: King St (E) |              |                |                     |                |         |              |              |                |                 |                |
| P2        | Full           | 759          | 39.5           | LOS D               | 1.8            | 1.8     | 0.95         | 0.95         | 56.2           | 20.0            | 0.36           |
| Nor       | th: Sussex St  | (N)          |                |                     |                |         |              |              |                |                 |                |
| P3        | Full           | 222          | 38.6           | LOS D               | 0.5            | 0.5     | 0.93         | 0.93         | 55.3           | 20.0            | 0.36           |
| Sou       | thWest: King   | St (SW)      |                |                     |                |         |              |              |                |                 |                |
| P8        | Full           | 424          | 39.0           | LOS D               | 1.0            | 1.0     | 0.94         | 0.94         | 205.6          | 200.0           | 0.97           |

| P8B Slip/<br>Bypass | 360  | 40.8 | LOS E | 0.9 | 0.9 | 0.96 | 0.96 | 207.4 | 200.0 | 0.96 |
|---------------------|------|------|-------|-----|-----|------|------|-------|-------|------|
| All Pedestrians     | 1987 | 39.6 | LOS D | 1.8 | 1.8 | 0.95 | 0.95 | 115.5 | 91.0  | 0.79 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 9:51:17 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: BGU15 [BGU15 Kent St / King St (Site Folder: Block 4 - 2024 PM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: BGU-N2 [BGU Network 4 (Network Folder: Block 4 Network - 2024 PM Peak)]

TCS 283

Site Category: NA

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehic  | le M   | ovemen   | t Perfo | orma | nce     |       |        |       |          |          |          |       |      |        |       |
|--------|--------|----------|---------|------|---------|-------|--------|-------|----------|----------|----------|-------|------|--------|-------|
| Mov    | Turn   | Mov      | Dem     | nand | Ar      | rival | Deg.   | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff. | Aver.  | Aver. |
| שו     |        | Class    | [ Total | HV ] | [ Total | HV ]  | Salli  | Delay | Service  | [Veh.    | Dist ]   | Que   | Rate | Cycles | Speed |
|        |        |          | veh/h   | %    | veh/h   | %     | v/c    | sec   |          | veh      | m        |       |      |        | km/h  |
| South  | : Ken  | t St (S) |         |      |         |       |        |       |          |          |          |       |      |        |       |
| 1      | L2     | All MCs  | 21      | 0.0  | 21      | 0.0   | 0.197  | 46.3  | LOS D    | 3.5      | 9.5      | 0.98  | 0.72 | 0.98   | 13.0  |
| 2      | T1     | All MCs  | 499     | 6.3  | 499     | 6.3   | 0.442  | 29.6  | LOS C    | 8.6      | 64.2     | 0.87  | 0.72 | 0.87   | 22.6  |
| 3      | R2     | All MCs  | 244     | 0.9  | 244     | 0.9   | *0.442 | 37.0  | LOS C    | 8.2      | 60.9     | 0.90  | 0.77 | 0.90   | 15.7  |
| Appro  | ach    |          | 764     | 4.4  | 764     | 4.4   | 0.442  | 32.4  | LOS C    | 8.6      | 64.2     | 0.89  | 0.74 | 0.89   | 20.3  |
| East:  | King S | St (E)   |         |      |         |       |        |       |          |          |          |       |      |        |       |
| 5      | T1     | All MCs  | 57      | 0.0  | 57      | 0.0   | 0.175  | 42.9  | LOS D    | 2.6      | 6.9      | 0.98  | 0.70 | 0.98   | 4.6   |
| 6      | R2     | All MCs  | 4       | 0.0  | 4       | 0.0   | 0.175  | 49.0  | LOS D    | 2.6      | 6.9      | 0.98  | 0.70 | 0.98   | 14.0  |
| Appro  | ach    |          | 61      | 0.0  | 61      | 0.0   | 0.175  | 43.3  | LOS D    | 2.6      | 6.9      | 0.98  | 0.70 | 0.98   | 5.5   |
| North  | Kent   | St (N)   |         |      |         |       |        |       |          |          |          |       |      |        |       |
| 7      | L2     | All MCs  | 9       | 0.0  | 9       | 0.0   | 0.176  | 46.2  | LOS D    | 3.1      | 8.5      | 0.98  | 0.71 | 0.98   | 10.7  |
| 8      | T1     | All MCs  | 66      | 0.0  | 66      | 0.0   | 0.176  | 42.8  | LOS D    | 3.1      | 8.5      | 0.98  | 0.71 | 0.98   | 19.0  |
| 9      | R2     | All MCs  | 84      | 0.0  | 84      | 0.0   | *0.369 | 48.8  | LOS D    | 3.7      | 10.0     | 1.00  | 0.74 | 1.00   | 11.7  |
| Appro  | ach    |          | 160     | 0.0  | 160     | 0.0   | 0.369  | 46.1  | LOS D    | 3.7      | 10.0     | 0.99  | 0.72 | 0.99   | 14.9  |
| West:  | King   | St (W)   |         |      |         |       |        |       |          |          |          |       |      |        |       |
| 10     | L2     | All MCs  | 179     | 1.2  | 179     | 1.2   | *0.427 | 13.9  | LOS A    | 4.6      | 32.8     | 0.39  | 0.49 | 0.39   | 27.2  |
| 11     | T1     | All MCs  | 848     | 3.5  | 848     | 3.5   | *0.427 | 3.9   | LOS A    | 4.6      | 32.8     | 0.23  | 0.22 | 0.23   | 29.1  |
| Appro  | ach    |          | 1027    | 3.1  | 1027    | 3.1   | 0.427  | 5.6   | LOS A    | 4.6      | 32.8     | 0.26  | 0.27 | 0.26   | 28.5  |
| All Ve | hicles |          | 2013    | 3.2  | 2013    | 3.2   | 0.442  | 20.2  | LOS B    | 8.6      | 64.2     | 0.58  | 0.50 | 0.58   | 21.0  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Peo       | destrian Mov   | vement       | Perform        | nance               |                |               |              |              |                |                 |                |
|-----------|----------------|--------------|----------------|---------------------|----------------|---------------|--------------|--------------|----------------|-----------------|----------------|
| Mo\<br>ID | /<br>Crossing  | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>UE | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|           |                |              |                |                     | [Ped           | Dist]         |              | Rate         |                |                 |                |
|           |                | ped/h        | sec            |                     | ped            | m             |              |              | sec            | m               | m/sec          |
| Sou       | th: Kent St (S | )            |                |                     |                |               |              |              |                |                 |                |
| P1        | Full           | 480          | 39.1           | LOS D               | 1.2            | 1.2           | 0.94         | 0.94         | 55.7           | 20.0            | 0.36           |
| Eas       | t: King St (E) |              |                |                     |                |               |              |              |                |                 |                |

| P2 Full            | 360  | 38.9 | LOS D | 0.9 | 0.9 | 0.94 | 0.94 | 55.5 | 20.0 | 0.36 |
|--------------------|------|------|-------|-----|-----|------|------|------|------|------|
| North: Kent St (N) |      |      |       |     |     |      |      |      |      |      |
| P3 Full            | 686  | 39.4 | LOS D | 1.7 | 1.7 | 0.95 | 0.95 | 56.1 | 20.0 | 0.36 |
| West: King St (W)  |      |      |       |     |     |      |      |      |      |      |
| P4 Full            | 504  | 39.1 | LOS D | 1.2 | 1.2 | 0.94 | 0.94 | 55.8 | 20.0 | 0.36 |
| All Pedestrians    | 2031 | 39.1 | LOS D | 1.7 | 1.7 | 0.94 | 0.94 | 55.8 | 20.0 | 0.36 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 9:51:17 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

★ Site: BGU16 [BGU16 Pedestrian Mid-block Crossing at Hickson Rd (North of Metro) (Site Folder: Block 4 - 2024 PM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: BGU-N1 [BGU Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

NA

Site Category: (None) Pedestrian Crossing (Unsignalised)

| Vehic     | le M   | ovemen       | t Perfo            | orma         | nce                |               |              |                |                     |               |             |                |              |                 |                |
|-----------|--------|--------------|--------------------|--------------|--------------------|---------------|--------------|----------------|---------------------|---------------|-------------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl          | nand<br>Iows | Ar<br>Fl           | rival<br>lows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back      | Of Queue    | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total  <br>veh/h | HV ]<br>%    | [ Total  <br>veh/h | HV ]<br>%     | v/c          | sec            |                     | [ Veh.<br>veh | Dist ]<br>m |                | Rate         | Cycles          | km/h           |
| South     | : Hick | son Rd (     | S)                 |              |                    |               |              |                |                     |               |             |                |              |                 |                |
| 2         | T1     | All MCs      | 397                | 2.9          | 397                | 2.9           | 0.241        | 2.1            | LOS A               | 1.1           | 7.9         | 0.01           | 0.36         | 0.01            | 37.6           |
| Appro     | ach    |              | 397                | 2.9          | 397                | 2.9           | 0.241        | 2.1            | LOS A               | 1.1           | 7.9         | 0.01           | 0.36         | 0.01            | 37.6           |
| North:    | Hicks  | son Rd (N    | 1)                 |              |                    |               |              |                |                     |               |             |                |              |                 |                |
| 8         | T1     | All MCs      | 265                | 4.8          | 265                | 4.8           | 0.162        | 2.1            | LOS A               | 0.7           | 4.9         | 0.01           | 0.36         | 0.01            | 36.1           |
| Appro     | ach    |              | 265                | 4.8          | 265                | 4.8           | 0.162        | 2.1            | LOS A               | 0.7           | 4.9         | 0.01           | 0.36         | 0.01            | 36.1           |
| All Ve    | hicles |              | 662                | 3.7          | 662                | 3.7           | 0.241        | 2.1            | NA                  | 1.1           | 7.9         | 0.01           | 0.36         | 0.01            | 37.2           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Akçelik M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 3:02:18 PM Project: C:\Users\\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

**Site:** BGU17 [BGU17 Pedestrian Mid-block Crossing at Hickson Rd (South of Metro) (Site Folder: Block 4 - 2024 PM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: BGU-N1 [BGU Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

New Site Site Category: (None) Pedestrian Crossing (Unsignalised)

#### Vehicle Movement Performance

| Mov<br>ID | Turn   | Mov<br>Class | Den<br>F         | nand<br>Iows | Ar<br>Fl           | rival<br>lows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back      | Of Queue    | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|-----------|--------|--------------|------------------|--------------|--------------------|---------------|--------------|----------------|---------------------|---------------|-------------|----------------|--------------|-----------------|----------------|
|           |        |              | [ Total<br>veh/h | HV ] [<br>%  | [ Total ∣<br>veh/h | HV ]<br>%     | v/c          | sec            |                     | [ Veh.<br>veh | Dist ]<br>m |                | Rate         | Cycles          | km/h           |
| South     | : Hick | son Rd (S    | 5)               | ,0           | VOII/II            | 70            | 110          | 000            |                     | Von           |             |                |              |                 | NIII/11        |
| 2         | T1     | All MCs      | 397              | 2.9          | 397                | 2.9           | 0.249        | 2.2            | LOS A               | 1.1           | 8.2         | 0.14           | 0.36         | 0.14            | 35.6           |
| Appro     | ach    |              | 397              | 2.9          | 397                | 2.9           | 0.249        | 2.2            | LOS A               | 1.1           | 8.2         | 0.14           | 0.36         | 0.14            | 35.6           |
| North     | Hicks  | son Rd (N    | )                |              |                    |               |              |                |                     |               |             |                |              |                 |                |
| 8         | T1     | All MCs      | 265              | 4.8          | 265                | 4.8           | 0.168        | 2.2            | LOS A               | 0.7           | 5.1         | 0.13           | 0.36         | 0.13            | 37.7           |
| Appro     | ach    |              | 265              | 4.8          | 265                | 4.8           | 0.168        | 2.2            | LOS A               | 0.7           | 5.1         | 0.13           | 0.36         | 0.13            | 37.7           |
| All Ve    | hicles |              | 662              | 3.7          | 662                | 3.7           | 0.249        | 2.2            | NA                  | 1.1           | 8.2         | 0.14           | 0.36         | 0.14            | 36.9           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Akçelik M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 3:02:18 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

## Site: BGU18 [BGU18 Shelley St / Erskine St (Site Folder: Block 4 - 2024 PM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: BGU-N2 [BGU Network 3 (Network Folder: Block 4 Network - 2024 PM Peak)]

TCS 305

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site User-Given Phase Times)

| Vehic  | le M   | ovemen     | t Perfo      | orma | ince  |            |        |       |          |          |          |       |      |        |       |
|--------|--------|------------|--------------|------|-------|------------|--------|-------|----------|----------|----------|-------|------|--------|-------|
| Mov    | Turn   | Mov        | Dem          | nand | Ar    | rival      | Deg.   | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff. | Aver.  | Aver. |
| שו     |        | Class      | F<br>[ Total | HV ] | Total | ows<br>HV] | Sain   | Delay | Service  | [Veh.    | Dist ]   | Que   | Rate | Cycles | Speed |
|        |        |            | veh/h        | %    | veh/h | %          | v/c    | sec   |          | veh      | m        |       |      |        | km/h  |
| South  | : Shel | ley St (S) | )            |      |       |            |        |       |          |          |          |       |      |        |       |
| 1      | L2     | All MCs    | 13           | 0.0  | 13    | 0.0        | 0.053  | 10.9  | LOS A    | 1.0      | 7.2      | 0.39  | 0.36 | 0.39   | 20.3  |
| 2      | T1     | All MCs    | 53           | 0.0  | 53    | 0.0        | 0.053  | 5.9   | LOS A    | 1.0      | 7.2      | 0.39  | 0.36 | 0.39   | 28.6  |
| 3      | R2     | All MCs    | 236          | 0.4  | 236   | 0.4        | *0.382 | 14.1  | LOS A    | 5.5      | 39.0     | 0.57  | 0.70 | 0.57   | 16.8  |
| Appro  | ach    |            | 301          | 0.3  | 301   | 0.3        | 0.382  | 12.6  | LOS A    | 5.5      | 39.0     | 0.53  | 0.62 | 0.53   | 19.0  |
| East:  | Erskir | ne St (E)  |              |      |       |            |        |       |          |          |          |       |      |        |       |
| 4      | L2     | All MCs    | 17           | 6.3  | 17    | 6.3        | 0.067  | 40.0  | LOS C    | 0.7      | 4.8      | 0.89  | 0.68 | 0.89   | 10.4  |
| 5      | T1     | All MCs    | 77           | 4.1  | 77    | 4.1        | *0.316 | 33.7  | LOS C    | 3.9      | 28.0     | 0.90  | 0.73 | 0.90   | 8.8   |
| 6      | R2     | All MCs    | 23           | 0.0  | 23    | 0.0        | 0.316  | 42.0  | LOS C    | 3.9      | 28.0     | 0.90  | 0.73 | 0.90   | 10.0  |
| Appro  | ach    |            | 117          | 3.6  | 117   | 3.6        | 0.316  | 36.3  | LOS C    | 3.9      | 28.0     | 0.90  | 0.72 | 0.90   | 9.3   |
| North  | Shel   | ley St (N) | 1            |      |       |            |        |       |          |          |          |       |      |        |       |
| 7      | L2     | All MCs    | 183          | 0.6  | 183   | 0.6        | 0.231  | 11.5  | LOS A    | 3.5      | 24.9     | 0.47  | 0.64 | 0.47   | 16.6  |
| 8      | T1     | All MCs    | 6            | 0.0  | 6     | 0.0        | 0.010  | 6.2   | LOS A    | 0.2      | 1.2      | 0.38  | 0.39 | 0.38   | 27.6  |
| 9      | R2     | All MCs    | 4            | 0.0  | 4     | 0.0        | 0.010  | 10.0  | LOS A    | 0.2      | 1.2      | 0.38  | 0.39 | 0.38   | 16.7  |
| Appro  | ach    |            | 194          | 0.5  | 194   | 0.5        | 0.231  | 11.3  | LOS A    | 3.5      | 24.9     | 0.46  | 0.63 | 0.46   | 17.1  |
| West:  | Erski  | ne St (W)  | )            |      |       |            |        |       |          |          |          |       |      |        |       |
| 10     | L2     | All MCs    | 6            | 0.0  | 6     | 0.0        | 0.316  | 42.4  | LOS C    | 3.1      | 23.6     | 0.89  | 0.71 | 0.89   | 10.7  |
| 11     | T1     | All MCs    | 167          | 10.7 | 167   | 10.7       | 0.316  | 33.2  | LOS C    | 3.7      | 28.3     | 0.89  | 0.71 | 0.89   | 6.0   |
| 12     | R2     | All MCs    | 3            | 33.3 | 3     | 33.3       | 0.316  | 40.5  | LOS C    | 3.7      | 28.3     | 0.89  | 0.71 | 0.89   | 12.1  |
| Appro  | ach    |            | 177          | 10.7 | 177   | 10.7       | 0.316  | 33.7  | LOS C    | 3.7      | 28.3     | 0.89  | 0.71 | 0.89   | 6.4   |
| All Ve | hicles |            | 788          | 3.2  | 788   | 3.2        | 0.382  | 20.5  | LOS B    | 5.5      | 39.0     | 0.65  | 0.66 | 0.65   | 12.7  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian Mo      | vement       | Perform        | nance               |                |         |              |              |                |                 |                |
|--------------------|--------------|----------------|---------------------|----------------|---------|--------------|--------------|----------------|-----------------|----------------|
| Mov<br>ID Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|                    | ned/h        | 500            |                     | [Ped           | Dist ]  |              | Rate         | 202            | m               | mleec          |
| South: Shelley S   | t (S)        | 360            | _                   | peu            |         | _            | _            | 360            |                 | m/sec          |
| P1 Full            | 334          | 38.8           | LOS D               | 0.8            | 0.8     | 0.94         | 0.94         | 205.5          | 200.0           | 0.97           |

| East: Erskine St (E | E)  |      |       |     |     |      |      |       |       |      |
|---------------------|-----|------|-------|-----|-----|------|------|-------|-------|------|
| P2 Full             | 57  | 38.4 | LOS D | 0.1 | 0.1 | 0.92 | 0.92 | 205.0 | 200.0 | 0.98 |
| North: Shelley St ( | N)  |      |       |     |     |      |      |       |       |      |
| P3 Full             | 339 | 38.8 | LOS D | 0.8 | 0.8 | 0.94 | 0.94 | 205.5 | 200.0 | 0.97 |
| West: Erskine St (  | W)  |      |       |     |     |      |      |       |       |      |
| P4 Full             | 137 | 38.5 | LOS D | 0.3 | 0.3 | 0.93 | 0.93 | 205.2 | 200.0 | 0.97 |
| All Pedestrians     | 866 | 38.7 | LOS D | 0.8 | 0.8 | 0.93 | 0.93 | 205.4 | 200.0 | 0.97 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 3:56:18 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

V Site: BUG01 [BGU01 Hickson Rd / Towns PI (Site Folder: Block 4 - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: BGU-N1 [BGU Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

Site Category: (None) Give-Way (Two-Way)

| Vehic     | le M   | ovemen       | t Perfc                        | orma                      | nce                            |                            |                     |                       |                     |                           |                         |              |                      |                           |                        |
|-----------|--------|--------------|--------------------------------|---------------------------|--------------------------------|----------------------------|---------------------|-----------------------|---------------------|---------------------------|-------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Derr<br>Fl<br>[ Total<br>veh/h | nand<br>lows<br>HV ]<br>% | Ar<br>Fl<br>[ Total ]<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| East:     | Hicks  | on Rd (E)    | )                              |                           |                                |                            |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 4a        | L1     | All MCs      | 213                            | 3.0                       | 213                            | 3.0                        | 0.305               | 4.1                   | LOS A               | 1.5                       | 10.8                    | 0.41         | 0.52                 | 0.41                      | 34.4                   |
| 6a        | R1     | All MCs      | 102                            | 2.1                       | 102                            | 2.1                        | 0.305               | 8.2                   | LOS A               | 1.5                       | 10.8                    | 0.41         | 0.52                 | 0.41                      | 34.4                   |
| Appro     | ach    |              | 315                            | 2.7                       | 315                            | 2.7                        | 0.305               | 5.4                   | NA                  | 1.5                       | 10.8                    | 0.41         | 0.52                 | 0.41                      | 34.4                   |
| North     | Nest:  | Towns Pl     | (NW)                           |                           |                                |                            |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 27a       | L1     | All MCs      | 168                            | 1.3                       | 168                            | 1.3                        | 0.413               | 7.3                   | LOS A               | 1.9                       | 13.8                    | 0.69         | 0.94                 | 0.96                      | 32.2                   |
| 29        | R2     | All MCs      | 78                             | 4.1                       | 78                             | 4.1                        | 0.413               | 14.2                  | LOS A               | 1.9                       | 13.8                    | 0.69         | 0.94                 | 0.96                      | 20.9                   |
| Appro     | ach    |              | 246                            | 2.1                       | 246                            | 2.1                        | 0.413               | 9.5                   | LOS A               | 1.9                       | 13.8                    | 0.69         | 0.94                 | 0.96                      | 30.5                   |
| South     | West:  | Hickson      | Rd (SV                         | V)                        |                                |                            |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 30        | L2     | All MCs      | 81                             | 3.9                       | 81                             | 3.9                        | 0.351               | 4.7                   | LOS A               | 2.1                       | 14.7                    | 0.33         | 0.43                 | 0.33                      | 33.4                   |
| 32a       | R1     | All MCs      | 446                            | 1.7                       | 446                            | 1.7                        | 0.351               | 3.0                   | LOS A               | 2.1                       | 14.7                    | 0.33         | 0.43                 | 0.33                      | 36.8                   |
| Appro     | ach    |              | 527                            | 2.0                       | 527                            | 2.0                        | 0.351               | 3.2                   | NA                  | 2.1                       | 14.7                    | 0.33         | 0.43                 | 0.33                      | 36.5                   |
| All Ve    | hicles |              | 1088                           | 2.2                       | 1088                           | 2.2                        | 0.413               | 5.3                   | NA                  | 2.1                       | 14.7                    | 0.43         | 0.57                 | 0.49                      | 34.7                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 3:02:22 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

V Site: BGU02 [BGU02 Dalgety Rd / Towns PI (Site Folder: Block 4 - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: BGU-N1 [BGU Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

Site Category: (None) Roundabout

| Vehic     | cle M  | ovemen       | t Perfo                      | orma                      | nce                         |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
|-----------|--------|--------------|------------------------------|---------------------------|-----------------------------|----------------------------|---------------------|-----------------------|---------------------|---------------------------|-------------------------|----------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F<br>[ Total<br>veh/h | nand<br>Iows<br>HV ]<br>% | Ar<br>F<br>[ Total<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Dalg | ety Rd (S    | 3)                           |                           |                             |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 30        | L2     | All MCs      | 3                            | 0.0                       | 3                           | 0.0                        | 0.156               | 6.0                   | LOS A               | 0.9                       | 6.6                     | 0.07           | 0.58                 | 0.07                      | 24.6                   |
| 3b        | R3     | All MCs      | 243                          | 2.2                       | 243                         | 2.2                        | 0.156               | 6.2                   | LOS A               | 0.9                       | 6.6                     | 0.07           | 0.58                 | 0.07                      | 32.4                   |
| 32u       | U      | All MCs      | 1                            | 0.0                       | 1                           | 0.0                        | 0.156               | 6.9                   | LOS A               | 0.9                       | 6.6                     | 0.07           | 0.58                 | 0.07                      | 34.8                   |
| Appro     | ach    |              | 247                          | 2.1                       | 247                         | 2.1                        | 0.156               | 6.2                   | LOS A               | 0.9                       | 6.6                     | 0.07           | 0.58                 | 0.07                      | 32.3                   |
| South     | East:  | Towns Pl     | (SE)                         |                           |                             |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 21b       | L3     | All MCs      | 177                          | 3.0                       | 177                         | 3.0                        | 0.119               | 2.6                   | LOS A               | 0.8                       | 5.4                     | 0.07           | 0.42                 | 0.07                      | 35.8                   |
| 21a       | L1     | All MCs      | 6                            | 0.0                       | 6                           | 0.0                        | 0.119               | 8.2                   | LOS A               | 0.8                       | 5.4                     | 0.07           | 0.42                 | 0.07                      | 18.9                   |
| 23u       | U      | All MCs      | 1                            | 0.0                       | 1                           | 0.0                        | 0.119               | 6.9                   | LOS A               | 0.8                       | 5.4                     | 0.07           | 0.42                 | 0.07                      | 30.9                   |
| Appro     | ach    |              | 184                          | 2.9                       | 184                         | 2.9                        | 0.119               | 2.8                   | LOS A               | 0.8                       | 5.4                     | 0.07           | 0.42                 | 0.07                      | 35.3                   |
| West:     | Parki  | ng Acces     | s (W)                        |                           |                             |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 12a       | R1     | All MCs      | 3                            | 0.0                       | 3                           | 0.0                        | 0.010               | 1.4                   | LOS A               | 0.1                       | 0.4                     | 0.42           | 0.21                 | 0.42                      | 9.6                    |
| 29        | R2     | All MCs      | 6                            | 0.0                       | 6                           | 0.0                        | 0.010               | 1.4                   | LOS A               | 0.1                       | 0.4                     | 0.42           | 0.21                 | 0.42                      | 21.4                   |
| 29u       | U      | All MCs      | 1                            | 0.0                       | 1                           | 0.0                        | 0.010               | 1.4                   | LOS A               | 0.1                       | 0.4                     | 0.42           | 0.21                 | 0.42                      | 9.7                    |
| Appro     | ach    |              | 11                           | 0.0                       | 11                          | 0.0                        | 0.010               | 1.4                   | LOS A               | 0.1                       | 0.4                     | 0.42           | 0.21                 | 0.42                      | 17.9                   |
| All Ve    | hicles | i            | 442                          | 2.4                       | 442                         | 2.4                        | 0.156               | 4.7                   | LOS A               | 0.9                       | 6.6                     | 0.08           | 0.50                 | 0.08                      | 33.1                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 3:02:22 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

# V Site: BGU03 [BGU03 Kent St / Argyle St (Site Folder: Block 4 - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Site Category: (None) Give-Way (Two-Way)

| Vehic  | le M   | ovement  | t Perfo       | rma         | nce           |             |       |       |          |          |               |       |        |          |       |
|--------|--------|----------|---------------|-------------|---------------|-------------|-------|-------|----------|----------|---------------|-------|--------|----------|-------|
| Mov    | Turn   | Mov      | Dem           | and         | Ar            | rival       | Deg.  | Aver. | Level of | 95%      | Back Of       | Prop. | Eff.   | Aver.    | Aver. |
| שר     |        | Class    | FI<br>[ TotaL | ows<br>HV L | FI<br>[ TotaL | ows<br>HV L | Sath  | Delay | Service  | ر<br>Veh | ueue<br>Dist1 | Que   | Rate_  | Cvcles   | Speed |
|        |        |          | veh/h         | %           | veh/h         | %           | v/c   | sec   |          | veh      | m             |       | , late | C y cloc | km/h  |
| South  | : Kent | t St (S) |               |             |               |             |       |       |          |          |               |       |        |          |       |
| 1      | L2     | All MCs  | 109           | 1.9         | 109           | 1.9         | 0.586 | 8.8   | LOS A    | 3.5      | 24.9          | 0.76  | 1.12   | 1.31     | 32.6  |
| 2      | T1     | All MCs  | 27            | 11.5        | 27            | 11.5        | 0.586 | 11.8  | LOS A    | 3.5      | 24.9          | 0.76  | 1.12   | 1.31     | 30.8  |
| 3      | R2     | All MCs  | 163           | 0.0         | 163           | 0.0         | 0.586 | 16.7  | LOS B    | 3.5      | 24.9          | 0.76  | 1.12   | 1.31     | 31.3  |
| Appro  | ach    |          | 300           | 1.8         | 300           | 1.8         | 0.586 | 13.4  | LOS A    | 3.5      | 24.9          | 0.76  | 1.12   | 1.31     | 31.8  |
| East:  | Argyle | e St (E) |               |             |               |             |       |       |          |          |               |       |        |          |       |
| 4      | L2     | All MCs  | 160           | 0.0         | 160           | 0.0         | 0.304 | 6.3   | LOS A    | 1.5      | 10.9          | 0.48  | 0.47   | 0.48     | 36.3  |
| 5      | T1     | All MCs  | 114           | 0.9         | 114           | 0.9         | 0.304 | 1.3   | LOS A    | 1.5      | 10.9          | 0.48  | 0.47   | 0.48     | 35.8  |
| 6      | R2     | All MCs  | 94            | 44.4        | 94            | 44.4        | 0.304 | 5.4   | LOS A    | 1.5      | 10.9          | 0.48  | 0.47   | 0.48     | 30.8  |
| Appro  | ach    |          | 283           | 1.9         | 283           | 1.9         | 0.304 | 4.3   | NA       | 1.5      | 10.9          | 0.48  | 0.47   | 0.48     | 36.1  |
| North: | Kent   | St (N)   |               |             |               |             |       |       |          |          |               |       |        |          |       |
| 7      | L2     | All MCs  | 7             | 0.0         | 7             | 0.0         | 0.060 | 7.6   | LOS A    | 0.2      | 1.4           | 0.56  | 0.94   | 0.56     | 25.4  |
| 8      | T1     | All MCs  | 22            | 0.0         | 22            | 0.0         | 0.060 | 13.0  | LOS A    | 0.2      | 1.4           | 0.56  | 0.94   | 0.56     | 32.3  |
| 9      | R2     | All MCs  | 2             | 0.0         | 2             | 0.0         | 0.060 | 9.0   | LOS A    | 0.2      | 1.4           | 0.56  | 0.94   | 0.56     | 29.1  |
| Appro  | ach    |          | 32            | 0.0         | 32            | 0.0         | 0.060 | 11.5  | LOS A    | 0.2      | 1.4           | 0.56  | 0.94   | 0.56     | 31.1  |
| West:  | Argyl  | e PI (W) |               |             |               |             |       |       |          |          |               |       |        |          |       |
| 10     | L2     | All MCs  | 9             | 0.0         | 9             | 0.0         | 0.153 | 5.5   | LOS A    | 0.7      | 5.2           | 0.44  | 0.42   | 0.44     | 34.4  |
| 11     | T1     | All MCs  | 75            | 4.2         | 75            | 4.2         | 0.153 | 1.2   | LOS A    | 0.7      | 5.2           | 0.44  | 0.42   | 0.44     | 36.1  |
| 12     | R2     | All MCs  | 63            | 0.0         | 63            | 0.0         | 0.153 | 6.8   | LOS A    | 0.7      | 5.2           | 0.44  | 0.42   | 0.44     | 36.9  |
| Appro  | ach    |          | 147           | 2.1         | 147           | 2.1         | 0.153 | 3.9   | NA       | 0.7      | 5.2           | 0.44  | 0.42   | 0.44     | 36.5  |
| All Ve | hicles |          | 762           | 1.8         | 762           | 1.8         | 0.586 | 8.1   | NA       | 3.5      | 24.9          | 0.58  | 0.74   | 0.80     | 33.9  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 5:37:04 PM Project: C:\Users\\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

# CCG MOVEMENT SUMMARY

### □ Common Control Group: CCG1 [TCS 4272] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

### Network: BGU-N2 [BGU Network 2 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 70 seconds (CCG User-Given Phase Times)

| Vehio     | cle M  | ovemen       | t Perfo             | orma                 | nce (C              | CCG)                  |              |                |                     |          |                    |                |                      |                           |                |
|-----------|--------|--------------|---------------------|----------------------|---------------------|-----------------------|--------------|----------------|---------------------|----------|--------------------|----------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F<br>[ Total | nand<br>Iows<br>HV 1 | Ar<br>Fl<br>[ Total | rival<br>lows<br>HV 1 | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back | Of Queue<br>Dist ] | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
|           |        |              | veh/h               | %                    | veh/h               | %                     | v/c          | sec            |                     | veh      | m                  |                |                      |                           | km/h           |
| Site: E   | 3GU0   | 4 [BGU04     | 1 Pedes             | strian               | Mid-bl              | ock C                 | crossing at  | Kent St        | near Gas            | Ln]      |                    |                |                      |                           |                |
| South     | : Ken  | t St         |                     |                      |                     |                       |              |                |                     |          |                    |                |                      |                           |                |
| 2         | T1     | All MCs      | 361                 | 2.9                  | 361                 | 2.9                   | 0.342        | 4.9            | LOS A               | 4.2      | 30.5               | 0.37           | 0.32                 | 0.37                      | 36.1           |
| Appro     | ach    |              | 361                 | 2.9                  | 361                 | 2.9                   | 0.342        | 4.9            | LOS A               | 4.2      | 30.5               | 0.37           | 0.32                 | 0.37                      | 36.1           |
| North     | : Kent | St           |                     |                      |                     |                       |              |                |                     |          |                    |                |                      |                           |                |
| 8         | T1     | All MCs      | 307                 | 4.8                  | 307                 | 4.8                   | 0.482        | 29.5           | LOS C               | 5.0      | 36.1               | 0.95           | 0.76                 | 0.95                      | 23.2           |
| Appro     | ach    |              | 307                 | 4.8                  | 307                 | 4.8                   | 0.482        | 29.5           | LOS C               | 5.0      | 36.1               | 0.95           | 0.76                 | 0.95                      | 23.2           |
| All Ve    | hicles | ;            | 668                 | 3.8                  | 668                 | 3.8                   | 0.482        | 16.2           | LOS B               | 5.0      | 36.1               | 0.64           | 0.52                 | 0.64                      | 29.0           |
| Site: E   | 3GU0   | 5 [BGU05     | 5 Kent S            | St / S               | ydney               | Harbo                 | our Bridge   | (SHB) C        | n-ramp]             |          |                    |                |                      |                           |                |
| South     | : Ken  | t St (S)     |                     |                      |                     |                       |              |                |                     |          |                    |                |                      |                           |                |
| 2         | T1     | All MCs      | 285                 | 2.2                  | 285                 | 2.2                   | 0.268        | 9.4            | LOS A               | 5.4      | 38.7               | 0.59           | 0.51                 | 0.59                      | 27.4           |
| 3a        | R1     | All MCs      | 207                 | 1.5                  | 207                 | 1.5                   | *0.376       | 26.7           | LOS B               | 6.1      | 43.4               | 0.92           | 0.78                 | 0.92                      | 22.4           |
| Appro     | ach    |              | 493                 | 1.9                  | 493                 | 1.9                   | 0.376        | 16.7           | LOS B               | 6.1      | 43.4               | 0.73           | 0.62                 | 0.73                      | 24.5           |
| East:     | Clare  | nce St (E    | )                   |                      |                     |                       |              |                |                     |          |                    |                |                      |                           |                |
| 4         | L2     | All MCs      | 33                  | 0.0                  | 33                  | 0.0                   | 0.072        | 25.7           | LOS B               | 0.9      | 6.1                | 0.80           | 0.68                 | 0.80                      | 15.5           |
| 6         | R2     | All MCs      | 141                 | 3.0                  | 141                 | 3.0                   | *0.323       | 27.5           | LOS B               | 4.1      | 29.2               | 0.86           | 0.76                 | 0.86                      | 14.8           |
| Appro     | ach    |              | 174                 | 2.4                  | 174                 | 2.4                   | 0.323        | 27.2           | LOS B               | 4.1      | 29.2               | 0.85           | 0.74                 | 0.85                      | 14.9           |
| North     | East:  | SHB On-      | ramp (N             | IE)                  |                     |                       |              |                |                     |          |                    |                |                      |                           |                |
| 24a       | L1     | All MCs      | 4                   | 0.0                  | 4                   | 0.0                   | 0.004        | 25.9           | LOS B               | 0.1      | 0.3                | 0.85           | 0.55                 | 0.85                      | 21.1           |
| Appro     | ach    |              | 4                   | 0.0                  | 4                   | 0.0                   | 0.004        | 25.9           | LOS B               | 0.1      | 0.3                | 0.85           | 0.55                 | 0.85                      | 21.1           |
| North     | : Kent | St (N)       |                     |                      |                     |                       |              |                |                     |          |                    |                |                      |                           |                |
| 7b        | L3     | All MCs      | 108                 | 7.8                  | 108                 | 7.8                   | 0.296        | 35.1           | LOS C               | 3.8      | 28.2               | 1.00           | 0.82                 | 1.00                      | 14.2           |
| 8         | T1     | All MCs      | 142                 | 4.4                  | 142                 | 4.4                   | *0.666       | 26.9           | LOS B               | 4.6      | 33.1               | 0.91           | 0.74                 | 0.94                      | 7.3            |
| Appro     | ach    |              | 251                 | 5.9                  | 251                 | 5.9                   | 0.666        | 30.5           | LOS C               | 4.6      | 33.1               | 0.95           | 0.77                 | 0.97                      | 11.0           |
| All Ve    | hicles | ;            | 921                 | 3.1                  | 921                 | 3.1                   | 0.666        | 22.5           | LOS B               | 6.1      | 43.4               | 0.81           | 0.69                 | 0.82                      | 19.0           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian Mov | vement | Perforr | nance (C | CG)             |       |      |        |        |       |
|----------------|--------|---------|----------|-----------------|-------|------|--------|--------|-------|
| Mov            | Dem.   | Aver.   | Level of | AVERAGE BACK OF | Prop. | Eff. | Travel | Travel | Aver. |
| ID Crossing    | Flow   | Delay   | Service  | QUEUE           | Que   | Stop | Time   | Dist.  | Speed |

|                    |         |           |              | [Ped          | Dist ]      |         | Rate |       |       |       |
|--------------------|---------|-----------|--------------|---------------|-------------|---------|------|-------|-------|-------|
|                    | ped/h   | sec       |              | ped           | m           |         |      | sec   | m     | m/sec |
| Site: BGU04 [BGU   | 04 Pede | estrian N | /lid-block C | rossing at K  | ent St near | Gas Ln] |      |       |       |       |
| South: Kent St     |         |           |              |               |             |         |      |       |       |       |
| P1 Full            | 95      | 28.5      | LOS C        | 0.2           | 0.2         | 0.90    | 0.90 | 195.1 | 200.0 | 1.02  |
| All Pedestrians    | 95      | 28.5      | LOS C        | 0.2           | 0.2         | 0.90    | 0.90 | 195.1 | 200.0 | 1.02  |
| Site: BGU05 [BGU   | 05 Kent | St / Sy   | dney Harbo   | our Bridge (S | HB) On-rar  | mp]     |      |       |       |       |
| South: Kent St (S) |         |           |              |               |             |         |      |       |       |       |
| P1 Full            | 1       | 24.9      | LOS C        | 0.0           | 0.0         | 0.84    | 0.84 | 41.5  | 20.0  | 0.48  |
| All Pedestrians    | 1       | 24.9      | LOS C        | 0.0           | 0.0         | 0.84    | 0.84 | 41.5  | 20.0  | 0.48  |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 2:42:18 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: BGU06 [BGU06 Hickson Rd / Napoleon St / Sussex St (Site Folder: Block 4 - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: BGU-N2 [BGU Network 3 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

TCS 4625

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site User-Given Phase Times)

| Vehic     | le M     | ovemen             | t Perfo                      | orma                     | nce                          |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
|-----------|----------|--------------------|------------------------------|--------------------------|------------------------------|----------------------------|---------------------|-----------------------|---------------------|---------------------------|-------------------------|----------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn     | Mov<br>Class       | Dem<br>F<br>[ Total<br>veh/h | nand<br>lows<br>HV]<br>% | Ar<br>Fl<br>[ Total<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Sus    | sex St (S)         |                              |                          |                              |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 2<br>3    | T1<br>R2 | All MCs<br>All MCs | 337<br>74                    | 0.6                      | 337<br>74                    | 0.6                        | 0.320               | 9.5                   | LOS A<br>LOS B      | 6.4<br>1.6                | 44.7                    | 0.59           | 0.51                 | 0.59                      | 30.8<br>22.6           |
| Appro     | acn      |                    | 411                          | 0.8                      | 411                          | 0.8                        | 0.320               | 11.0                  | LUSA                | 0.4                       | 44.7                    | 0.62           | 0.54                 | 0.62                      | 29.3                   |
| East:     | Napol    | lean St (E         | )                            |                          |                              |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 4         | L2       | All MCs            | 59                           | 16.1                     | 59                           | 16.1                       | 0.118               | 22.2                  | LOS B               | 1.5                       | 11.6                    | 0.74           | 0.69                 | 0.74                      | 15.2                   |
| 6         | R2       | All MCs            | 218                          | 2.9                      | 218                          | 2.9                        | *0.471              | 27.6                  | LOS B               | 6.5                       | 46.4                    | 0.89           | 0.78                 | 0.89                      | 21.8                   |
| Appro     | ach      |                    | 277                          | 5.7                      | 277                          | 5.7                        | 0.471               | 26.4                  | LOS B               | 6.5                       | 46.4                    | 0.86           | 0.76                 | 0.86                      | 20.9                   |
| North:    | Hick     | son Rd (N          | 1)                           |                          |                              |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 7         | L2       | All MCs            | 127                          | 0.0                      | 127                          | 0.0                        | 0.171               | 18.1                  | LOS B               | 2.8                       | 19.7                    | 0.68           | 0.69                 | 0.68                      | 25.4                   |
| 8         | T1       | All MCs            | 328                          | 4.2                      | 328                          | 4.2                        | *0.423              | 15.9                  | LOS B               | 8.0                       | 58.3                    | 0.76           | 0.65                 | 0.76                      | 23.1                   |
| Appro     | ach      |                    | 456                          | 3.0                      | 456                          | 3.0                        | 0.423               | 16.5                  | LOS B               | 8.0                       | 58.3                    | 0.73           | 0.66                 | 0.73                      | 23.9                   |
| West:     | Car F    | Park Acce          | ss (W)                       |                          |                              |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 10        | L2       | All MCs            | 1                            | 0.0                      | 1                            | 0.0                        | 0.041               | 43.0                  | LOS D               | 0.0                       | 0.3                     | 1.00           | 0.57                 | 1.00                      | 11.8                   |
| 11        | T1       | All MCs            | 1                            | 0.0                      | 1                            | 0.0                        | *0.195              | 44.6                  | LOS D               | 0.2                       | 1.5                     | 1.00           | 0.63                 | 1.00                      | 8.4                    |
| 12        | R2       | All MCs            | 4                            | 0.0                      | 4                            | 0.0                        | 0.195               | 44.6                  | LOS D               | 0.2                       | 1.5                     | 1.00           | 0.63                 | 1.00                      | 2.2                    |
| Appro     | ach      |                    | 6                            | 0.0                      | 6                            | 0.0                        | 0.195               | 44.3                  | LOS D               | 0.2                       | 1.5                     | 1.00           | 0.62                 | 1.00                      | 5.4                    |
| All Ve    | hicles   |                    | 1149                         | 2.8                      | 1149                         | 2.8                        | 0.471               | 17.1                  | LOS B               | 8.0                       | 58.3                    | 0.73           | 0.64                 | 0.73                      | 24.6                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Ped  | estrian Mov  | vement | Perforr | nance    |         |         |       |      |        |        |       |
|------|--------------|--------|---------|----------|---------|---------|-------|------|--------|--------|-------|
| Mov  |              | Dem.   | Aver.   | Level of | AVERAGE | BACK OF | Prop. | Eff. | Travel | Travel | Aver. |
| ID   | Crossing     | Flow   | Delay   | Service  | QUE     | EUE     | Que   | Stop | Time   | Dist.  | Speed |
|      |              |        |         |          | [Ped    | Dist ]  |       | Rate |        |        |       |
|      |              | ped/h  | sec     |          | ped     | m       |       |      | sec    | m      | m/sec |
| Sout | h: Sussex St | (S)    |         |          |         |         |       |      |        |        |       |
| P1   | Full         | 57     | 28.4    | LOS C    | 0.1     | 0.1     | 0.90  | 0.90 | 45.1   | 20.0   | 0.44  |
| East | : Napolean S | st (E) |         |          |         |         |       |      |        |        |       |
| P2   | Full         | 38     | 28.4    | LOS C    | 0.1     | 0.1     | 0.90  | 0.90 | 45.1   | 20.0   | 0.44  |

| North: Hickson Rd  | (N)      |      |       |     |     |      |      |      |      |      |
|--------------------|----------|------|-------|-----|-----|------|------|------|------|------|
| P3 Full            | 23       | 28.4 | LOS C | 0.0 | 0.0 | 0.90 | 0.90 | 45.0 | 20.0 | 0.44 |
| West: Car Park Acc | cess (W) | )    |       |     |     |      |      |      |      |      |
| P4 Full            | 75       | 28.4 | LOS C | 0.1 | 0.1 | 0.90 | 0.90 | 45.1 | 20.0 | 0.44 |
| All Pedestrians    | 193      | 28.4 | LOS C | 0.1 | 0.1 | 0.90 | 0.90 | 45.1 | 20.0 | 0.44 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 4 November 2024 3:02:53 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: BGU07 [BGU07 Margaret St / Kent St / Napoleon St (Site Folder: Block 4 - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Network: BGU-N2 [BGU Network 2 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

### TCS 308

#### Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 70 seconds (Network Site User-Given Phase Times)

| Vehic  | le M   | ovemen     | t Perfo      | orma         | nce           |              |        |       |          |          |          |       |              |                  |       |
|--------|--------|------------|--------------|--------------|---------------|--------------|--------|-------|----------|----------|----------|-------|--------------|------------------|-------|
| Mov    | Turn   | Mov        | Dem          | hand         | Ar            | rival        | Deg.   | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff.         | Aver.            | Aver. |
| UI     |        | Class      | ⊢<br>Total ] | IOWS<br>HV 1 | FI<br>[ Total | lows<br>HV 1 | Sath   | Delay | Service  | [ Veh    | Dist 1   | Que   | Stop<br>Rate | NO. OF<br>Cvcles | Speed |
|        |        |            | veh/h        | %            | veh/h         | %            | v/c    | sec   |          | veh      | m        |       | 1 10.110     | 0,000            | km/h  |
| South  | : Ken  | t St (S)   |              |              |               |              |        |       |          |          |          |       |              |                  |       |
| 1a     | L1     | All MCs    | 37           | 8.6          | 37            | 8.6          | 0.329  | 17.3  | LOS B    | 6.2      | 44.5     | 0.65  | 0.58         | 0.65             | 23.0  |
| 2      | T1     | All MCs    | 360          | 2.6          | 360           | 2.6          | 0.329  | 14.6  | LOS B    | 6.2      | 44.5     | 0.72  | 0.61         | 0.72             | 10.7  |
| 3      | R2     | All MCs    | 20           | 0.0          | 20            | 0.0          | 0.329  | 54.6  | LOS D    | 3.3      | 23.7     | 0.90  | 0.72         | 0.90             | 7.4   |
| Appro  | ach    |            | 417          | 3.0          | 417           | 3.0          | 0.329  | 16.7  | LOS B    | 6.2      | 44.5     | 0.72  | 0.61         | 0.72             | 12.0  |
| East:  | Marga  | aret St (E | )            |              |               |              |        |       |          |          |          |       |              |                  |       |
| 4      | L2     | All MCs    | 19           | 0.0          | 19            | 0.0          | 0.051  | 18.0  | LOS B    | 0.3      | 2.3      | 0.51  | 0.58         | 0.51             | 13.7  |
| 6a     | R1     | All MCs    | 200          | 5.3          | 200           | 5.3          | 0.416  | 17.5  | LOS B    | 5.3      | 38.4     | 0.72  | 0.66         | 0.72             | 20.2  |
| 6      | R2     | All MCs    | 23           | 0.0          | 23            | 0.0          | 0.416  | 20.2  | LOS B    | 5.3      | 38.4     | 0.72  | 0.66         | 0.72             | 10.2  |
| Appro  | ach    |            | 242          | 4.3          | 242           | 4.3          | 0.416  | 17.8  | LOS B    | 5.3      | 38.4     | 0.70  | 0.65         | 0.70             | 19.1  |
| North  | Kent   | St (N)     |              |              |               |              |        |       |          |          |          |       |              |                  |       |
| 7      | L2     | All MCs    | 42           | 2.5          | 42            | 2.5          | *0.347 | 40.7  | LOS C    | 4.9      | 34.9     | 0.86  | 0.72         | 0.86             | 18.3  |
| 8      | T1     | All MCs    | 160          | 1.3          | 160           | 1.3          | *0.347 | 20.7  | LOS B    | 4.9      | 34.9     | 0.88  | 0.71         | 0.88             | 19.4  |
| 9b     | R3     | All MCs    | 45           | 4.7          | 45            | 4.7          | 0.196  | 12.7  | LOS A    | 0.5      | 3.6      | 0.32  | 0.59         | 0.32             | 28.1  |
| Appro  | ach    |            | 247          | 2.1          | 247           | 2.1          | 0.347  | 22.7  | LOS B    | 4.9      | 34.9     | 0.77  | 0.69         | 0.77             | 20.7  |
| North  | West:  | Napoleo    | n St (N      | W)           |               |              |        |       |          |          |          |       |              |                  |       |
| 27b    | L3     | All MCs    | 97           | 0.0          | 97            | 0.0          | 0.415  | 10.0  | LOS A    | 4.6      | 32.7     | 0.77  | 0.74         | 0.77             | 20.8  |
| 27a    | L1     | All MCs    | 133          | 1.6          | 133           | 1.6          | *0.415 | 17.8  | LOS B    | 4.6      | 32.7     | 0.77  | 0.74         | 0.77             | 20.8  |
| Appro  | ach    |            | 229          | 0.9          | 229           | 0.9          | 0.415  | 14.5  | LOS A    | 4.6      | 32.7     | 0.77  | 0.74         | 0.77             | 20.8  |
| All Ve | hicles |            | 1136         | 2.7          | 1136          | 2.7          | 0.416  | 17.8  | LOS B    | 6.2      | 44.5     | 0.74  | 0.66         | 0.74             | 18.0  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian Mo      | vement       | Perform        | nance               |                         |                          |              |                      |                |                 |                |
|--------------------|--------------|----------------|---------------------|-------------------------|--------------------------|--------------|----------------------|----------------|-----------------|----------------|
| Mov<br>ID Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUI<br>[ Ped | BACK OF<br>EUE<br>Dist ] | Prop.<br>Que | Eff.<br>Stop<br>Rate | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|                    | ped/h        | sec            |                     | ped                     | m                        |              |                      | sec            | m               | m/sec          |
| South: Kent St (S  | 5)           |                |                     |                         |                          |              |                      |                |                 |                |

| P1 Full                     | 325 | 22.7 | LOS C | 0.5 | 0.5 | 0.81 | 0.81 | 39.4  | 20.0  | 0.51 |  |  |
|-----------------------------|-----|------|-------|-----|-----|------|------|-------|-------|------|--|--|
| East: Margaret St (E)       |     |      |       |     |     |      |      |       |       |      |  |  |
| P2 Full                     | 44  | 26.6 | LOS C | 0.1 | 0.1 | 0.87 | 0.87 | 43.3  | 20.0  | 0.46 |  |  |
| North: Kent St (N)          |     |      |       |     |     |      |      |       |       |      |  |  |
| P3 Full                     | 84  | 21.7 | LOS C | 0.1 | 0.1 | 0.79 | 0.79 | 38.3  | 20.0  | 0.52 |  |  |
| NorthWest: Napoleon St (NW) |     |      |       |     |     |      |      |       |       |      |  |  |
| P7 Full                     | 122 | 21.7 | LOS C | 0.2 | 0.2 | 0.79 | 0.79 | 188.4 | 200.0 | 1.06 |  |  |
| All Pedestrians             | 576 | 22.6 | LOS C | 0.5 | 0.5 | 0.81 | 0.81 | 71.1  | 58.2  | 0.82 |  |  |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 2:42:18 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&W Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: BGU08 [BGU08 Margaret St / Clarence St (Site Folder: Block 4 - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

■ Network: BGU-N2 [BGU Network 2 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

TCS 319

Site Category: NA

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 70 seconds (Network Site User-Given Phase Times)

| Vehicle Movement Performance |        |              |                              |                           |                             |                            |                     |                       |                     |                           |                         |              |                      |                           |                        |
|------------------------------|--------|--------------|------------------------------|---------------------------|-----------------------------|----------------------------|---------------------|-----------------------|---------------------|---------------------------|-------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID                    | Turn   | Mov<br>Class | Dem<br>F<br>[ Total<br>veh/h | nand<br>lows<br>HV ]<br>% | Ar<br>F<br>[ Total<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South: Clarence St (S)       |        |              |                              |                           |                             |                            |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 1                            | L2     | All MCs      | 33                           | 0.0                       | 33                          | 0.0                        | 0.226               | 22.2                  | LOS B               | 3.8                       | 26.6                    | 0.72         | 0.62                 | 0.72                      | 18.5                   |
| 2                            | T1     | All MCs      | 460                          | 9.6                       | 460                         | 9.6                        | *0.226              | 15.6                  | LOS B               | 3.9                       | 27.5                    | 0.71         | 0.60                 | 0.71                      | 22.0                   |
| 3                            | R2     | All MCs      | 41                           | 0.0                       | 41                          | 0.0                        | 0.226               | 22.1                  | LOS B               | 3.7                       | 26.2                    | 0.72         | 0.63                 | 0.72                      | 18.3                   |
| Appro                        | ach    |              | 534                          | 8.3                       | 534                         | 8.3                        | 0.226               | 16.5                  | LOS B               | 3.9                       | 27.5                    | 0.72         | 0.60                 | 0.72                      | 21.6                   |
| East: Margaret St (E)        |        |              |                              |                           |                             |                            |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 5                            | T1     | All MCs      | 209                          | 5.0                       | 209                         | 5.0                        | 0.191               | 8.2                   | LOS A               | 2.1                       | 15.0                    | 0.46         | 0.40                 | 0.46                      | 15.4                   |
| 6                            | R2     | All MCs      | 46                           | 18.2                      | 46                          | 18.2                       | *0.191              | 15.4                  | LOS B               | 1.8                       | 13.6                    | 0.63         | 0.59                 | 0.63                      | 16.8                   |
| Appro                        | ach    |              | 256                          | 7.4                       | 256                         | 7.4                        | 0.191               | 9.5                   | LOS A               | 2.1                       | 15.0                    | 0.49         | 0.43                 | 0.49                      | 15.8                   |
| West: Margaret St (W)        |        |              |                              |                           |                             |                            |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 10                           | L2     | All MCs      | 97                           | 1.1                       | 97                          | 1.1                        | *0.572              | 34.1                  | LOS C               | 6.2                       | 44.0                    | 0.94         | 0.78                 | 0.94                      | 10.2                   |
| 11                           | T1     | All MCs      | 98                           | 2.2                       | 98                          | 2.2                        | 0.572               | 25.0                  | LOS B               | 6.2                       | 44.0                    | 0.94         | 0.78                 | 0.94                      | 5.8                    |
| Appro                        | ach    |              | 195                          | 1.6                       | 195                         | 1.6                        | 0.572               | 29.5                  | LOS C               | 6.2                       | 44.0                    | 0.94         | 0.78                 | 0.94                      | 8.2                    |
| All Ve                       | hicles |              | 984                          | 6.7                       | 984                         | 6.7                        | 0.572               | 17.3                  | LOS B               | 6.2                       | 44.0                    | 0.70         | 0.59                 | 0.70                      | 17.6                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian Movement Performance |               |              |                |                     |                 |        |              |              |                |                 |                |
|---------------------------------|---------------|--------------|----------------|---------------------|-----------------|--------|--------------|--------------|----------------|-----------------|----------------|
| Mov<br>ID                       | /<br>Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE BACK OF |        | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|                                 |               | nod/h        | 600            |                     | [Ped            | Dist J |              | Rate         | 500            | m               | m/soc          |
| South: Clarence St (S)          |               |              |                |                     |                 |        |              |              |                |                 | 111/300        |
| P1                              | Full          | 268          | 27.8           | LOS C               | 0.5             | 0.5    | 0.90         | 0.90         | 44.4           | 20.0            | 0.45           |
| East: Margaret St (E)           |               |              |                |                     |                 |        |              |              |                |                 |                |
| P2                              | Full          | 136          | 27.6           | LOS C               | 0.2             | 0.2    | 0.89         | 0.89         | 44.3           | 20.0            | 0.45           |
| North: Clarence St (N)          |               |              |                |                     |                 |        |              |              |                |                 |                |
| P3                              | Full          | 332          | 26.1           | LOS C               | 0.6             | 0.6    | 0.87         | 0.87         | 42.7           | 20.0            | 0.47           |
| West: Margaret St (W)           |               |              |                |                     |                 |        |              |              |                |                 |                |
| P4                              | Full          | 104          | 23.3           | LOS C               | 0.2             | 0.2    | 0.82         | 0.82         | 40.0           | 20.0            | 0.50           |
| All Pedestrians | 840 | 26.5 | LOS C | 0.6 | 0.6 | 0.87 | 0.87 | 43.2 | 20.0 | 0.46 |
|-----------------|-----|------|-------|-----|-----|------|------|------|------|------|
|-----------------|-----|------|-------|-----|-----|------|------|------|------|------|

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 2:42:18 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

# Site: BGU09 [BGU09 Margaret St / York St (Site Folder: Block 4 - 2024 Weekend Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

■ Network: BGU-N2 [BGU Network 2 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

TCS 3042

Site Category: NA

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 70 seconds (Network User-Given Cycle Time)

| Vehic     | le M   | ovemen       | t Perfo             | orma                 | nce                   |                      |              |                |                     |                   |                    |                |                      |                           |                |
|-----------|--------|--------------|---------------------|----------------------|-----------------------|----------------------|--------------|----------------|---------------------|-------------------|--------------------|----------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F<br>[ Total | hand<br>lows<br>HV ] | Ar<br>Fl<br>[ Total ] | rival<br>ows<br>HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[Veh. | Of Queue<br>Dist ] | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| East:     | Marga  | aret St (E   | )                   | /0                   | ven/m                 | /0                   | V/C          | 360            | _                   | ven               |                    | _              | _                    | _                         | K111/11        |
| 4         | L2     | All MCs      | 60                  | 1.8                  | 60                    | 1.8                  | 0.092        | 19.6           | LOS B               | 1.4               | 9.7                | 0.70           | 0.67                 | 0.70                      | 19.8           |
| 5         | T1     | All MCs      | 52                  | 16.3                 | 52                    | 16.3                 | 0.086        | 16.2           | LOS B               | 1.2               | 9.4                | 0.69           | 0.53                 | 0.69                      | 12.0           |
| Appro     | ach    |              | 112                 | 8.5                  | 112                   | 8.5                  | 0.092        | 18.0           | LOS B               | 1.4               | 9.7                | 0.69           | 0.61                 | 0.69                      | 17.3           |
| North:    | York   | St (N)       |                     |                      |                       |                      |              |                |                     |                   |                    |                |                      |                           |                |
| 8         | T1     | All MCs      | 733                 | 6.9                  | 733                   | 6.9                  | *0.293       | 12.9           | LOS A               | 5.3               | 38.9               | 0.67           | 0.56                 | 0.67                      | 24.8           |
| 9         | R2     | All MCs      | 204                 | 5.2                  | 204                   | 5.2                  | 0.254        | 16.5           | LOS B               | 4.3               | 31.5               | 0.65           | 0.73                 | 0.65                      | 12.1           |
| Appro     | ach    |              | 937                 | 6.5                  | 937                   | 6.5                  | 0.293        | 13.7           | LOS A               | 5.3               | 38.9               | 0.66           | 0.60                 | 0.66                      | 22.7           |
| West:     | Marg   | aret St (V   | ∨)                  |                      |                       |                      |              |                |                     |                   |                    |                |                      |                           |                |
| 12        | R2     | All MCs      | 139                 | 1.5                  | 139                   | 1.5                  | *0.289       | 29.4           | LOS C               | 4.6               | 32.7               | 1.00           | 0.73                 | 1.00                      | 14.8           |
| Appro     | ach    |              | 139                 | 1.5                  | 139                   | 1.5                  | 0.289        | 29.4           | LOS C               | 4.6               | 32.7               | 1.00           | 0.73                 | 1.00                      | 14.8           |
| All Ve    | nicles |              | 1187                | 6.1                  | 1187                  | 6.1                  | 0.293        | 15.9           | LOS B               | 5.3               | 38.9               | 0.70           | 0.61                 | 0.70                      | 20.9           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian Mov     | vement       | Perform        | nance               |                |          |              |              |                |                 |                |
|--------------------|--------------|----------------|---------------------|----------------|----------|--------------|--------------|----------------|-----------------|----------------|
| Mov<br>ID Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF  | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|                    | ped/h        | sec            |                     | ped            | m Dist j |              | Rale         | sec            | m               | m/sec          |
| South: York St (S) | )            |                |                     |                |          |              |              |                |                 |                |
| P1 Full            | 363          | 23.6           | LOS C               | 0.6            | 0.6      | 0.83         | 0.83         | 40.2           | 20.0            | 0.50           |
| East: Margaret St  | (E)          |                |                     |                |          |              |              |                |                 |                |
| P2 Full            | 462          | 23.7           | LOS C               | 0.8            | 0.8      | 0.83         | 0.83         | 40.3           | 20.0            | 0.50           |
| North: York St (N) |              |                |                     |                |          |              |              |                |                 |                |
| P3 Full            | 238          | 21.8           | LOS C               | 0.4            | 0.4      | 0.79         | 0.79         | 38.5           | 20.0            | 0.52           |
| West: Margaret S   | t (W)        |                |                     |                |          |              |              |                |                 |                |
| P4 Full            | 246          | 26.0           | LOS C               | 0.4            | 0.4      | 0.87         | 0.87         | 42.6           | 20.0            | 0.47           |
| All Pedestrians    | 1309         | 23.7           | LOS C               | 0.8            | 0.8      | 0.83         | 0.83         | 40.4           | 20.0            | 0.50           |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 25 November 2024 2:42:18 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: BGU10 [BGU10 Pedestrian Mid-block Crossing at Sussex St under Exchange PI (Site Folder: Block 4 - 2024 Weekend Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: BGU-N2 [BGU Network 3 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

### TCS 3939 (?)

Site Category: (None)

Pedestrian Crossing (Signalised) - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfc          | orma         | nce              |              |              |                |                     |               |             |                |              |                 |                |
|-----------|--------|--------------|------------------|--------------|------------------|--------------|--------------|----------------|---------------------|---------------|-------------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl        | nand<br>Iows | Ar<br>Fl         | rival<br>ows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back      | Of Queue    | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total<br>veh/h | HV ]<br>%    | [ Total<br>veh/h | HV ]<br>%    | v/c          | sec            |                     | [ Veh.<br>veh | Dist ]<br>m |                | Rate         | Cycles          | km/h           |
| South     | : Sus  | sex St (S)   | )                |              |                  |              |              |                |                     |               |             |                |              |                 |                |
| 2         | T1     | All MCs      | 482              | 0.4          | 482              | 0.4          | *0.217       | 7.9            | LOS A               | 4.0           | 28.1        | 0.52           | 0.44         | 0.52            | 25.3           |
| Appro     | ach    |              | 482              | 0.4          | 482              | 0.4          | 0.217        | 7.9            | LOS A               | 4.0           | 28.1        | 0.52           | 0.44         | 0.52            | 25.3           |
| North:    | Suss   | ex St (N)    | 1                |              |                  |              |              |                |                     |               |             |                |              |                 |                |
| 8         | T1     | All MCs      | 437              | 5.1          | 437              | 5.1          | 0.206        | 7.8            | LOS A               | 3.6           | 26.3        | 0.52           | 0.43         | 0.52            | 23.6           |
| Appro     | ach    |              | 437              | 5.1          | 437              | 5.1          | 0.206        | 7.8            | LOS A               | 3.6           | 26.3        | 0.52           | 0.43         | 0.52            | 23.6           |
| All Ve    | hicles |              | 919              | 2.6          | 919              | 2.6          | 0.217        | 7.8            | LOS A               | 4.0           | 28.1        | 0.52           | 0.44         | 0.52            | 24.5           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov     | vement       | Perform        | nance               |              |             |              |              |                |                 |                |
|--------------------|--------------|----------------|---------------------|--------------|-------------|--------------|--------------|----------------|-----------------|----------------|
| Mov<br>ID Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service |              | BACK OF     | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|                    | ped/h        | sec            |                     | [ Ped<br>ped | Dist J<br>m |              | Rate         | sec            | m               | m/sec          |
| South: Sussex St   | (S)          |                |                     |              |             |              |              |                |                 |                |
| P1 Full            | 141          | 28.5           | LOS C               | 0.3          | 0.3         | 0.91         | 0.91         | 45.2           | 20.0            | 0.44           |
| All Pedestrians    | 141          | 28.5           | LOS C               | 0.3          | 0.3         | 0.91         | 0.91         | 45.2           | 20.0            | 0.44           |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 4 November 2024 3:02:53 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: BGU11 [BGU11 Pedestrian Mid-block Crossing at Kent St near Margaret St (Site Folder: Block 4 - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TCS 4109

Site Category: (None)

Pedestrian Crossing (Signalised) - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 45 seconds (Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfc          | orma         | nce              |               |              |                |                     |               |            |                |              |                 |                |
|-----------|--------|--------------|------------------|--------------|------------------|---------------|--------------|----------------|---------------------|---------------|------------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl        | nand<br>Iows | Ar<br>Fl         | rival<br>lows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back      | Of Queue   | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total<br>veh/h | HV ]<br>%    | [ Total<br>veh/h | HV ]<br>%     | v/c          | sec            |                     | [ Veh.<br>veh | Dist]<br>m |                | Rate         | Cycles          | km/h           |
| South     | : Ken  | t St (S)     |                  |              |                  |               |              |                |                     |               |            |                |              |                 |                |
| 2         | T1     | All MCs      | 408              | 3.9          | 408              | 3.9           | *0.265       | 10.0           | LOS A               | 3.0           | 21.8       | 0.71           | 0.58         | 0.71            | 22.6           |
| Appro     | ach    |              | 408              | 3.9          | 408              | 3.9           | 0.265        | 10.0           | LOS A               | 3.0           | 21.8       | 0.71           | 0.58         | 0.71            | 22.6           |
| North:    | Kent   | St (N)       |                  |              |                  |               |              |                |                     |               |            |                |              |                 |                |
| 8         | T1     | All MCs      | 176              | 0.6          | 176              | 0.6           | 0.192        | 9.5            | LOS A               | 2.2           | 15.2       | 0.67           | 0.53         | 0.67            | 15.0           |
| Appro     | ach    |              | 176              | 0.6          | 176              | 0.6           | 0.192        | 9.5            | LOS A               | 2.2           | 15.2       | 0.67           | 0.53         | 0.67            | 15.0           |
| All Ve    | hicles |              | 584              | 2.9          | 584              | 2.9           | 0.265        | 9.8            | LOS A               | 3.0           | 21.8       | 0.70           | 0.56         | 0.70            | 20.9           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov     | Pedestrian Movement Performance |                |                     |         |             |              |              |                |                 |                |  |  |  |  |  |
|--------------------|---------------------------------|----------------|---------------------|---------|-------------|--------------|--------------|----------------|-----------------|----------------|--|--|--|--|--|
| Mov<br>ID Crossing | Dem.<br>Flow                    | Aver.<br>Delay | Level of<br>Service |         | BACK OF     | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |  |  |  |  |  |
|                    | ped/h                           | sec            |                     | red و ا | Dist j<br>m |              | Rate         | sec            | m               | m/sec          |  |  |  |  |  |
| South: Kent St (S  | )                               |                |                     |         |             |              |              |                |                 |                |  |  |  |  |  |
| P1 Full            | 13                              | 14.4           | LOS B               | 0.0     | 0.0         | 0.80         | 0.80         | 31.1           | 20.0            | 0.64           |  |  |  |  |  |
| All Pedestrians    | 13                              | 14.4           | LOS B               | 0.0     | 0.0         | 0.80         | 0.80         | 31.1           | 20.0            | 0.64           |  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 4 November 2024 3:02:53 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: BGU12 [BGU12 Sussex St / Erskine St (Site Folder: Block 4 - 2024 Weekend Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: BGU-N2 [BGU Network 3 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

### TCS 310

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehic      | le M   | ovemen     | t Perfo      | orma         | nce             |             |        |       |          |          |          |       |              |                  |       |
|------------|--------|------------|--------------|--------------|-----------------|-------------|--------|-------|----------|----------|----------|-------|--------------|------------------|-------|
| Mov        | Turn   | Mov        | Dem          | nand         | Ar              | rival       | Deg.   | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff.         | Aver.            | Aver. |
| <b>ט</b> ו |        | Class      | ٦<br>Total آ | IOWS<br>HV 1 | ۲۱<br>  Total آ | ows<br>HV 1 | Sath   | Delay | Service  | [Veh.    | Dist 1   | Que   | Stop<br>Rate | NO. OT<br>Cvcles | Speed |
|            |        |            | veh/h        | %            | veh/h           | %           | v/c    | sec   |          | veh      | m        |       |              | - ,              | km/h  |
| South      | : Sus  | sex St (S) | )            |              |                 |             |        |       |          |          |          |       |              |                  |       |
| 1          | L2     | All MCs    | 89           | 2.4          | 89              | 2.4         | *0.494 | 36.8  | LOS C    | 5.7      | 40.8     | 0.90  | 0.77         | 0.90             | 14.3  |
| 2          | T1     | All MCs    | 323          | 1.0          | 323             | 1.0         | 0.494  | 29.6  | LOS C    | 9.9      | 69.6     | 0.89  | 0.75         | 0.89             | 15.4  |
| Appro      | ach    |            | 413          | 1.3          | 413             | 1.3         | 0.494  | 31.2  | LOS C    | 9.9      | 69.6     | 0.89  | 0.76         | 0.89             | 15.2  |
| East:      | Erskir | ne St (E)  |              |              |                 |             |        |       |          |          |          |       |              |                  |       |
| 4          | L2     | All MCs    | 296          | 1.1          | 296             | 1.1         | 0.330  | 13.8  | LOS A    | 6.0      | 42.3     | 0.49  | 0.65         | 0.49             | 25.0  |
| 5          | T1     | All MCs    | 201          | 0.0          | 201             | 0.0         | 0.481  | 3.3   | LOS A    | 2.4      | 16.7     | 0.24  | 0.26         | 0.24             | 26.4  |
| 6          | R2     | All MCs    | 38           | 0.0          | 38              | 0.0         | 0.481  | 8.1   | LOS A    | 2.4      | 16.7     | 0.24  | 0.26         | 0.24             | 26.4  |
| Appro      | ach    |            | 535          | 0.6          | 535             | 0.6         | 0.481  | 9.4   | LOS A    | 6.0      | 42.3     | 0.38  | 0.48         | 0.38             | 25.3  |
| North:     | Suss   | ex St (N)  |              |              |                 |             |        |       |          |          |          |       |              |                  |       |
| 7          | L2     | All MCs    | 40           | 18.4         | 40              | 18.4        | 0.075  | 25.1  | LOS B    | 1.2      | 9.6      | 0.70  | 0.67         | 0.70             | 14.5  |
| 8          | T1     | All MCs    | 332          | 4.4          | 332             | 4.4         | 0.242  | 21.3  | LOS B    | 5.1      | 36.8     | 0.73  | 0.61         | 0.73             | 23.9  |
| 9          | R2     | All MCs    | 24           | 4.3          | 24              | 4.3         | *0.199 | 35.3  | LOS C    | 0.9      | 6.7      | 0.89  | 0.72         | 0.89             | 11.4  |
| Appro      | ach    |            | 396          | 5.9          | 396             | 5.9         | 0.242  | 22.5  | LOS B    | 5.1      | 36.8     | 0.74  | 0.62         | 0.74             | 22.4  |
| West:      | Erski  | ne St (W)  | )            |              |                 |             |        |       |          |          |          |       |              |                  |       |
| 10         | L2     | All MCs    | 54           | 0.0          | 54              | 0.0         | 0.110  | 12.4  | LOS A    | 2.3      | 16.4     | 0.50  | 0.52         | 0.50             | 13.3  |
| 11         | T1     | All MCs    | 244          | 2.6          | 244             | 2.6         | 0.531  | 14.2  | LOS A    | 10.2     | 73.4     | 0.68  | 0.66         | 0.68             | 10.1  |
| 12         | R2     | All MCs    | 158          | 3.3          | 158             | 3.3         | *0.531 | 23.2  | LOS B    | 10.2     | 73.4     | 0.74  | 0.70         | 0.74             | 21.5  |
| Appro      | ach    |            | 456          | 2.5          | 456             | 2.5         | 0.531  | 17.1  | LOS B    | 10.2     | 73.4     | 0.68  | 0.66         | 0.68             | 16.2  |
| All Ve     | hicles |            | 1799         | 2.4          | 1799            | 2.4         | 0.531  | 19.3  | LOS B    | 10.2     | 73.4     | 0.65  | 0.62         | 0.65             | 19.6  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian Mo      | vement       | Perform        | nance               |                |                |              |              |                |                 |                |
|--------------------|--------------|----------------|---------------------|----------------|----------------|--------------|--------------|----------------|-----------------|----------------|
| Mov<br>ID Crossing | Dem.<br>Flow | Aver.<br>Delav | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>EUE | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|                    |              |                |                     | [Ped           | Dist ]         |              | Rate         |                |                 |                |
|                    | ped/h        | sec            |                     | ped            | m              |              |              | sec            | m               | m/sec          |
| South: Sussex S    | t (S)        |                |                     |                |                |              |              |                |                 |                |
| P1 Full            | 389          | 38.9           | LOS D               | 0.9            | 0.9            | 0.94         | 0.94         | 55.6           | 20.0            | 0.36           |

| East: Erskine St ( | E)   |      |       |     |     |      |      |      |      |      |
|--------------------|------|------|-------|-----|-----|------|------|------|------|------|
| P2 Full            | 136  | 38.5 | LOS D | 0.3 | 0.3 | 0.93 | 0.93 | 55.2 | 20.0 | 0.36 |
| North: Sussex St   | (N)  |      |       |     |     |      |      |      |      |      |
| P3 Full            | 548  | 39.2 | LOS D | 1.3 | 1.3 | 0.94 | 0.94 | 55.8 | 20.0 | 0.36 |
| West: Erskine St   | (W)  |      |       |     |     |      |      |      |      |      |
| P4 Full            | 84   | 38.4 | LOS D | 0.2 | 0.2 | 0.93 | 0.93 | 55.1 | 20.0 | 0.36 |
| All Pedestrians    | 1158 | 38.9 | LOS D | 1.3 | 1.3 | 0.94 | 0.94 | 55.6 | 20.0 | 0.36 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 4 November 2024 3:02:53 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

# Site: BGU13 [BGU13 Kent St / Erskine St (Site Folder: Block 4 - 2024 Weekend Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: BGU-N2 [BGU Network 3 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

### TCS 307

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfc   | orma         | nce      |               |                |                |                     |          |          |              |              |                 |                |
|-----------|--------|--------------|-----------|--------------|----------|---------------|----------------|----------------|---------------------|----------|----------|--------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl | nand<br>Iows | Ar<br>Fl | rival<br>lows | Deg.<br>Satn   | Aver.<br>Delay | Level of<br>Service | 95% Back | Of Queue | Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total   | HV ]         | [ Total  | HV ]          | N/O            |                |                     | [Veh.    | Dist ]   |              | Rate         | Cycles          | km/b           |
| South     | Ken    | t St (S)     | ven/m     | 70           | VEII/II  | 70            | v/C            | 360            |                     | Ven      |          | _            | _            |                 | NIII/11        |
| 1         | L2     | All MCs      | 133       | 1.6          | 133      | 1.6           | 0.163          | 19.4           | LOS B               | 3.5      | 24.6     | 0.63         | 0.68         | 0.63            | 20.0           |
| 2         | T1     | All MCs      | 340       | 4.0          | 340      | 4.0           | *0.184         | 15.2           | LOS B               | 4.0      | 29.3     | 0.61         | 0.50         | 0.61            | 22.1           |
| 3         | R2     | All MCs      | 1         | 0.0          | 1        | 0.0           | 0.010          | 9.0            | LOS A               | 0.6      | 1.5      | 0.40         | 0.29         | 0.40            | 24.3           |
| Appro     | ach    |              | 474       | 3.3          | 474      | 3.3           | 0.184          | 16.4           | LOS B               | 4.0      | 29.3     | 0.62         | 0.55         | 0.62            | 21.4           |
| East: I   | Erskir | ne St (E)    |           |              |          |               |                |                |                     |          |          |              |              |                 |                |
| 5         | T1     | All MCs      | 260       | 2.0          | 260      | 2.0           | 0.479          | 47.8           | LOS D               | 5.7      | 40.5     | 0.91         | 0.73         | 0.91            | 5.7            |
| 6         | R2     | All MCs      | 13        | 0.0          | 13       | 0.0           | <b>*</b> 0.479 | 60.6           | LOS E               | 4.8      | 34.1     | 0.92         | 0.74         | 0.92            | 5.5            |
| Appro     | ach    |              | 273       | 1.9          | 273      | 1.9           | 0.479          | 48.4           | LOS D               | 5.7      | 40.5     | 0.91         | 0.73         | 0.91            | 4.0            |
| North:    | Kent   | St (N)       |           |              |          |               |                |                |                     |          |          |              |              |                 |                |
| 7         | L2     | All MCs      | 1         | 0.0          | 1        | 0.0           | 0.007          | 8.9            | LOS A               | 0.5      | 1.3      | 0.39         | 0.29         | 0.39            | 21.0           |
| 8         | T1     | All MCs      | 28        | 0.0          | 28       | 0.0           | 0.007          | 6.6            | LOS A               | 0.5      | 1.3      | 0.39         | 0.29         | 0.39            | 25.3           |
| 9         | R2     | All MCs      | 147       | 0.7          | 147      | 0.7           | *0.762         | 50.2           | LOS D               | 6.9      | 48.9     | 1.00         | 0.94         | 1.20            | 6.0            |
| Appro     | ach    |              | 177       | 0.6          | 177      | 0.6           | 0.762          | 42.9           | LOS D               | 6.9      | 48.9     | 0.90         | 0.83         | 1.07            | 8.4            |
| West:     | Erski  | ne St (W)    | )         |              |          |               |                |                |                     |          |          |              |              |                 |                |
| 10        | L2     | All MCs      | 80        | 2.6          | 80       | 2.6           | 0.181          | 43.2           | LOS D               | 2.5      | 17.9     | 0.74         | 0.70         | 0.74            | 8.1            |
| 11        | T1     | All MCs      | 206       | 6.6          | 206      | 6.6           | 0.556          | 43.0           | LOS D               | 7.5      | 55.3     | 0.86         | 0.71         | 0.86            | 11.3           |
| Appro     | ach    |              | 286       | 5.5          | 286      | 5.5           | 0.556          | 43.1           | LOS D               | 7.5      | 55.3     | 0.82         | 0.71         | 0.82            | 7.6            |
| All Vel   | nicles |              | 1209      | 3.1          | 1209     | 3.1           | 0.762          | 33.8           | LOS C               | 7.5      | 55.3     | 0.77         | 0.67         | 0.80            | 11.0           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Peo       | destrian Mov    | /ement       | Perform        | nance               |                |         |              |              |                |                 |                |
|-----------|-----------------|--------------|----------------|---------------------|----------------|---------|--------------|--------------|----------------|-----------------|----------------|
| Mov<br>ID | /<br>Crossing   | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|           |                 |              |                |                     | [Ped           | Dist ]  |              | Rate         |                |                 |                |
|           |                 | ped/h        | sec            |                     | ped            | m       |              |              | sec            | m               | m/sec          |
| Sou       | ith: Kent St (S | )            |                |                     |                |         |              |              |                |                 |                |
| P1        | Full            | 293          | 38.7           | LOS D               | 0.7            | 0.7     | 0.93         | 0.93         | 55.4           | 20.0            | 0.36           |
| Eas       | t: Erskine St ( | E)           |                |                     |                |         |              |              |                |                 |                |

| P2 Full             | 42  | 38.3 | LOS D | 0.1 | 0.1 | 0.92 | 0.92 | 55.0 | 20.0 | 0.36 |
|---------------------|-----|------|-------|-----|-----|------|------|------|------|------|
| North: Kent St (N)  |     |      |       |     |     |      |      |      |      |      |
| P3 Full             | 238 | 38.7 | LOS D | 0.6 | 0.6 | 0.93 | 0.93 | 55.3 | 20.0 | 0.36 |
| West: Erskine St (\ | N)  |      |       |     |     |      |      |      |      |      |
| P4 Full             | 72  | 38.4 | LOS D | 0.2 | 0.2 | 0.92 | 0.92 | 55.1 | 20.0 | 0.36 |
| All Pedestrians     | 644 | 38.6 | LOS D | 0.7 | 0.7 | 0.93 | 0.93 | 55.3 | 20.0 | 0.36 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 4 November 2024 3:02:53 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

# Site: BGU14 [BGU14 Sussex St / King St (Site Folder: Block 4 - 2024 Weekend Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: BGU-N2 [BGU Network 4 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

### TCS 284

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfo             | orma                 | nce                          |                            |              |                |                     |                    |                    |                |                      |                           |                |
|-----------|--------|--------------|---------------------|----------------------|------------------------------|----------------------------|--------------|----------------|---------------------|--------------------|--------------------|----------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F<br>[ Total | nand<br>lows<br>HV ] | Ar<br>Fl<br>[ Total<br>veb/b | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh. | Of Queue<br>Dist ] | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| East:     | King S | St (E)       | VON/IT              | /0                   | Veniin                       | 70                         | 0,0          | 000            |                     | Von                |                    |                |                      |                           | 1X11/11        |
| 4a        | L1     | All MCs      | 31                  | 0.0                  | 31                           | 0.0                        | 0.072        | 44.9           | LOS D               | 1.3                | 3.5                | 1.00           | 0.69                 | 1.00                      | 18.3           |
| Appro     | ach    |              | 31                  | 0.0                  | 31                           | 0.0                        | 0.072        | 44.9           | LOS D               | 1.3                | 3.5                | 1.00           | 0.69                 | 1.00                      | 18.3           |
| North     | Suss   | ex St (N)    |                     |                      |                              |                            |              |                |                     |                    |                    |                |                      |                           |                |
| 7         | L2     | All MCs      | 74                  | 11.4                 | 74                           | 11.4                       | 0.442        | 23.2           | LOS B               | 11.0               | 79.5               | 0.73           | 0.66                 | 0.73                      | 20.3           |
| 8         | T1     | All MCs      | 679                 | 2.0                  | 679                          | 2.0                        | 0.442        | 17.7           | LOS B               | 11.5               | 81.9               | 0.73           | 0.64                 | 0.73                      | 27.3           |
| Appro     | ach    |              | 753                 | 2.9                  | 753                          | 2.9                        | 0.442        | 18.3           | LOS B               | 11.5               | 81.9               | 0.73           | 0.65                 | 0.73                      | 26.9           |
| South     | West:  | King St (    | SW)                 |                      |                              |                            |              |                |                     |                    |                    |                |                      |                           |                |
| 30a       | L1     | All MCs      | 614                 | 0.3                  | 614                          | 0.3                        | *0.674       | 16.2           | LOS B               | 13.8               | 96.7               | 0.82           | 0.84                 | 0.82                      | 36.4           |
| 32a       | R1     | All MCs      | 1180                | 0.7                  | 1180                         | 0.7                        | *0.761       | 30.3           | LOS C               | 23.0               | 162.1              | 0.92           | 0.87                 | 0.95                      | 27.6           |
| 32b       | R3     | All MCs      | 274                 | 2.3                  | 274                          | 2.3                        | 0.419        | 25.6           | LOS B               | 8.6                | 61.4               | 0.76           | 0.80                 | 0.76                      | 31.5           |
| Appro     | ach    |              | 2067                | 0.8                  | 2067                         | 0.8                        | 0.761        | 25.5           | LOS B               | 23.0               | 162.1              | 0.87           | 0.85                 | 0.89                      | 30.4           |
| All Ve    | hicles |              | 2851                | 1.4                  | 2851                         | 1.4                        | 0.761        | 23.8           | LOS B               | 23.0               | 162.1              | 0.84           | 0.80                 | 0.85                      | 29.4           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pec       | lestrian Mov   | vement       | Perform        | nance               |                |         |              |              |                |                 |                |
|-----------|----------------|--------------|----------------|---------------------|----------------|---------|--------------|--------------|----------------|-----------------|----------------|
| Mov<br>ID | ,<br>Crossing  | Dem.<br>Flow | Aver.<br>Delav | Level of<br>Service | AVERAGE<br>QUE | BACK OF | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|           |                |              |                |                     | [Ped           | Dist ]  |              | Rate         |                |                 |                |
|           |                | ped/n        | sec            |                     | ped            | m       |              |              | sec            | m               | m/sec          |
| Sou       | th: Sussex St  | (S)          |                |                     |                |         |              |              |                |                 |                |
| P1        | Full           | 188          | 40.5           | LOS E               | 0.5            | 0.5     | 0.95         | 0.95         | 57.1           | 20.0            | 0.35           |
| Eas       | t: King St (E) |              |                |                     |                |         |              |              |                |                 |                |
| P2        | Full           | 172          | 38.5           | LOS D               | 0.4            | 0.4     | 0.93         | 0.93         | 55.2           | 20.0            | 0.36           |
| Nor       | th: Sussex St  | (N)          |                |                     |                |         |              |              |                |                 |                |
| P3        | Full           | 386          | 38.9           | LOS D               | 0.9            | 0.9     | 0.94         | 0.94         | 55.6           | 20.0            | 0.36           |
| Sou       | thWest: King   | St (SW)      |                |                     |                |         |              |              |                |                 |                |
| P8        | Full           | 355          | 38.8           | LOS D               | 0.8            | 0.8     | 0.94         | 0.94         | 205.5          | 200.0           | 0.97           |

| P8B Slip/<br>Bypass | 311  | 40.7 | LOS E | 0.8 | 0.8 | 0.96 | 0.96 | 207.3 | 200.0 | 0.96 |
|---------------------|------|------|-------|-----|-----|------|------|-------|-------|------|
| All Pedestrians     | 1412 | 39.4 | LOS D | 0.9 | 0.9 | 0.94 | 0.94 | 126.8 | 104.8 | 0.83 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 9:51:18 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: BGU15 [BGU15 Kent St / King St (Site Folder: Block 4 - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: BGU-N2 [BGU Network 4 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

TCS 283

Site Category: NA

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfo  | orma         | nce      |               |              |                |                     |          |          |              |              |                 |                |
|-----------|--------|--------------|----------|--------------|----------|---------------|--------------|----------------|---------------------|----------|----------|--------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F | nand<br>Iows | Ar<br>Fl | rival<br>Iows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back | Of Queue | Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total  | HV]          | [ Total  | HV ]          |              |                |                     | [Veh.    | Dist ]   |              | Rate         | Cycles          |                |
| 0 11      |        |              | veh/h    | %            | veh/h    | %             | V/C          | sec            |                     | veh      | m        |              |              |                 | km/h           |
| South     | : Ken  | st (S)       |          |              |          |               |              |                |                     |          |          |              |              |                 |                |
| 1         | L2     | All MCs      | 13       | 0.0          | 13       | 0.0           | 0.079        | 45.7           | LOS D               | 1.4      | 3.7      | 0.97         | 0.67         | 0.97            | 13.0           |
| 2         | T1     | All MCs      | 303      | 3.1          | 303      | 3.1           | *0.424       | 35.3           | LOS C               | 6.3      | 45.3     | 0.93         | 0.75         | 0.93            | 20.8           |
| 3         | R2     | All MCs      | 178      | 0.0          | 178      | 0.0           | *0.424       | 42.7           | LOS D               | 6.0      | 42.7     | 0.95         | 0.76         | 0.95            | 14.3           |
| Appro     | ach    |              | 494      | 1.9          | 494      | 1.9           | 0.424        | 38.2           | LOS C               | 6.3      | 45.3     | 0.94         | 0.75         | 0.94            | 18.5           |
| East:     | King S | St (E)       |          |              |          |               |              |                |                     |          |          |              |              |                 |                |
| 5         | T1     | All MCs      | 7        | 0.0          | 7        | 0.0           | 0.076        | 43.9           | LOS D               | 0.6      | 1.7      | 0.98         | 0.65         | 0.98            | 4.3            |
| 6         | R2     | All MCs      | 7        | 0.0          | 7        | 0.0           | 0.076        | 50.1           | LOS D               | 0.6      | 1.7      | 0.98         | 0.65         | 0.98            | 13.2           |
| Appro     | ach    |              | 15       | 0.0          | 15       | 0.0           | 0.076        | 47.0           | LOS D               | 0.6      | 1.7      | 0.98         | 0.65         | 0.98            | 9.4            |
| North:    | Kent   | St (N)       |          |              |          |               |              |                |                     |          |          |              |              |                 |                |
| 7         | L2     | All MCs      | 3        | 0.0          | 3        | 0.0           | 0.100        | 45.8           | LOS D               | 1.8      | 4.8      | 0.97         | 0.68         | 0.97            | 10.8           |
| 8         | T1     | All MCs      | 40       | 0.0          | 40       | 0.0           | 0.100        | 42.4           | LOS C               | 1.8      | 4.8      | 0.97         | 0.68         | 0.97            | 19.1           |
| 9         | R2     | All MCs      | 13       | 0.0          | 13       | 0.0           | 0.051        | 46.1           | LOS D               | 0.5      | 1.4      | 0.96         | 0.66         | 0.96            | 12.2           |
| Appro     | ach    |              | 56       | 0.0          | 56       | 0.0           | 0.100        | 43.4           | LOS D               | 1.8      | 4.8      | 0.97         | 0.67         | 0.97            | 17.3           |
| West:     | King   | St (W)       |          |              |          |               |              |                |                     |          |          |              |              |                 |                |
| 10        | L2     | All MCs      | 160      | 1.3          | 160      | 1.3           | *0.418       | 23.2           | LOS B               | 8.8      | 62.6     | 0.64         | 0.62         | 0.64            | 23.5           |
| 11        | T1     | All MCs      | 1088     | 1.4          | 1088     | 1.4           | *0.418       | 6.0            | LOS A               | 8.8      | 62.6     | 0.34         | 0.31         | 0.34            | 25.4           |
| Appro     | ach    |              | 1248     | 1.3          | 1248     | 1.3           | 0.418        | 8.2            | LOS A               | 8.8      | 62.6     | 0.38         | 0.35         | 0.38            | 24.9           |
| All Ve    | hicles |              | 1813     | 1.5          | 1813     | 1.5           | 0.424        | 17.8           | LOS B               | 8.8      | 62.6     | 0.55         | 0.47         | 0.55            | 20.9           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Peo       | lestrian Mov   | /ement       | Perform        | nance               |                |         |              |              |                |                 |                |
|-----------|----------------|--------------|----------------|---------------------|----------------|---------|--------------|--------------|----------------|-----------------|----------------|
| Mo∖<br>ID | /<br>Crossing  | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|           |                |              |                |                     | [Ped           | Dist ]  |              | Rate         |                |                 |                |
|           |                | ped/h        | sec            |                     | ped            | m       |              |              | sec            | m               | m/sec          |
| Sou       | th: Kent St (S | )            |                |                     |                |         |              |              |                |                 |                |
| P1        | Full           | 204          | 38.6           | LOS D               | 0.5            | 0.5     | 0.93         | 0.93         | 55.3           | 20.0            | 0.36           |
| Eas       | t: King St (E) |              |                |                     |                |         |              |              |                |                 |                |

| P2 Full            | 85  | 38.4 | LOS D | 0.2 | 0.2 | 0.93 | 0.93 | 55.1 | 20.0 | 0.36 |
|--------------------|-----|------|-------|-----|-----|------|------|------|------|------|
| North: Kent St (N) |     |      |       |     |     |      |      |      |      |      |
| P3 Full            | 187 | 38.6 | LOS D | 0.4 | 0.4 | 0.93 | 0.93 | 55.2 | 20.0 | 0.36 |
| West: King St (W)  |     |      |       |     |     |      |      |      |      |      |
| P4 Full            | 83  | 38.4 | LOS D | 0.2 | 0.2 | 0.93 | 0.93 | 55.1 | 20.0 | 0.36 |
| All Pedestrians    | 560 | 38.5 | LOS D | 0.5 | 0.5 | 0.93 | 0.93 | 55.2 | 20.0 | 0.36 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 9:51:18 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

**Site:** BGU16 [BGU16 Pedestrian Mid-block Crossing at Hickson Rd (North of Metro) (Site Folder: Block 4 - 2024 Weekend Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: BGU-N1 [BGU Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

NA

Site Category: (None) Pedestrian Crossing (Unsignalised)

| Vehic     | le M   | ovemen       | t Perfo    | orma | nce      |       |              |                |                     |          |          |       |              |        |                |
|-----------|--------|--------------|------------|------|----------|-------|--------------|----------------|---------------------|----------|----------|-------|--------------|--------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Derr<br>Fl | nand | Ar<br>Fl | rival | Deg.<br>Satn | Aver.<br>Delav | Level of<br>Service | 95% Back | Of Queue | Prop. | Eff.<br>Stop | Aver.  | Aver.<br>Speed |
|           |        | 01000        | [ Total    | HV]  | [ Total  | HV ]  | via          | Doidy          | 0011100             | [Veh.    | Dist ]   | Quo   | Rate         | Cycles | km/h           |
| South     | : Hick | son Rd (     | S)         | 70   | ven/n    | 70    | V/C          | Sec            | _                   | ven      | 111      | _     | _            | _      | KIII/II        |
| 2         | T1     | All MCs      | 545        | 1.5  | 545      | 1.5   | 0.328        | 2.1            | LOS A               | 1.7      | 12.1     | 0.02  | 0.36         | 0.02   | 37.6           |
| Appro     | ach    |              | 545        | 1.5  | 545      | 1.5   | 0.328        | 2.1            | LOS A               | 1.7      | 12.1     | 0.02  | 0.36         | 0.02   | 37.6           |
| North:    | Hick   | son Rd (N    | V)         |      |          |       |              |                |                     |          |          |       |              |        |                |
| 8         | T1     | All MCs      | 298        | 3.2  | 298      | 3.2   | 0.181        | 2.1            | LOS A               | 0.8      | 5.5      | 0.01  | 0.36         | 0.01   | 36.1           |
| Appro     | ach    |              | 298        | 3.2  | 298      | 3.2   | 0.181        | 2.1            | LOS A               | 0.8      | 5.5      | 0.01  | 0.36         | 0.01   | 36.1           |
| All Ve    | hicles | i.           | 843        | 2.1  | 843      | 2.1   | 0.328        | 2.1            | NA                  | 1.7      | 12.1     | 0.01  | 0.36         | 0.01   | 37.2           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Akçelik M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 3:02:22 PM Project: C:\Users\\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

**Site:** BGU17 [BGU17 Pedestrian Mid-block Crossing at Hickson Rd (South of Metro) (Site Folder: Block 4 - 2024 Weekend Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: BGU-N1 [BGU Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

New Site Site Category: (None) Pedestrian Crossing (Unsignalised)

#### Vehicle Movement Performance

| Mov       | Turn       | Mov       | Dem     | nand | Ar      | rival | Dea.  | Aver. | Level of | 95% Back | Of Queue   | Prop. | Eff. | Aver.  | Aver. |
|-----------|------------|-----------|---------|------|---------|-------|-------|-------|----------|----------|------------|-------|------|--------|-------|
| סו        |            | Class     | F       | lows | F       | ows   | Satn  | Delav | Service  |          |            | Que   | Ston | No of  | Sneed |
|           |            | 01033     | [ Total |      | Totol   |       | Oaui  | Delay |          | [\/ab    | Diet 1     | Que   | Data |        | Opecu |
|           |            |           | liotai  | ΠVJ  | [ IOtal | ΠVJ   |       |       |          | [ ven.   | Dist J     |       | Rale | Cycles |       |
|           |            |           | veh/h   | %    | veh/h   | %     | V/C   | sec   |          | veh      | m          |       |      |        | km/h  |
| South     | : Hick     | son Rd (  | S)      |      |         |       |       |       |          |          |            |       |      |        |       |
| 2         | T1         | All MCs   | 545     | 1.5  | 545     | 1.5   | 0.343 | 2.3   | LOS A    | 1.8      | 12.6       | 0.18  | 0.36 | 0.18   | 35.3  |
| Appro     | ach        |           | 545     | 15   | 545     | 15    | 0 343 | 23    |          | 1.8      | 12.6       | 0.18  | 0.36 | 0.18   | 35.3  |
| Арріс     | acri       |           | 545     | 1.5  | 545     | 1.5   | 0.040 | 2.5   | LOOA     | 1.0      | 12.0       | 0.10  | 0.50 | 0.10   | 55.5  |
| North     | Hick       | son Rd (N | ۷)      |      |         |       |       |       |          |          |            |       |      |        |       |
| 0         | <b>T</b> 4 |           | 000     | ~ ~  | 000     | 0.0   | 0.400 | 0.0   | 1004     | 0.0      | <b>F</b> 0 | 0.45  | 0.00 | 0.45   | 077   |
| 8         | 11         | All MCs   | 298     | 3.2  | 298     | 3.2   | 0.189 | 2.3   | LOSA     | 0.8      | 5.8        | 0.15  | 0.36 | 0.15   | 37.7  |
| Annro     | ach        |           | 298     | 32   | 298     | 32    | 0 189 | 23    | LOSA     | 0.8      | 58         | 0 15  | 0.36 | 0 15   | 37.7  |
| , uppic   | uon        |           | 200     | 0.2  | 200     | 0.2   | 0.100 | 2.0   | LOOM     | 0.0      | 0.0        | 0.10  | 0.00 | 0.10   | 01.1  |
| A II \ /- |            |           | 040     | 0.4  | 040     | 0.4   | 0.040 | 0.0   | NIA      | 4.0      | 40.0       | 0.47  | 0.00 | 0.47   | 007   |
| All Ve    | nicles     |           | 843     | 2.1  | ö43     | 2.1   | 0.343 | 2.3   | NA       | 1.8      | 12.0       | 0.17  | 0.36 | 0.17   | 36.7  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Akçelik M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 1 November 2024 3:02:22 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: BGU18 [BGU18 Shelley St / Erskine St (Site Folder: Block 4 - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: BGU-N2 [BGU Network 3 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

TCS 305

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site User-Given Phase Times)

| Vehic  | le M   | ovemen     | t Perfo | orma | ince          |             |        |       |          |          |          |       |      |                                         |       |
|--------|--------|------------|---------|------|---------------|-------------|--------|-------|----------|----------|----------|-------|------|-----------------------------------------|-------|
| Mov    | Turn   | Mov        | Dem     | hand | Ar            | rival       | Deg.   | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff. | Aver.                                   | Aver. |
| שו     |        | Class      | [ Total | HV ] | ۲۱<br>Total I | ows<br>HV ] | Sain   | Delay | Service  | [Veh.    | Dist ]   | Que   | Rate | Cycles                                  | Speed |
|        |        |            | veh/h   | %    | veh/h         | %           | v/c    | sec   |          | veh      | m        |       |      | , i i i i i i i i i i i i i i i i i i i | km/h  |
| South  | : She  | ley St (S) |         |      |               |             |        |       |          |          |          |       |      |                                         |       |
| 1      | L2     | All MCs    | 5       | 0.0  | 5             | 0.0         | 0.082  | 12.2  | LOS A    | 1.7      | 11.9     | 0.43  | 0.36 | 0.43                                    | 19.7  |
| 2      | T1     | All MCs    | 92      | 0.0  | 92            | 0.0         | 0.082  | 7.5   | LOS A    | 1.7      | 11.9     | 0.43  | 0.36 | 0.43                                    | 27.6  |
| 3      | R2     | All MCs    | 166     | 0.0  | 166           | 0.0         | *0.437 | 15.4  | LOS B    | 4.3      | 29.9     | 0.60  | 0.71 | 0.60                                    | 15.9  |
| Appro  | ach    |            | 263     | 0.0  | 263           | 0.0         | 0.437  | 12.6  | LOS A    | 4.3      | 29.9     | 0.54  | 0.58 | 0.54                                    | 20.0  |
| East:  | Erskir | ne St (E)  |         |      |               |             |        |       |          |          |          |       |      |                                         |       |
| 4      | L2     | All MCs    | 66      | 3.2  | 66            | 3.2         | 0.185  | 46.8  | LOS D    | 2.5      | 17.7     | 0.87  | 0.73 | 0.87                                    | 11.2  |
| 5      | T1     | All MCs    | 204     | 0.5  | 204           | 0.5         | 0.637  | 43.3  | LOS D    | 10.0     | 70.3     | 0.95  | 0.80 | 0.95                                    | 9.1   |
| 6      | R2     | All MCs    | 44      | 0.0  | 44            | 0.0         | *0.637 | 51.8  | LOS D    | 10.0     | 70.3     | 0.95  | 0.80 | 0.95                                    | 10.3  |
| Appro  | ach    |            | 315     | 1.0  | 315           | 1.0         | 0.637  | 45.2  | LOS D    | 10.0     | 70.3     | 0.93  | 0.79 | 0.94                                    | 7.9   |
| North: | Shel   | ley St (N) |         |      |               |             |        |       |          |          |          |       |      |                                         |       |
| 7      | L2     | All MCs    | 115     | 0.9  | 115           | 0.9         | 0.106  | 12.0  | LOS A    | 2.2      | 15.3     | 0.46  | 0.62 | 0.46                                    | 16.2  |
| 8      | T1     | All MCs    | 7       | 0.0  | 7             | 0.0         | 0.013  | 7.4   | LOS A    | 0.2      | 1.5      | 0.42  | 0.41 | 0.42                                    | 26.2  |
| 9      | R2     | All MCs    | 5       | 0.0  | 5             | 0.0         | 0.013  | 11.3  | LOS A    | 0.2      | 1.5      | 0.42  | 0.41 | 0.42                                    | 16.0  |
| Appro  | ach    |            | 127     | 0.8  | 127           | 0.8         | 0.106  | 11.7  | LOS A    | 2.2      | 15.3     | 0.46  | 0.60 | 0.46                                    | 16.9  |
| West:  | Erski  | ne St (W)  | )       |      |               |             |        |       |          |          |          |       |      |                                         |       |
| 10     | L2     | All MCs    | 22      | 0.0  | 22            | 0.0         | 0.300  | 37.5  | LOS C    | 4.8      | 35.3     | 0.86  | 0.70 | 0.86                                    | 11.4  |
| 11     | T1     | All MCs    | 175     | 6.0  | 175           | 6.0         | 0.300  | 30.0  | LOS C    | 4.8      | 35.3     | 0.86  | 0.70 | 0.86                                    | 6.4   |
| 12     | R2     | All MCs    | 3       | 33.3 | 33            | 33.3        | 0.300  | 43.3  | LOS D    | 2.5      | 18.7     | 0.86  | 0.68 | 0.86                                    | 12.6  |
| Appro  | ach    |            | 200     | 5.8  | 200           | 5.8         | 0.300  | 31.1  | LOS C    | 4.8      | 35.3     | 0.86  | 0.70 | 0.86                                    | 7.2   |
| All Ve | hicles |            | 905     | 1.7  | 905           | 1.7         | 0.637  | 27.9  | LOS B    | 10.0     | 70.3     | 0.73  | 0.68 | 0.74                                    | 10.8  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian Mo      | vement       | Perform        | nance               |                |                |              |              |                |                 |                |
|--------------------|--------------|----------------|---------------------|----------------|----------------|--------------|--------------|----------------|-----------------|----------------|
| Mov<br>ID Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>EUE | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|                    | ned/h        | 500            |                     | [Ped           | Dist ]         |              | Rate         | 202            | m               | mleec          |
| South: Shelley S   | t (S)        | 360            | _                   | peu            |                | _            | _            | 360            |                 | m/sec          |
| P1 Full            | 293          | 38.7           | LOS D               | 0.7            | 0.7            | 0.93         | 0.93         | 205.4          | 200.0           | 0.97           |

| East: Erskine St (E | Ξ)  |      |       |     |     |      |      |       |       |      |
|---------------------|-----|------|-------|-----|-----|------|------|-------|-------|------|
| P2 Full             | 42  | 38.3 | LOS D | 0.1 | 0.1 | 0.92 | 0.92 | 205.0 | 200.0 | 0.98 |
| North: Shelley St ( | N)  |      |       |     |     |      |      |       |       |      |
| P3 Full             | 238 | 38.7 | LOS D | 0.6 | 0.6 | 0.93 | 0.93 | 205.3 | 200.0 | 0.97 |
| West: Erskine St (  | W)  |      |       |     |     |      |      |       |       |      |
| P4 Full             | 72  | 38.4 | LOS D | 0.2 | 0.2 | 0.92 | 0.92 | 205.1 | 200.0 | 0.98 |
| All Pedestrians     | 644 | 38.6 | LOS D | 0.7 | 0.7 | 0.93 | 0.93 | 205.3 | 200.0 | 0.97 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 4 November 2024 3:02:53 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\04 SM C&SW\_BGU (Block 4).sip9

Site: MPL01 [MPL01 Hunter St / Castlereagh St / Bligh St (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: MPL-N1 [MPL Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

TCS 244

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Performa      | nce              |              |                |                     |          |          |              |                      |                 |                |
|-----------|--------|--------------|-----------------|------------------|--------------|----------------|---------------------|----------|----------|--------------|----------------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Demand<br>Flows | Arrival<br>Flows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back | Of Queue | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | veh/h %         | veh/h %          | v/c          | sec            |                     | veh      | m        |              | Trate                | Oycics          | km/h           |
| East:     | Hunte  | er St (E)    |                 |                  |              |                |                     |          |          |              |                      |                 |                |
| 4         | L2     | All MCs      | 212 11.4        | 212 11.4         | *0.293       | 15.9           | LOS B               | 5.0      | 38.6     | 0.55         | 0.66                 | 0.55            | 20.2           |
| 6a        | R1     | All MCs      | 289 4.4         | 289 4.4          | 0.293        | 8.1            | LOS A               | 5.0      | 38.6     | 0.34         | 0.48                 | 0.34            | 25.2           |
| Appro     | ach    |              | 501 7.4         | 501 7.4          | 0.293        | 11.4           | LOS A               | 5.0      | 38.6     | 0.43         | 0.56                 | 0.43            | 22.7           |
| North:    | Bligh  | n St (N)     |                 |                  |              |                |                     |          |          |              |                      |                 |                |
| 7         | L2     | All MCs      | 96 33.0         | 96 33.0          | *0.638       | 66.0           | LOS E               | 4.5      | 33.4     | 1.00         | 0.86                 | 1.08            | 10.0           |
| 8         | T1     | All MCs      | 117 5.4         | 117 5.4          | 0.177        | 45.5           | LOS D               | 2.7      | 14.3     | 0.96         | 0.74                 | 0.96            | 17.5           |
| 9b        | R3     | All MCs      | 6 50.0          | 6 50.0           | 0.177        | 47.7           | LOS D               | 2.4      | 14.0     | 0.96         | 0.74                 | 0.96            | 15.9           |
| Appro     | ach    |              | 219 18.8        | 219 18.8         | 0.638        | 54.5           | LOS D               | 4.5      | 33.4     | 0.98         | 0.79                 | 1.01            | 12.1           |
| North\    | Nest:  | Hunter S     | t (NW)          |                  |              |                |                     |          |          |              |                      |                 |                |
| 27a       | L1     | All MCs      | 293 18.3        | 293 18.3         | 0.271        | 10.8           | LOS A               | 4.3      | 34.3     | 0.49         | 0.60                 | 0.49            | 20.6           |
| 29a       | R1     | All MCs      | 63 10.0         | 63 10.0          | *0.271       | 12.7           | LOS A               | 4.3      | 34.3     | 0.53         | 0.62                 | 0.53            | 26.4           |
| Appro     | ach    |              | 356 16.9        | 356 16.9         | 0.271        | 11.1           | LOS A               | 4.3      | 34.3     | 0.50         | 0.60                 | 0.50            | 21.2           |
| All Ve    | hicles |              | 1076 12.8       | 1076 12.8        | 0.638        | 20.1           | LOS B               | 5.0      | 38.6     | 0.56         | 0.62                 | 0.57            | 17.8           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestriar                | Pedestrian Movement Performance |                |                     |                                          |        |              |              |                |                 |                |  |  |  |  |  |
|---------------------------|---------------------------------|----------------|---------------------|------------------------------------------|--------|--------------|--------------|----------------|-----------------|----------------|--|--|--|--|--|
| Mov<br>ID Crossir         | Dem.<br>ng Flow                 | Aver.<br>Delay | Level of<br>Service | AVERAGE BACK OF<br>QUEUE<br>[ Ped Dist ] |        | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |  |  |  |  |  |
|                           | ped/h                           | sec            |                     | ped                                      | m Dist |              | Rate         | sec            | m               | m/sec          |  |  |  |  |  |
| South: Castlereagh St (S) |                                 |                |                     |                                          |        |              |              |                |                 |                |  |  |  |  |  |
| P1 Full                   | 1346                            | 40.5           | LOS E               | 3.4                                      | 3.4    | 0.98         | 0.98         | 207.2          | 200.0           | 0.97           |  |  |  |  |  |
| East: Hunte               | r St (E)                        |                |                     |                                          |        |              |              |                |                 |                |  |  |  |  |  |
| P2 Full                   | 1075                            | 40.1           | LOS E               | 2.7                                      | 2.7    | 0.97         | 0.97         | 206.7          | 200.0           | 0.97           |  |  |  |  |  |
| North: Bligh              | St (N)                          |                |                     |                                          |        |              |              |                |                 |                |  |  |  |  |  |
| P3 Full                   | 1045                            | 40.0           | LOS E               | 2.6                                      | 2.6    | 0.96         | 0.96         | 206.7          | 200.0           | 0.97           |  |  |  |  |  |
| NorthWest:                | Hunter St (NV                   | V)             |                     |                                          |        |              |              |                |                 |                |  |  |  |  |  |
| P7 Full                   | 817                             | 39.6           | LOS D               | 2.0                                      | 2.0    | 0.95         | 0.95         | 206.3          | 200.0           | 0.97           |  |  |  |  |  |

| All Pedestrians | 4283 | 40.1 | LOS E | 3.4 | 3.4 | 0.97 | 0.97 | 206.8 | 200.0 | 0.97 |
|-----------------|------|------|-------|-----|-----|------|------|-------|-------|------|
|-----------------|------|------|-------|-----|-----|------|------|-------|-------|------|

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Thursday, 7 November 2024 12:45:41 PM

Site: MPL02 [MPL02 Hunter St / Elizabeth St / Chifley Square (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: MPL-N1 [MPL Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

TCS 302

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehic     | le M      | ovemen       | t Performa      | nce              |              |                |                     |          |          |              |              |                 |                |
|-----------|-----------|--------------|-----------------|------------------|--------------|----------------|---------------------|----------|----------|--------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn      | Mov<br>Class | Demand<br>Flows | Arrival<br>Flows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back | Of Queue | Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |           |              | [Total HV]      | [Total HV]       |              |                |                     | [Veh.    | Dist]    |              | Rate         | Cycles          |                |
| Ocuth     | . <b></b> |              | veh/h %         | veh/h %          | V/C          | sec            | _                   | veh      | m        | _            | _            | _               | km/h           |
| South     | : Eliza   | abeth St (   | 5)              |                  |              |                |                     |          |          |              |              |                 |                |
| 1         | L2        | All MCs      | 199 12.7        | 199 12.7         | 0.199        | 19.3           | LOS B               | 3.8      | 22.5     | 0.47         | 0.64         | 0.47            | 21.2           |
| 3a        | R1        | All MCs      | 580 21.2        | 580 21.2         | *0.850       | 21.2           | LOS B               | 15.3     | 126.5    | 0.56         | 0.67         | 0.64            | 20.1           |
| 3         | R2        | All MCs      | 160 3.9         | 160 3.9          | 0.375        | 24.0           | LOS B               | 5.0      | 26.1     | 0.81         | 0.76         | 0.81            | 19.7           |
| Appro     | ach       |              | 939 16.5        | 939 16.5         | 0.850        | 21.2           | LOS B               | 15.3     | 126.5    | 0.58         | 0.68         | 0.63            | 16.7           |
| East:     | Hunte     | er St (E)    |                 |                  |              |                |                     |          |          |              |              |                 |                |
| 4         | L2        | All MCs      | 143 3.7         | 143 3.7          | 0.484        | 28.6           | LOS C               | 8.7      | 45.4     | 0.88         | 0.77         | 0.88            | 16.9           |
| 5         | T1        | All MCs      | 302 3.8         | 302 3.8          | 0.484        | 34.0           | LOS C               | 8.7      | 45.4     | 0.91         | 0.76         | 0.91            | 11.3           |
| Approach  |           |              | 445 3.8         | 445 3.8          | 0.484        | 32.2           | LOS C               | 8.7      | 45.4     | 0.90         | 0.77         | 0.90            | 13.4           |
| North     | East:     | Chifley So   | quare (NE)      |                  |              |                |                     |          |          |              |              |                 |                |
| 24b       | L3        | All MCs      | 33 9.7          | 33 9.7           | 0.253        | 27.7           | LOS B               | 2.4      | 25.7     | 0.67         | 0.67         | 0.67            | 19.8           |
| 24a       | L1        | All MCs      | 257 32.0        | 257 32.0         | 0.381        | 13.3           | LOS A               | 3.4      | 26.9     | 0.44         | 0.54         | 0.44            | 25.7           |
| Appro     | ach       |              | 289 29.5        | 289 29.5         | 0.381        | 14.9           | LOS B               | 3.4      | 26.9     | 0.47         | 0.55         | 0.47            | 24.9           |
| West:     | Hunte     | er St (W)    |                 |                  |              |                |                     |          |          |              |              |                 |                |
| 10a       | L1        | All MCs      | 128 15.6        | 128 15.6         | 0.466        | 34.8           | LOS C               | 9.7      | 65.3     | 0.91         | 0.79         | 0.91            | 5.8            |
| 11        | T1        | All MCs      | 137 9.2         | 137 9.2          | 0.466        | 26.5           | LOS B               | 9.7      | 65.3     | 0.91         | 0.79         | 0.91            | 13.7           |
| 12        | R2        | All MCs      | 124 43.2        | 124 43.2         | *0.537       | 35.2           | LOS C               | 4.9      | 40.9     | 0.96         | 0.80         | 0.96            | 12.7           |
| Appro     | ach       |              | 389 22.2        | 389 22.2         | 0.537        | 32.0           | LOS C               | 9.7      | 65.3     | 0.93         | 0.79         | 0.93            | 11.3           |
| All Ve    | hicles    |              | 2063 16.6       | 2063 16.6        | 0.850        | 24.8           | LOS B               | 15.3     | 126.5    | 0.70         | 0.70         | 0.72            | 15.9           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Peo       | Pedestrian Movement Performance |              |                |                     |                          |     |              |              |                |                 |                |  |  |  |  |
|-----------|---------------------------------|--------------|----------------|---------------------|--------------------------|-----|--------------|--------------|----------------|-----------------|----------------|--|--|--|--|
| Mo∖<br>ID | /<br>Crossing                   | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE BACK OF<br>QUEUE |     | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |  |  |  |  |
|           |                                 |              |                |                     | [Ped Dist]               |     |              | Rate         |                |                 |                |  |  |  |  |
|           |                                 | ped/h        | sec            |                     | ped                      | m   |              |              | sec            | m               | m/sec          |  |  |  |  |
| Sou       | th: Elizabeth                   | St (S)       |                |                     |                          |     |              |              |                |                 |                |  |  |  |  |
| P1        | Full                            | 1887         | 41.5           | LOS E               | 4.8                      | 4.8 | 1.00         | 1.00         | 208.2          | 200.0           | 0.96           |  |  |  |  |
| Eas       | East: Hunter St (E)             |              |                |                     |                          |     |              |              |                |                 |                |  |  |  |  |

| P2 Full           | 1840     | 41.5 | LOS E | 4.7 | 4.7 | 1.00 | 1.00 | 208.1 | 200.0 | 0.96 |
|-------------------|----------|------|-------|-----|-----|------|------|-------|-------|------|
| NorthEast: Chifle | y Square | (NE) |       |     |     |      |      |       |       |      |
| P6 Full           | 1083     | 40.1 | LOS E | 2.7 | 2.7 | 0.97 | 0.97 | 206.7 | 200.0 | 0.97 |
| West: Hunter St ( | W)       |      |       |     |     |      |      |       |       |      |
| P4 Full           | 1220     | 40.3 | LOS E | 3.0 | 3.0 | 0.97 | 0.97 | 207.0 | 200.0 | 0.97 |
| All Pedestrians   | 6031     | 41.0 | LOS E | 4.8 | 4.8 | 0.99 | 0.99 | 207.7 | 200.0 | 0.96 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Thursday, 7 November 2024 12:45:41 PM

### Site: MPL03 [MPL03 Bent St / Bligh St (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

### TCS 1412

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehio                   | le M   | ovemen       | t Performa                      | nce                              |              |                |                     |                    |                    |                |                      |                           |                |
|-------------------------|--------|--------------|---------------------------------|----------------------------------|--------------|----------------|---------------------|--------------------|--------------------|----------------|----------------------|---------------------------|----------------|
| Mov<br>ID               | Turn   | Mov<br>Class | Demand<br>Flows<br>[ Total HV ] | Arrival<br>Flows<br>[ Total HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh. | Of Queue<br>Dist ] | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| SouthEast: Bent St (SE) |        |              |                                 |                                  |              |                |                     |                    |                    |                |                      |                           |                |
| 21                      | L2     | All MCs      | 177 20.2                        | 177 20.2                         | 0.285        | 7.9            | LOS A               | 4.9                | 39.1               | 0.37           | 0.48                 | 0.37                      | 16.0           |
| 22                      | T1     | All MCs      | 500 10.3                        | 500 10.3                         | *0.285       | 2.7            | LOS A               | 4.9                | 39.1               | 0.23           | 0.24                 | 0.23                      | 28.8           |
| Appro                   | ach    |              | 677 12.9                        | 677 12.9                         | 0.285        | 4.1            | LOS A               | 4.9                | 39.1               | 0.27           | 0.31                 | 0.27                      | 25.6           |
| North                   | West:  | Bent St (    | (NW)                            |                                  |              |                |                     |                    |                    |                |                      |                           |                |
| 28                      | T1     | All MCs      | 156 4.1                         | 156 4.1                          | 0.101        | 2.5            | LOS A               | 1.5                | 11.0               | 0.26           | 0.23                 | 0.26                      | 25.6           |
| 29                      | R2     | All MCs      | 42 12.5                         | 42 12.5                          | *0.101       | 8.1            | LOS A               | 0.7                | 5.1                | 0.37           | 0.55                 | 0.37                      | 16.6           |
| Appro                   | ach    |              | 198 5.9                         | 198 5.9                          | 0.101        | 3.7            | LOS A               | 1.5                | 11.0               | 0.29           | 0.30                 | 0.29                      | 22.9           |
| All Ve                  | hicles |              | 875 11.3                        | 875 11.3                         | 0.285        | 4.0            | LOS A               | 4.9                | 39.1               | 0.27           | 0.30                 | 0.27                      | 25.1           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pede                    | Pedestrian Movement Performance |         |       |          |                     |         |       |      |        |        |       |  |  |  |  |
|-------------------------|---------------------------------|---------|-------|----------|---------------------|---------|-------|------|--------|--------|-------|--|--|--|--|
| Mov                     | Crossing                        | Dem.    | Aver. | Level of | AVERAGE             | BACK OF | Prop. | Eff. | Travel | Travel | Aver. |  |  |  |  |
| שו                      | orecomig                        | FIOW    | Delay | Service  | QUEUE<br>[Ped Dist] |         | Que   | Rate | Time   | Dist.  | Speed |  |  |  |  |
|                         |                                 | ped/h   | sec   |          | ped                 | m       |       |      | sec    | m      | m/sec |  |  |  |  |
| SouthEast: Bent St (SE) |                                 |         |       |          |                     |         |       |      |        |        |       |  |  |  |  |
| P5                      | Full                            | 465     | 39.0  | LOS D    | 1.1                 | 1.1     | 0.94  | 0.94 | 205.7  | 200.0  | 0.97  |  |  |  |  |
| North                   | West: Bent                      | St (NW) |       |          |                     |         |       |      |        |        |       |  |  |  |  |
| P7                      | Full                            | 783     | 39.6  | LOS D    | 1.9                 | 1.9     | 0.95  | 0.95 | 206.2  | 200.0  | 0.97  |  |  |  |  |
| South                   | hWest: Bligh                    | St (SW) |       |          |                     |         |       |      |        |        |       |  |  |  |  |
| P8                      | Full                            | 699     | 39.4  | LOS D    | 1.7                 | 1.7     | 0.95  | 0.95 | 206.1  | 200.0  | 0.97  |  |  |  |  |
| All Pe                  | edestrians                      | 1947    | 39.4  | LOS D    | 1.9                 | 1.9     | 0.95  | 0.95 | 206.1  | 200.0  | 0.97  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Thursday, 7 November 2024 12:45:41 РЙ

Site: MPL04 [MPL04 Bent St / Phillip St (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: MPL-N1 [MPL Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

### TCS 242

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehic  | le M                       | ovemen    | t Performa   | nce          |         |       |          |          |          |       |      |        |       |
|--------|----------------------------|-----------|--------------|--------------|---------|-------|----------|----------|----------|-------|------|--------|-------|
| Mov    | Turn                       | Mov       | Demand       | Arrival      | Deg.    | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff. | Aver.  | Aver. |
| שו     |                            | Class     | [ Total HV ] | [ Total HV ] | Sain    | Delay | Service  | [Veh.    | Dist ]   | Que   | Rate | Cycles | Speed |
|        |                            |           | veh/h %      | veh/h %      | v/c     | sec   |          | veh      | m        |       |      |        | km/h  |
| South  | East:                      | Bent St ( | SE)          |              |         |       |          |          |          |       |      |        |       |
| 21     | L2                         | All MCs   | 89 54.1      | 89 54.1      | 0.596   | 35.5  | LOS C    | 1.1      | 10.9     | 0.05  | 0.45 | 0.12   | 25.3  |
| 22     | T1                         | All MCs   | 435 5.1      | 435 5.1      | 0.429   | 19.8  | LOS B    | 11.7     | 85.4     | 0.72  | 0.62 | 0.72   | 12.7  |
| 23a    | R1                         | All MCs   | 133 3.2      | 133 3.2      | *0.429  | 27.3  | LOS B    | 5.6      | 40.5     | 0.78  | 0.70 | 0.78   | 18.8  |
| Appro  | ach                        |           | 657 11.4     | 657 11.4     | 0.596   | 23.5  | LOS B    | 11.7     | 85.4     | 0.64  | 0.61 | 0.65   | 15.5  |
| North  | Philli                     | p St (N)  |              |              |         |       |          |          |          |       |      |        |       |
| 7a     | L1                         | All MCs   | 102 10.3     | 102 10.3     | * 0.212 | 23.0  | LOS B    | 3.6      | 30.6     | 0.70  | 0.68 | 0.70   | 20.1  |
| 9a     | R1                         | All MCs   | 185 18.8     | 185 18.8     | 0.212   | 18.4  | LOS B    | 4.4      | 33.3     | 0.66  | 0.64 | 0.66   | 18.4  |
| Appro  | ach                        |           | 287 15.8     | 287 15.8     | 0.212   | 20.0  | LOS B    | 4.4      | 33.3     | 0.67  | 0.66 | 0.67   | 19.1  |
| North  | Nest:                      | Bent St ( | NW)          |              |         |       |          |          |          |       |      |        |       |
| 27b    | L3                         | All MCs   | 7 14.3       | 7 14.3       | 0.142   | 26.0  | LOS B    | 2.3      | 16.8     | 0.63  | 0.52 | 0.63   | 19.6  |
| 28     | T1                         | All MCs   | 135 2.3      | 135 2.3      | 0.142   | 18.5  | LOS B    | 2.3      | 16.8     | 0.63  | 0.52 | 0.63   | 15.6  |
| 29     | R2                         | All MCs   | 15 14.3      | 15 14.3      | 0.142   | 27.0  | LOS B    | 1.8      | 13.4     | 0.63  | 0.53 | 0.63   | 7.8   |
| Appro  | ach                        |           | 157 4.0      | 157 4.0      | 0.142   | 19.7  | LOS B    | 2.3      | 16.8     | 0.63  | 0.52 | 0.63   | 15.3  |
| South  | West:                      | Phillip S | t (SW)       |              |         |       |          |          |          |       |      |        |       |
| 30     | L2                         | All MCs   | 243 26.8     | 243 26.8     | 0.416   | 21.1  | LOS B    | 7.3      | 63.0     | 0.72  | 0.75 | 0.72   | 15.7  |
| 30a    | L1                         | All MCs   | 362 20.3     | 362 20.3     | 0.337   | 14.9  | LOS B    | 7.4      | 60.7     | 0.64  | 0.66 | 0.64   | 25.4  |
| 32     | R2                         | All MCs   | 103 4.1      | 103 4.1      | * 0.337 | 22.6  | LOS B    | 4.9      | 37.6     | 0.72  | 0.71 | 0.72   | 20.5  |
| Appro  | Approach 708 20.2 708 20.2 |           |              |              |         | 18.2  | LOS B    | 7.4      | 63.0     | 0.68  | 0.70 | 0.68   | 21.8  |
| All Ve | hicles                     | i.        | 1809 14.9    | 1809 14.9    | 0.596   | 20.5  | LOS B    | 11.7     | 85.4     | 0.66  | 0.65 | 0.67   | 18.9  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian Movement Performance |              |                |                     |                |                |              |              |                |                 |                |  |  |  |  |
|---------------------------------|--------------|----------------|---------------------|----------------|----------------|--------------|--------------|----------------|-----------------|----------------|--|--|--|--|
| Mov<br>ID Crossing              | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>EUE | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |  |  |  |  |
|                                 | ped/h        | sec            |                     | [ Ped<br>ped   | Dist ]<br>m    |              | Rate         | sec            | m               | m/sec          |  |  |  |  |
| SouthEast: Bent                 | St (SE)      |                |                     |                |                |              |              |                |                 |                |  |  |  |  |
| P5 Full                         | 1233         | 40.3           | LOS E               | 3.1            | 3.1            | 0.97         | 0.97         | 207.0          | 200.0           | 0.97           |  |  |  |  |

| North: Phillip St (N    | North: Phillip St (N) |      |       |     |     |      |      |       |       |      |  |  |  |  |
|-------------------------|-----------------------|------|-------|-----|-----|------|------|-------|-------|------|--|--|--|--|
| P3 Full                 | 868                   | 39.7 | LOS D | 2.1 | 2.1 | 0.96 | 0.96 | 206.4 | 200.0 | 0.97 |  |  |  |  |
| NorthWest: Bent St (NW) |                       |      |       |     |     |      |      |       |       |      |  |  |  |  |
| P7 Full                 | 1183                  | 40.3 | LOS E | 2.9 | 2.9 | 0.97 | 0.97 | 206.9 | 200.0 | 0.97 |  |  |  |  |
| SouthWest: Phillip      | o St (SW)             |      |       |     |     |      |      |       |       |      |  |  |  |  |
| P8 Full                 | 1024                  | 40.0 | LOS D | 2.5 | 2.5 | 0.96 | 0.96 | 206.6 | 200.0 | 0.97 |  |  |  |  |
| All Pedestrians         | 4308                  | 40.1 | LOS E | 3.1 | 3.1 | 0.97 | 0.97 | 206.8 | 200.0 | 0.97 |  |  |  |  |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Thursday, 7 November 2024 12:45:41 PM

# Site: MPL05 [MPL05 Pedestrian Mid-block Crossing at Castlereagh St (Site Folder: Block 4 Model - 2024 AM Peak)]

**Output produced by SIDRA INTERSECTION Version: 9.1.6.228** 

### TCS 245

Site Category: (None)

Pedestrian Crossing (Signalised) - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 45 seconds (Site User-Given Phase Times)

| Vehic                     | Vehicle Movement Performance |              |                                 |                                  |              |                |                     |                                       |      |              |                      |                           |                |  |  |
|---------------------------|------------------------------|--------------|---------------------------------|----------------------------------|--------------|----------------|---------------------|---------------------------------------|------|--------------|----------------------|---------------------------|----------------|--|--|
| Mov<br>ID                 | Turn                         | Mov<br>Class | Demand<br>Flows<br>[ Total HV ] | Arrival<br>Flows<br>[ Total HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back Of<br>Queue<br>[ Veh. Dist ] |      | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |  |  |
|                           |                              |              | veh/h %                         | veh/h %                          | v/c          | sec            |                     | veh                                   | m    |              |                      |                           | km/h           |  |  |
| North: Castlereagh St (N) |                              |              |                                 |                                  |              |                |                     |                                       |      |              |                      |                           |                |  |  |
| 8                         | T1                           | All MCs      | 405 10.1                        | 405 10.1                         | *0.429       | 15.5           | LOS B               | 3.9                                   | 29.5 | 0.87         | 0.71                 | 0.87                      | 24.4           |  |  |
| Appro                     | ach                          |              | 405 10.1                        | 405 10.1                         | 0.429        | 15.5           | LOS B               | 3.9                                   | 29.5 | 0.87         | 0.71                 | 0.87                      | 24.4           |  |  |
| All Vel                   | hicles                       |              | 405 10.1                        | 405 10.1                         | 0.429        | 15.5           | LOS B               | 3.9                                   | 29.5 | 0.87         | 0.71                 | 0.87                      | 24.4           |  |  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian I              | Pedestrian Movement Performance |       |       |          |              |               |       |              |        |        |       |  |  |  |  |
|---------------------------|---------------------------------|-------|-------|----------|--------------|---------------|-------|--------------|--------|--------|-------|--|--|--|--|
| Mov                       | Input                           | Dem.  | Aver. | Level of | AVERAGE      | BACK OF       | Prop. | Eff.         | Travel | Travel | Aver. |  |  |  |  |
| ID Crossing               | Vol.                            | Flow  | Delay | Service  | QUE<br>[ Ped | EUE<br>Dist ] | Que   | Stop<br>Rate | Time   | Dist.  | Speed |  |  |  |  |
|                           | ped/h                           | ped/h | sec   |          | ped          | m             |       |              | sec    | m      | m/sec |  |  |  |  |
| South: Castlereagh St (S) |                                 |       |       |          |              |               |       |              |        |        |       |  |  |  |  |
| P1 Full                   | 6966                            | 7333  | 23.1  | LOS C    | 11.4         | 11.4          | 1.22  | 1.22         | 189.8  | 200.0  | 1.05  |  |  |  |  |
| All<br>Pedestrians        | 6966                            | 7333  | 23.1  | LOS C    | 11.4         | 11.4          | 1.22  | 1.22         | 189.8  | 200.0  | 1.05  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Thursday, 31 October 2024 3:34:55 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\05 SM C&SW\_MPL (Block 4).sip9

# Site: MPL06 [MPL06 Pedestrian Mid-block Crossing at Elizabeth St (Site Folder: Block 4 Model - 2024 AM Peak)]

**Output produced by SIDRA INTERSECTION Version: 9.1.6.228** 

#### TCS 287

Site Category: (None)

Pedestrian Crossing (Signalised) - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site User-Given Phase Times)

| Vehic                   | le M   | ovement      | Performa                        | nce                              |              |                |                     |                        |                         |              |                      |                           |                |
|-------------------------|--------|--------------|---------------------------------|----------------------------------|--------------|----------------|---------------------|------------------------|-------------------------|--------------|----------------------|---------------------------|----------------|
| Mov<br>ID               | Turn   | Mov<br>Class | Demand<br>Flows<br>[ Total HV ] | Arrival<br>Flows<br>[ Total HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% B<br>Que<br>[ Veh. | ack Of<br>eue<br>Dist ] | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
|                         |        |              | veh/h %                         | veh/h %                          | v/c          | sec            |                     | veh                    | m                       |              |                      |                           | km/h           |
| South: Elizabeth St (S) |        |              |                                 |                                  |              |                |                     |                        |                         |              |                      |                           |                |
| 2                       | T1     | All MCs      | 939 16.5                        | 939 16.5                         | *0.424       | 10.9           | LOS A               | 9.7                    | 77.9                    | 0.51         | 0.45                 | 0.51                      | 29.9           |
| Appro                   | ach    |              | 939 16.5                        | 939 16.5                         | 0.424        | 8.8            | LOS A               | 9.7                    | 77.9                    | 0.51         | 0.45                 | 0.51                      | 27.7           |
| North:                  | Eliza  | beth St (N   | ۷)                              |                                  |              |                |                     |                        |                         |              |                      |                           |                |
| 8                       | T1     | All MCs      | 524 26.9                        | 524 26.9                         | 0.338        | 7.6            | LOS A               | 8.0                    | 58.3                    | 0.47         | 0.41                 | 0.47                      | 30.5           |
| Appro                   | ach    |              | 524 26.9                        | 524 26.9                         | 0.338        | 7.6            | LOS A               | 8.0                    | 58.3                    | 0.47         | 0.41                 | 0.47                      | 30.5           |
| All Ve                  | hicles |              | 1463 20.2                       | 1463 20.2                        | 0.424        | 9.7            | LOS A               | 9.7                    | 77.9                    | 0.50         | 0.44                 | 0.50                      | 28.6           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian M   | Pedestrian Movement Performance |       |       |          |         |         |       |      |        |        |       |  |  |  |  |
|----------------|---------------------------------|-------|-------|----------|---------|---------|-------|------|--------|--------|-------|--|--|--|--|
| Mov            | Input                           | Dem.  | Aver. | Level of | AVERAGE | BACK OF | Prop. | Eff. | Travel | Travel | Aver. |  |  |  |  |
| ID Crossing    | Vol.                            | Flow  | Delay | Service  | QUE     | EUE     | Que   | Stop | Time   | Dist.  | Speed |  |  |  |  |
|                |                                 |       |       |          | [Ped    | Dist ]  |       | Rate |        |        |       |  |  |  |  |
|                | ped/h                           | ped/h | sec   |          | ped     | m       |       |      | sec    | m      | m/sec |  |  |  |  |
| South: Elizabe | th St (S)                       |       |       |          |         |         |       |      |        |        |       |  |  |  |  |
| P1 Full        | 5118                            | 5387  | 49.3  | LOS E    | 16.4    | 16.4    | 1.19  | 1.19 | 216.0  | 200.0  | 0.93  |  |  |  |  |
| All            | 5118                            | 5387  | 49.3  | LOS E    | 16.4    | 16.4    | 1.19  | 1.19 | 216.0  | 200.0  | 0.93  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Thursday, 31 October 2024 3:22:57 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\05 SM C&SW\_MPL (Block 4).sip9

Site: MPL01 [MPL01 Hunter St / Castlereagh St / Bligh St (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: MPL-N1 [MPL Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

TCS 244

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfo             | orma                 | nce                 |                       |              |                |                     |                    |                    |              |                      |                           |                |
|-----------|--------|--------------|---------------------|----------------------|---------------------|-----------------------|--------------|----------------|---------------------|--------------------|--------------------|--------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F<br>[ Total | nand<br>Iows<br>HV 1 | Ar<br>Fl<br>[ Total | rival<br>lows<br>HV 1 | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh. | Of Queue<br>Dist 1 | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cvcles | Aver.<br>Speed |
|           |        |              | veh/h               | %                    | veh/h               | %                     | v/c          | sec            |                     | veh                | m                  |              |                      | - ,                       | km/h           |
| East:     | Hunte  | er St (E)    |                     |                      |                     |                       |              |                |                     |                    |                    |              |                      |                           |                |
| 4         | L2     | All MCs      | 173                 | 14.0                 | 173                 | 14.0                  | *0.256       | 15.7           | LOS B               | 4.0                | 31.5               | 0.53         | 0.65                 | 0.53                      | 20.4           |
| 6a        | R1     | All MCs      | 261                 | 0.8                  | 261                 | 0.8                   | 0.256        | 9.8            | LOS A               | 4.0                | 31.5               | 0.41         | 0.51                 | 0.41                      | 23.5           |
| Appro     | ach    |              | 434                 | 6.1                  | 434                 | 6.1                   | 0.256        | 12.1           | LOS A               | 4.0                | 31.5               | 0.45         | 0.57                 | 0.45                      | 22.1           |
| North:    | Bligh  | n St (N)     |                     |                      |                     |                       |              |                |                     |                    |                    |              |                      |                           |                |
| 7         | L2     | All MCs      | 132                 | 18.4                 | 132                 | 18.4                  | *0.704       | 62.1           | LOS E               | 5.8                | 37.2               | 0.98         | 0.84                 | 1.05                      | 11.1           |
| 8         | T1     | All MCs      | 57                  | 3.7                  | 57                  | 3.7                   | 0.091        | 42.5           | LOS D               | 1.2                | 6.5                | 0.84         | 0.63                 | 0.84                      | 18.9           |
| 9b        | R3     | All MCs      | 6                   | 0.0                  | 6                   | 0.0                   | 0.091        | 41.2           | LOS C               | 1.1                | 6.0                | 0.84         | 0.64                 | 0.84                      | 17.1           |
| Appro     | ach    |              | 195                 | 13.5                 | 195                 | 13.5                  | 0.704        | 55.7           | LOS D               | 5.8                | 37.2               | 0.93         | 0.77                 | 0.98                      | 10.8           |
| North     | West:  | Hunter S     | st (NW)             |                      |                     |                       |              |                |                     |                    |                    |              |                      |                           |                |
| 27a       | L1     | All MCs      | 363                 | 6.1                  | 363                 | 6.1                   | 0.330        | 9.9            | LOS A               | 5.2                | 37.9               | 0.51         | 0.61                 | 0.51                      | 20.4           |
| 29a       | R1     | All MCs      | 92                  | 2.3                  | 92                  | 2.3                   | *0.330       | 11.5           | LOS A               | 5.2                | 37.9               | 0.55         | 0.63                 | 0.55                      | 26.4           |
| Appro     | ach    |              | 455                 | 5.3                  | 455                 | 5.3                   | 0.330        | 10.2           | LOS A               | 5.2                | 37.9               | 0.52         | 0.62                 | 0.52                      | 22.2           |
| All Ve    | hicles |              | 1083                | 7.1                  | 1083                | 7.1                   | 0.704        | 19.2           | LOS B               | 5.8                | 37.9               | 0.57         | 0.62                 | 0.57                      | 17.7           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Peo       | lestrian Mov     | ement        | Perforn        | nance               |                |         |              |              |                |                 |                |
|-----------|------------------|--------------|----------------|---------------------|----------------|---------|--------------|--------------|----------------|-----------------|----------------|
| Mov<br>ID | Crossing         | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|           |                  | ped/h        | sec            |                     | ped            | m m     |              | Nale         | sec            | m               | m/sec          |
| Sou       | th: Castlereag   | h St (S)     |                |                     |                |         |              |              |                |                 |                |
| P1        | Full             | 1129         | 40.2           | LOS E               | 2.8            | 2.8     | 0.97         | 0.97         | 206.8          | 200.0           | 0.97           |
| Eas       | t: Hunter St (E  | )            |                |                     |                |         |              |              |                |                 |                |
| P2        | Full             | 1295         | 40.5           | LOS E               | 3.2            | 3.2     | 0.97         | 0.97         | 207.1          | 200.0           | 0.97           |
| Nor       | th: Bligh St (N) | )            |                |                     |                |         |              |              |                |                 |                |
| P3        | Full             | 809          | 39.6           | LOS D               | 2.0            | 2.0     | 0.95         | 0.95         | 206.3          | 200.0           | 0.97           |
| Nor       | thWest: Hunte    | r St (NW     | ')             |                     |                |         |              |              |                |                 |                |
| P7        | Full             | 774          | 39.5           | LOS D               | 1.9            | 1.9     | 0.95         | 0.95         | 206.2          | 200.0           | 0.97           |

| All Pedestrians | 4007 | 40.0 | LOS E | 3.2 | 3.2 | 0.96 | 0.96 | 206.7 | 200.0 | 0.97 |
|-----------------|------|------|-------|-----|-----|------|------|-------|-------|------|
|-----------------|------|------|-------|-----|-----|------|------|-------|-------|------|

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Thursday, 7 November 2024 12:45:05 PM

Site: MPL02 [MPL02 Hunter St / Elizabeth St / Chifley Square (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: MPL-N1 [MPL Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

TCS 302

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovement      | t Performa      | ince             |              |                |                     |              |             |              |              |                 |                |
|-----------|--------|--------------|-----------------|------------------|--------------|----------------|---------------------|--------------|-------------|--------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Demand<br>Flows | Arrival<br>Flows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back     | Of Queue    | Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [Total HV]      | [ Total HV ]     | v/c          | sec            |                     | [Veh.<br>veh | Dist ]<br>m |              | Rate         | Cycles          | km/h           |
| South     | Eliza  | abeth St (   | S)              |                  | 110          | 000            |                     | Von          |             |              |              |                 |                |
| 1         | L2     | All MCs      | 187 1.1         | 187 1.1          | 0.164        | 23.7           | LOS B               | 3.4          | 17.3        | 0.45         | 0.63         | 0.45            | 21.8           |
| 3a        | R1     | All MCs      | 705 12.8        | 705 12.8         | *0.947       | 38.6           | LOS C               | 27.0         | 209.6       | 0.68         | 0.88         | 0.91            | 13.9           |
| 3         | R2     | All MCs      | 166 0.0         | 166 0.0          | 0.395        | 25.5           | LOS B               | 5.4          | 26.9        | 0.84         | 0.76         | 0.84            | 19.1           |
| Appro     | ach    |              | 1059 8.7        | 1059 8.7         | 0.947        | 33.9           | LOS C               | 27.0         | 209.6       | 0.66         | 0.81         | 0.82            | 12.4           |
| East: I   | Hunte  | er St (E)    |                 |                  |              |                |                     |              |             |              |              |                 |                |
| 4         | L2     | All MCs      | 105 4.0         | 105 4.0          | 0.419        | 29.0           | LOS C               | 6.9          | 38.1        | 0.88         | 0.76         | 0.88            | 16.7           |
| 5         | T1     | All MCs      | 246 9.8         | 246 9.8          | 0.419        | 34.4           | LOS C               | 6.9          | 38.1        | 0.90         | 0.75         | 0.90            | 11.2           |
| Appro     | ach    |              | 352 8.1         | 352 8.1          | 0.419        | 32.8           | LOS C               | 6.9          | 38.1        | 0.89         | 0.75         | 0.89            | 13.1           |
| North     | East:  | Chifley So   | quare (NE)      |                  |              |                |                     |              |             |              |              |                 |                |
| 24b       | L3     | All MCs      | 55 0.0          | 55 0.0           | 0.233        | 32.8           | LOS C               | 2.9          | 26.3        | 0.80         | 0.73         | 0.80            | 17.7           |
| 24a       | L1     | All MCs      | 229 22.5        | 229 22.5         | 0.351        | 27.5           | LOS B               | 6.9          | 52.9        | 0.82         | 0.74         | 0.82            | 18.9           |
| Appro     | ach    |              | 284 18.1        | 284 18.1         | 0.351        | 28.5           | LOS B               | 6.9          | 52.9        | 0.82         | 0.74         | 0.82            | 18.6           |
| West:     | Hunte  | er St (W)    |                 |                  |              |                |                     |              |             |              |              |                 |                |
| 10a       | L1     | All MCs      | 231 0.5         | 231 0.5          | 0.531        | 35.5           | LOS C               | 10.1         | 65.3        | 0.94         | 0.82         | 0.94            | 5.1            |
| 11        | T1     | All MCs      | 140 1.5         | 140 1.5          | 0.531        | 26.3           | LOS B               | 10.1         | 65.3        | 0.94         | 0.81         | 0.94            | 13.0           |
| 12        | R2     | All MCs      | 124 34.7        | 124 34.7         | *0.531       | 35.0           | LOS C               | 6.6          | 46.0        | 0.94         | 0.79         | 0.94            | 13.6           |
| Appro     | ach    |              | 495 9.4         | 495 9.4          | 0.531        | 32.8           | LOS C               | 10.1         | 65.3        | 0.94         | 0.81         | 0.94            | 10.0           |
| All Vel   | nicles |              | 2189 10.0       | 2189 10.0        | 0.947        | 32.8           | LOS C               | 27.0         | 209.6       | 0.78         | 0.79         | 0.86            | 12.9           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Peo       | destrian Mo     | vement       | Perform        | nance               |                |         |              |              |                |                 |                |
|-----------|-----------------|--------------|----------------|---------------------|----------------|---------|--------------|--------------|----------------|-----------------|----------------|
| Mo∖<br>ID | /<br>Crossing   | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|           |                 |              |                |                     | [Ped           | Dist]   |              | Rate         |                |                 |                |
|           |                 | ped/h        | sec            |                     | ped            | m       |              |              | sec            | m               | m/sec          |
| Sou       | th: Elizabeth   | St (S)       |                |                     |                |         |              |              |                |                 |                |
| P1        | Full            | 1193         | 40.3           | LOS E               | 3.0            | 3.0     | 0.97         | 0.97         | 206.9          | 200.0           | 0.97           |
| Eas       | t: Hunter St (I | E)           |                |                     |                |         |              |              |                |                 |                |

| P2 Full           | 1332     | 40.5 | LOS E | 3.3 | 3.3 | 0.98 | 0.98 | 207.2 | 200.0 | 0.97 |
|-------------------|----------|------|-------|-----|-----|------|------|-------|-------|------|
| NorthEast: Chifle | y Square | (NE) |       |     |     |      |      |       |       |      |
| P6 Full           | 656      | 39.3 | LOS D | 1.6 | 1.6 | 0.95 | 0.95 | 206.0 | 200.0 | 0.97 |
| West: Hunter St ( | W)       |      |       |     |     |      |      |       |       |      |
| P4 Full           | 764      | 39.5 | LOS D | 1.9 | 1.9 | 0.95 | 0.95 | 206.2 | 200.0 | 0.97 |
| All Pedestrians   | 3944     | 40.1 | LOS E | 3.3 | 3.3 | 0.97 | 0.97 | 206.7 | 200.0 | 0.97 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Thursday, 7 November 2024 12:45:05 PM

### Site: MPL03 [MPL03 Bent St / Bligh St (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

### TCS 1412

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehi      | cle M  | ovemen       | t Perfc              | orma                 | nce                   |                       |              |                |                     |                    |                     |                |                      |                           |                |
|-----------|--------|--------------|----------------------|----------------------|-----------------------|-----------------------|--------------|----------------|---------------------|--------------------|---------------------|----------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl<br>[ Total | nand<br>lows<br>HV ] | Ar<br>Fl<br>[ Total ] | rival<br>lows<br>HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Bacl<br>[ Veh. | < Of Queu<br>Dist ] | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
|           |        |              | veh/h                | %                    | veh/h                 | %                     | v/c          | sec            |                     | veh                | m                   |                |                      |                           | km/h           |
| South     | East:  | Bent St (    | SE)                  |                      |                       |                       |              |                |                     |                    |                     |                |                      |                           |                |
| 21        | L2     | All MCs      | 141                  | 17.2                 | 141                   | 17.2                  | 0.246        | 6.3            | LOS A               | 3.2                | 24.3                | 0.27           | 0.39                 | 0.27                      | 19.3           |
| 22        | T1     | All MCs      | 472                  | 5.1                  | 472                   | 5.1                   | *0.246       | 2.7            | LOS A               | 3.2                | 24.3                | 0.23           | 0.25                 | 0.23                      | 28.8           |
| Appro     | ach    |              | 613                  | 7.9                  | 613                   | 7.9                   | 0.246        | 3.6            | LOS A               | 3.2                | 24.3                | 0.24           | 0.28                 | 0.24                      | 27.0           |
| North     | West:  | Bent St      | (NW)                 |                      |                       |                       |              |                |                     |                    |                     |                |                      |                           |                |
| 28        | T1     | All MCs      | 152                  | 0.0                  | 152                   | 0.0                   | 0.092        | 2.5            | LOS A               | 1.4                | 10.0                | 0.26           | 0.24                 | 0.26                      | 25.5           |
| 29        | R2     | All MCs      | 44                   | 4.8                  | 44                    | 4.8                   | *0.092       | 7.0            | LOS A               | 0.7                | 4.7                 | 0.34           | 0.52                 | 0.34                      | 18.3           |
| Appro     | ach    |              | 196                  | 1.1                  | 196                   | 1.1                   | 0.092        | 3.5            | LOS A               | 1.4                | 10.0                | 0.28           | 0.30                 | 0.28                      | 23.4           |
| All Ve    | hicles |              | 808                  | 6.3                  | 808                   | 6.3                   | 0.246        | 3.6            | LOS A               | 3.2                | 24.3                | 0.25           | 0.29                 | 0.25                      | 26.3           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedes   | strian Mov   | ement   | Perform | nance    |              |               |       |              |        |        |       |
|---------|--------------|---------|---------|----------|--------------|---------------|-------|--------------|--------|--------|-------|
| Mov     | Proposing    | Dem.    | Aver.   | Level of | AVERAGE      | BACK OF       | Prop. | Eff.         | Travel | Travel | Aver. |
| D C     | Jossing      | Flow    | Delay   | Service  | QUE<br>[ Ped | :UE<br>Dist ] | Que   | Stop<br>Rate | lime   | Dist.  | Speed |
|         |              | ped/h   | sec     |          | ped          | m             |       |              | sec    | m      | m/sec |
| South   | East: Bent S | St (SE) |         |          |              |               |       |              |        |        |       |
| P5 F    | ull          | 298     | 38.8    | LOS D    | 0.7          | 0.7           | 0.93  | 0.93         | 205.4  | 200.0  | 0.97  |
| North   | West: Bent S | St (NW) |         |          |              |               |       |              |        |        |       |
| P7 F    | ull          | 589     | 39.2    | LOS D    | 1.4          | 1.4           | 0.95  | 0.95         | 205.9  | 200.0  | 0.97  |
| South   | West: Bligh  | St (SW) |         |          |              |               |       |              |        |        |       |
| P8 F    | ull          | 367     | 38.9    | LOS D    | 0.9          | 0.9           | 0.94  | 0.94         | 205.5  | 200.0  | 0.97  |
| All Peo | destrians    | 1255    | 39.0    | LOS D    | 1.4          | 1.4           | 0.94  | 0.94         | 205.7  | 200.0  | 0.97  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Thursday, 7 November 2024 12:45:05 РЙ

Site: MPL04 [MPL04 Bent St / Phillip St (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: MPL-N1 [MPL Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

### TCS 242

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Site User-Given Phase Times)

| Vehic      | le M   | ovemen     | t Performa            | ince                  |        |       |          |          |          |       |              |                  |       |
|------------|--------|------------|-----------------------|-----------------------|--------|-------|----------|----------|----------|-------|--------------|------------------|-------|
| Mov        | Turn   | Mov        | Demand                | Arrival               | Deg.   | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff.         | Aver.            | Aver. |
| <b>ט</b> ו |        | Class      | Flows<br>[ Total HV ] | Flows<br>[ Total HV ] | Sath   | Delay | Service  | [Veh.    | Dist ]   | Que   | Stop<br>Rate | NO. OT<br>Cycles | Speed |
|            |        |            | veh/h %               | veh/h %               | v/c    | sec   |          | veh      | m        |       |              |                  | km/h  |
| South      | East:  | Bent St (  | SE)                   |                       |        |       |          |          |          |       |              |                  |       |
| 21         | L2     | All MCs    | 52 8.2                | 52 8.2                | 0.060  | 6.7   | LOS A    | 0.3      | 2.4      | 0.18  | 0.47         | 0.18             | 27.9  |
| 22         | T1     | All MCs    | 355 1.8               | 355 1.8               | 0.667  | 40.2  | LOS C    | 9.2      | 65.4     | 0.99  | 0.85         | 1.04             | 7.5   |
| 23a        | R1     | All MCs    | 32 10.0               | 32 10.0               | *0.667 | 47.5  | LOS D    | 7.6      | 55.0     | 1.00  | 0.86         | 1.06             | 14.3  |
| Appro      | ach    |            | 438 3.1               | 438 3.1               | 0.667  | 36.8  | LOS C    | 9.2      | 65.4     | 0.90  | 0.81         | 0.94             | 8.9   |
| North:     | Philli | p St (N)   |                       |                       |        |       |          |          |          |       |              |                  |       |
| 7a         | L1     | All MCs    | 158 2.7               | 158 2.7               | *0.189 | 12.8  | LOS A    | 3.7      | 29.2     | 0.52  | 0.61         | 0.52             | 25.4  |
| 9a         | R1     | All MCs    | 215 22.1              | 215 22.1              | 0.189  | 9.7   | LOS A    | 3.7      | 29.2     | 0.46  | 0.55         | 0.46             | 24.7  |
| Appro      | ach    |            | 373 13.8              | 373 13.8              | 0.189  | 11.0  | LOS A    | 3.7      | 29.2     | 0.48  | 0.57         | 0.48             | 25.1  |
| North      | Nest:  | Bent St (  | NW)                   |                       |        |       |          |          |          |       |              |                  |       |
| 27b        | L3     | All MCs    | 19 0.0                | 19 0.0                | 0.329  | 41.2  | LOS C    | 3.2      | 22.6     | 0.85  | 0.68         | 0.85             | 14.2  |
| 28         | T1     | All MCs    | 115 0.0               | 115 0.0               | 0.329  | 32.8  | LOS C    | 3.2      | 22.6     | 0.86  | 0.68         | 0.86             | 10.5  |
| 29         | R2     | All MCs    | 18 0.0                | 18 0.0                | 0.329  | 45.0  | LOS D    | 2.5      | 17.2     | 0.87  | 0.68         | 0.87             | 4.7   |
| Appro      | ach    |            | 152 0.0               | 152 0.0               | 0.329  | 35.3  | LOS C    | 3.2      | 22.6     | 0.86  | 0.68         | 0.86             | 10.5  |
| South      | West:  | Phillip St | t (SW)                |                       |        |       |          |          |          |       |              |                  |       |
| 30         | L2     | All MCs    | 258 16.3              | 258 16.3              | 0.237  | 9.5   | LOS A    | 4.5      | 35.8     | 0.43  | 0.63         | 0.43             | 23.6  |
| 30a        | L1     | All MCs    | 438 10.3              | 438 10.3              | 0.352  | 7.8   | LOS A    | 8.1      | 61.8     | 0.46  | 0.53         | 0.46             | 31.0  |
| 32         | R2     | All MCs    | 240 1.8               | 240 1.8               | *0.400 | 17.5  | LOS B    | 7.0      | 49.6     | 0.82  | 0.65         | 0.82             | 21.5  |
| Appro      | ach    |            | 936 9.8               | 936 9.8               | 0.400  | 10.7  | LOS A    | 8.1      | 61.8     | 0.54  | 0.59         | 0.54             | 26.7  |
| All Ve     | hicles |            | 1898 8.3              | 1898 8.3              | 0.667  | 18.8  | LOS B    | 9.2      | 65.4     | 0.64  | 0.64         | 0.65             | 19.6  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian Movement Performance |              |                |                     |                          |             |              |              |                |                 |                |  |  |  |
|---------------------------------|--------------|----------------|---------------------|--------------------------|-------------|--------------|--------------|----------------|-----------------|----------------|--|--|--|
| Mov<br>ID Crossing              | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE BACK OF<br>QUEUE |             | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |  |  |  |
|                                 | ped/h        | sec            |                     | [Ped<br>ped              | Dist ]<br>m |              | Rate         | sec            | m               | m/sec          |  |  |  |
| SouthEast: Bent                 | St (SE)      |                |                     |                          |             |              |              |                |                 |                |  |  |  |
| P5 Full                         | 684          | 39.4           | LOS D               | 1.7                      | 1.7         | 0.95         | 0.95         | 206.1          | 200.0           | 0.97           |  |  |  |

| North: Phillip St (N)      |      |      |       |     |     |      |      |       |       |      |  |
|----------------------------|------|------|-------|-----|-----|------|------|-------|-------|------|--|
| P3 Full                    | 619  | 39.3 | LOS D | 1.5 | 1.5 | 0.95 | 0.95 | 206.0 | 200.0 | 0.97 |  |
| NorthWest: Bent St (NW)    |      |      |       |     |     |      |      |       |       |      |  |
| P7 Full                    | 238  | 38.7 | LOS D | 0.6 | 0.6 | 0.93 | 0.93 | 205.3 | 200.0 | 0.97 |  |
| SouthWest: Phillip St (SW) |      |      |       |     |     |      |      |       |       |      |  |
| P8 Full                    | 398  | 38.9 | LOS D | 1.0 | 1.0 | 0.94 | 0.94 | 205.6 | 200.0 | 0.97 |  |
| All Pedestrians            | 1939 | 39.2 | LOS D | 1.7 | 1.7 | 0.94 | 0.94 | 205.8 | 200.0 | 0.97 |  |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Thursday, 7 November 2024 12:45:05 PM

# Site: MPL05 [MPL05 Pedestrian Mid-block Crossing at Castlereagh St (Site Folder: Block 4 Model - 2024 PM Peak)]

**Output produced by SIDRA INTERSECTION Version: 9.1.6.228** 

#### TCS 245

Site Category: (None)

Pedestrian Crossing (Signalised) - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 45 seconds (Site User-Given Phase Times)

| Vehicle Movement Performance |        |              |                        |                      |                     |                       |              |                |                     |                     |                           |              |                      |                           |                |
|------------------------------|--------|--------------|------------------------|----------------------|---------------------|-----------------------|--------------|----------------|---------------------|---------------------|---------------------------|--------------|----------------------|---------------------------|----------------|
| Mov<br>ID                    | Turn   | Mov<br>Class | Dem<br>Fl<br>[ Total ] | nand<br>Iows<br>HV ] | Ar<br>Fl<br>[ Total | rival<br>lows<br>HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95%<br>Qı<br>[ Veh. | Back Of<br>ueue<br>Dist ] | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
|                              |        |              | veh/h                  | %                    | veh/h               | %                     | v/c          | sec            |                     | veh                 | m                         |              |                      |                           | km/h           |
| North: Castlereagh St (N)    |        |              |                        |                      |                     |                       |              |                |                     |                     |                           |              |                      |                           |                |
| 8                            | T1     | All MCs      | 347                    | 5.2                  | 347                 | 5.2                   | *0.281       | 12.3           | LOS A               | 2.9                 | 21.2                      | 0.77         | 0.63                 | 0.77                      | 26.6           |
| Appro                        | ach    |              | 347                    | 5.2                  | 347                 | 5.2                   | 0.281        | 12.3           | LOS A               | 2.9                 | 21.2                      | 0.77         | 0.63                 | 0.77                      | 26.6           |
| All Vel                      | hicles |              | 347                    | 5.2                  | 347                 | 5.2                   | 0.281        | 12.3           | LOS A               | 2.9                 | 21.2                      | 0.77         | 0.63                 | 0.77                      | 26.6           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Movement Performance |         |       |       |          |         |         |       |      |        |        |       |  |
|---------------------------------|---------|-------|-------|----------|---------|---------|-------|------|--------|--------|-------|--|
| Mov                             | Input   | Dem.  | Aver. | Level of | AVERAGE | BACK OF | Prop. | Eff. | Travel | Travel | Aver. |  |
| ID Crossing                     | Vol.    | Flow  | Delay | Service  | QUI     | Que     | Stop  | Time | Dist.  | Speed  |       |  |
|                                 | 1/1     | 1/1   |       |          | [ Ped   | Dist J  |       | Rate |        |        |       |  |
|                                 | ped/h   | ped/h | sec   |          | ped     | m       |       |      | sec    | m      | m/sec |  |
| South: Castler                  | eagh St | (S)   |       |          |         |         |       |      |        |        |       |  |
| P1 Full                         | 2018    | 2124  | 17.6  | LOS B    | 2.5     | 2.5     | 0.93  | 0.93 | 184.3  | 200.0  | 1.09  |  |
| All                             | 2018    | 2124  | 17.6  | LOS B    | 2.5     | 2.5     | 0.93  | 0.93 | 184.3  | 200.0  | 1.09  |  |
| Pedestrians                     |         |       |       |          |         |         |       |      |        |        |       |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Thursday, 31 October 2024 3:35:15 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\05 SM C&SW\_MPL (Block 4).sip9
# Site: MPL06 [MPL06 Pedestrian Mid-block Crossing at Elizabeth St (Site Folder: Block 4 Model - 2024 PM Peak)]

**Output produced by SIDRA INTERSECTION Version: 9.1.6.228** 

#### TCS 287

Site Category: (None)

Pedestrian Crossing (Signalised) - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site User-Given Phase Times)

| Vehic     | le M    | ovement      | Performa                        | nce                              |              |                |                     |                        |                         |              |                      |                           |                |
|-----------|---------|--------------|---------------------------------|----------------------------------|--------------|----------------|---------------------|------------------------|-------------------------|--------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn    | Mov<br>Class | Demand<br>Flows<br>[ Total HV ] | Arrival<br>Flows<br>[ Total HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% B<br>Que<br>[ Veh. | ack Of<br>eue<br>Dist ] | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
|           |         |              | veh/h %                         | veh/h %                          | v/c          | sec            |                     | veh                    | m                       |              |                      |                           | km/h           |
| South     | : Eliza | abeth St (S  | S)                              |                                  |              |                |                     |                        |                         |              |                      |                           |                |
| 2         | T1      | All MCs      | 1022 8.8                        | 1022 8.8                         | *0.431       | 11.0           | LOS A               | 10.7                   | 80.3                    | 0.52         | 0.46                 | 0.52                      | 29.9           |
| Appro     | ach     |              | 1022 8.8                        | 1022 8.8                         | 0.431        | 8.9            | LOS A               | 10.7                   | 80.3                    | 0.52         | 0.46                 | 0.52                      | 27.6           |
| North:    | Eliza   | beth St (N   | 1)                              |                                  |              |                |                     |                        |                         |              |                      |                           |                |
| 8         | T1      | All MCs      | 515 23.5                        | 515 23.5                         | 0.323        | 7.5            | LOS A               | 7.8                    | 55.2                    | 0.47         | 0.41                 | 0.47                      | 30.6           |
| Appro     | ach     |              | 515 23.5                        | 515 23.5                         | 0.323        | 7.5            | LOS A               | 7.8                    | 55.2                    | 0.47         | 0.41                 | 0.47                      | 30.6           |
| All Ve    | hicles  |              | 1537 13.7                       | 1537 13.7                        | 0.431        | 9.9            | LOS A               | 10.7                   | 80.3                    | 0.50         | 0.44                 | 0.50                      | 28.5           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian I       | Pedestrian Movement Performance |       |       |          |         |         |       |      |        |        |       |  |  |  |  |
|--------------------|---------------------------------|-------|-------|----------|---------|---------|-------|------|--------|--------|-------|--|--|--|--|
| Mov                | Input                           | Dem.  | Aver. | Level of | AVERAGE | BACK OF | Prop. | Eff. | Travel | Travel | Aver. |  |  |  |  |
| ID Crossing        | Vol.                            | Flow  | Delay | Service  | QUI     | EUE     | Que   | Stop | Time   | Dist.  | Speed |  |  |  |  |
|                    |                                 |       |       |          | [Ped    | Dist ]  |       | Rate |        |        |       |  |  |  |  |
|                    | ped/h                           | ped/h | sec   |          | ped     | m       |       |      | sec    | m      | m/sec |  |  |  |  |
| South: Elizabe     | eth St (S)                      |       |       |          |         |         |       |      |        |        |       |  |  |  |  |
| P1 Full            | 5891                            | 6201  | 51.6  | LOS E    | 19.7    | 19.7    | 1.24  | 1.24 | 218.3  | 200.0  | 0.92  |  |  |  |  |
| All<br>Pedestrians | 5891                            | 6201  | 51.6  | LOS E    | 19.7    | 19.7    | 1.24  | 1.24 | 218.3  | 200.0  | 0.92  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Thursday, 31 October 2024 3:22:57 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\05 SM C&SW\_MPL (Block 4).sip9

Site: MPL01 [MPL01 Hunter St / Castlereagh St / Bligh St (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: MPL-N1 [MPL Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

TCS 244

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfc              | orma                  | nce                   |                       |              |                |                     |          |           |              |                      |                           |                |
|-----------|--------|--------------|----------------------|-----------------------|-----------------------|-----------------------|--------------|----------------|---------------------|----------|-----------|--------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl<br>[ Total | nand<br>lows<br>H\/ 1 | Ar<br>Fl<br>[ Total ] | rival<br>ows<br>HV/ 1 | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back | COf Queue | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
|           |        |              | veh/h                | %                     | veh/h                 | %                     | v/c          | sec            |                     | veh      | m         |              | T tato               | Cycles                    | km/h           |
| East:     | Hunte  | er St (E)    |                      |                       |                       |                       |              |                |                     |          |           |              |                      |                           |                |
| 4         | L2     | All MCs      | 79                   | 0.0                   | 79                    | 0.0                   | 0.100        | 22.1           | LOS B               | 1.4      | 9.9       | 0.48         | 0.61                 | 0.48                      | 21.2           |
| 6a        | R1     | All MCs      | 360                  | 0.3                   | 360                   | 0.3                   | *0.447       | 20.8           | LOS B               | 7.7      | 53.9      | 0.58         | 0.62                 | 0.58                      | 21.1           |
| Appro     | ach    |              | 439                  | 0.2                   | 439                   | 0.2                   | 0.447        | 21.0           | LOS B               | 7.7      | 53.9      | 0.57         | 0.62                 | 0.57                      | 16.6           |
| North:    | Bligh  | n St (N)     |                      |                       |                       |                       |              |                |                     |          |           |              |                      |                           |                |
| 7         | L2     | All MCs      | 66                   | 25.4                  | 66 2                  | 25.4                  | *0.599       | 47.9           | LOS D               | 2.8      | 20.0      | 1.00         | 0.84                 | 1.08                      | 10.4           |
| 8         | T1     | All MCs      | 73                   | 2.9                   | 73                    | 2.9                   | 0.125        | 33.5           | LOS C               | 1.5      | 7.9       | 0.96         | 0.71                 | 0.96                      | 18.4           |
| 9b        | R3     | All MCs      | 6                    | 0.0                   | 6                     | 0.0                   | 0.125        | 41.5           | LOS C               | 1.4      | 7.7       | 0.96         | 0.71                 | 0.96                      | 16.8           |
| Appro     | ach    |              | 145                  | 13.0                  | 145                   | 13.0                  | 0.599        | 40.4           | LOS C               | 2.8      | 20.0      | 0.98         | 0.77                 | 1.01                      | 14.6           |
| North\    | Nest:  | Hunter S     | t (NW)               |                       |                       |                       |              |                |                     |          |           |              |                      |                           |                |
| 27a       | L1     | All MCs      | 284                  | 3.0                   | 284                   | 3.0                   | 0.173        | 8.1            | LOS A               | 2.7      | 19.1      | 0.44         | 0.57                 | 0.44                      | 22.6           |
| 29a       | R1     | All MCs      | 51                   | 2.1                   | 51                    | 2.1                   | *0.173       | 9.3            | LOS A               | 2.7      | 19.1      | 0.49         | 0.59                 | 0.49                      | 28.0           |
| Appro     | ach    |              | 335                  | 2.8                   | 335                   | 2.8                   | 0.173        | 8.3            | LOS A               | 2.7      | 19.1      | 0.45         | 0.57                 | 0.45                      | 23.8           |
| All Ve    | hicles |              | 919                  | 3.2                   | 919                   | 3.2                   | 0.599        | 19.4           | LOS B               | 7.7      | 53.9      | 0.59         | 0.63                 | 0.59                      | 17.6           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pe        | destrian Mov     | ement l      | Perforn        | nance               |                |         |              |              |                |                 |                |
|-----------|------------------|--------------|----------------|---------------------|----------------|---------|--------------|--------------|----------------|-----------------|----------------|
| Mov<br>ID | /<br>Crossing    | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|           |                  |              |                |                     | [Ped           | Dist ]  |              | Rate         |                |                 |                |
|           |                  | ped/h        | sec            |                     | ped            | m       |              |              | sec            | m               | m/sec          |
| Sou       | th: Castlereag   | h St (S)     |                |                     |                |         |              |              |                |                 |                |
| P1        | Full             | 332          | 33.8           | LOS D               | 0.7            | 0.7     | 0.93         | 0.93         | 200.4          | 200.0           | 1.00           |
| Eas       | t: Hunter St (E  | )            |                |                     |                |         |              |              |                |                 |                |
| P2        | Full             | 342          | 33.8           | LOS D               | 0.7            | 0.7     | 0.93         | 0.93         | 200.5          | 200.0           | 1.00           |
| Nor       | th: Bligh St (N) |              |                |                     |                |         |              |              |                |                 |                |
| P3        | Full             | 233          | 33.6           | LOS D               | 0.5            | 0.5     | 0.92         | 0.92         | 200.3          | 200.0           | 1.00           |
| Nor       | thWest: Hunter   | r St (NW     | )              |                     |                |         |              |              |                |                 |                |
| P7        | Full             | 129          | 33.5           | LOS D               | 0.3            | 0.3     | 0.92         | 0.92         | 200.2          | 200.0           | 1.00           |

| All Pedestrians | 1036 | 33.7 | LOS D | 0.7 | 0.7 | 0.92 | 0.92 | 200.4 | 200.0 | 1.00 |
|-----------------|------|------|-------|-----|-----|------|------|-------|-------|------|
|-----------------|------|------|-------|-----|-----|------|------|-------|-------|------|

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Thursday, 7 November 2024 12:54:03 PM

Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\05 SM C&SW\_MPL (Block 4).sip9

Site: MPL02 [MPL02 Hunter St / Elizabeth St / Chifley Square (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: MPL-N1 [MPL Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

TCS 302

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Network Site User-Given Phase Times)

| Vehic     | le M    | ovemen       | t Performa      | ince             |              |                |                     |          |          |                |              |                 |                |
|-----------|---------|--------------|-----------------|------------------|--------------|----------------|---------------------|----------|----------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn    | Mov<br>Class | Demand<br>Flows | Arrival<br>Flows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back | Of Queue | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |         |              | [Total HV]      | [Total HV]       |              |                |                     | [Veh.    | Dist ]   |                | Rate         | Cycles          |                |
| 0 11      | E.      |              | veh/h %         | veh/h %          | V/C          | sec            |                     | veh      | m        |                |              |                 | km/h           |
| South     | : Eliza | abeth St (   | 5)              |                  |              |                |                     |          |          |                |              |                 |                |
| 1         | L2      | All MCs      | 196 0.5         | 196 0.5          | 0.291        | 25.4           | LOS B               | 4.2      | 21.3     | 0.58           | 0.69         | 0.58            | 19.1           |
| 3a        | R1      | All MCs      | 537 11.8        | 537 11.8         | *0.903       | 51.9           | LOS D               | 25.9     | 199.9    | 0.99           | 1.15         | 1.32            | 10.0           |
| 3         | R2      | All MCs      | 139 1.5         | 139 1.5          | 0.304        | 21.1           | LOS B               | 3.7      | 19.0     | 0.79           | 0.74         | 0.79            | 20.9           |
| Appro     | ach     |              | 872 7.6         | 872 7.6          | 0.903        | 41.0           | LOS C               | 25.9     | 199.9    | 0.87           | 0.98         | 1.07            | 10.8           |
| East:     | Hunte   | er St (E)    |                 |                  |              |                |                     |          |          |                |              |                 |                |
| 4         | L2      | All MCs      | 55 1.9          | 55 1.9           | 0.130        | 32.0           | LOS C               | 2.2      | 11.2     | 0.73           | 0.66         | 0.73            | 20.4           |
| 5         | T1      | All MCs      | 243 0.0         | 243 0.0          | *0.652       | 40.5           | LOS C               | 7.9      | 39.3     | 0.91           | 0.80         | 0.95            | 12.6           |
| Appro     | ach     |              | 298 0.4         | 298 0.4          | 0.652        | 38.9           | LOS C               | 7.9      | 39.3     | 0.87           | 0.77         | 0.91            | 11.1           |
| North     | East:   | Chifley So   | quare (NE)      |                  |              |                |                     |          |          |                |              |                 |                |
| 24b       | L3      | All MCs      | 13 0.0          | 13 0.0           | 0.137        | 20.2           | LOS B               | 0.8      | 9.0      | 0.51           | 0.57         | 0.51            | 22.8           |
| 24a       | L1      | All MCs      | 193 15.3        | 193 15.3         | 0.288        | 17.3           | LOS B               | 3.6      | 25.6     | 0.58           | 0.60         | 0.58            | 23.4           |
| Appro     | ach     |              | 205 14.4        | 205 14.4         | 0.288        | 17.5           | LOS B               | 3.6      | 25.6     | 0.58           | 0.60         | 0.58            | 23.4           |
| West:     | Hunte   | er St (W)    |                 |                  |              |                |                     |          |          |                |              |                 |                |
| 10a       | L1      | All MCs      | 126 0.0         | 126 0.0          | 0.354        | 24.2           | LOS B               | 8.4      | 50.1     | 0.84           | 0.72         | 0.84            | 7.6            |
| 11        | T1      | All MCs      | 149 0.7         | 149 0.7          | 0.354        | 20.1           | LOS B               | 8.4      | 50.1     | 0.84           | 0.72         | 0.84            | 16.7           |
| 12        | R2      | All MCs      | 75 32.4         | 75 32.4          | *0.354       | 33.4           | LOS C               | 2.7      | 20.5     | 0.97           | 0.77         | 0.97            | 13.3           |
| Appro     | ach     |              | 351 7.2         | 351 7.2          | 0.354        | 24.4           | LOS B               | 8.4      | 50.1     | 0.87           | 0.73         | 0.87            | 13.3           |
| All Ve    | hicles  |              | 1725 7.1        | 1725 7.1         | 0.903        | 34.5           | LOS C               | 25.9     | 199.9    | 0.83           | 0.85         | 0.94            | 12.5           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Peo       | Pedestrian Movement Performance |              |                |                     |                |               |              |              |                |                 |                |  |  |  |  |
|-----------|---------------------------------|--------------|----------------|---------------------|----------------|---------------|--------------|--------------|----------------|-----------------|----------------|--|--|--|--|
| Mov<br>ID | /<br>Crossing                   | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>UE | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |  |  |  |  |
|           |                                 |              |                |                     | [Ped           | Dist ]        |              | Rate         |                |                 |                |  |  |  |  |
|           |                                 | ped/h        | sec            |                     | ped            | m             |              |              | sec            | m               | m/sec          |  |  |  |  |
| Sou       | th: Elizabeth                   | St (S)       |                |                     |                |               |              |              |                |                 |                |  |  |  |  |
| P1        | Full                            | 104          | 33.5           | LOS D               | 0.2            | 0.2           | 0.92         | 0.92         | 200.1          | 200.0           | 1.00           |  |  |  |  |
| Eas       | t: Hunter St (E                 | E)           |                |                     |                |               |              |              |                |                 |                |  |  |  |  |

| P2 Full            | 114    | 33.5 | LOS D | 0.2 | 0.2 | 0.92 | 0.92 | 200.1 | 200.0 | 1.00 |
|--------------------|--------|------|-------|-----|-----|------|------|-------|-------|------|
| NorthEast: Chifley | Square | (NE) |       |     |     |      |      |       |       |      |
| P6 Full            | 61     | 33.4 | LOS D | 0.1 | 0.1 | 0.91 | 0.91 | 200.1 | 200.0 | 1.00 |
| West: Hunter St (W | /)     |      |       |     |     |      |      |       |       |      |
| P4 Full            | 246    | 33.7 | LOS D | 0.5 | 0.5 | 0.92 | 0.92 | 200.3 | 200.0 | 1.00 |
| All Pedestrians    | 525    | 33.5 | LOS D | 0.5 | 0.5 | 0.92 | 0.92 | 200.2 | 200.0 | 1.00 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Thursday, 7 November 2024 12:54:03 PM

Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\05 SM C&SW\_MPL (Block 4).sip9

Site: MPL03 [MPL03 Bent St / Bligh St (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: MPL-N1 [MPL Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

### TCS 1412

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Network Site User-Given Phase Times)

| Vehic                   | cle M  | ovemen       | t Perfo                | orma                 | nce                 |                       |              |                |                     |                   |                     |                |                      |                           |                |
|-------------------------|--------|--------------|------------------------|----------------------|---------------------|-----------------------|--------------|----------------|---------------------|-------------------|---------------------|----------------|----------------------|---------------------------|----------------|
| Mov<br>ID               | Turn   | Mov<br>Class | Dem<br>Fl<br>[ Total ] | nand<br>Iows<br>HV ] | Ar<br>Fl<br>[ Total | rival<br>lows<br>HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Bac<br>[ Veh. | k Of Queu<br>Dist ] | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
|                         |        |              | veh/h                  | %                    | veh/h               | %                     | v/c          | sec            |                     | veh               | m                   |                |                      |                           | km/h           |
| SouthEast: Bent St (SE) |        |              |                        |                      |                     |                       |              |                |                     |                   |                     |                |                      |                           |                |
| 21                      | L2     | All MCs      | 111                    | 17.1                 | 111                 | 17.1                  | 0.106        | 7.9            | LOS A               | 1.0               | 7.9                 | 0.24           | 0.53                 | 0.24                      | 17.0           |
| 22                      | T1     | All MCs      | 426                    | 2.2                  | 426                 | 2.2                   | *0.386       | 4.9            | LOS A               | 4.4               | 31.4                | 0.29           | 0.25                 | 0.29                      | 28.5           |
| Appro                   | ach    |              | 537                    | 5.3                  | 537                 | 5.3                   | 0.386        | 5.5            | LOS A               | 4.4               | 31.4                | 0.28           | 0.31                 | 0.28                      | 22.9           |
| North                   | West:  | Bent St (    | (NW)                   |                      |                     |                       |              |                |                     |                   |                     |                |                      |                           |                |
| 28                      | T1     | All MCs      | 159                    | 0.0                  | 159                 | 0.0                   | 0.086        | 2.8            | LOS A               | 1.3               | 9.0                 | 0.30           | 0.28                 | 0.30                      | 23.6           |
| 29                      | R2     | All MCs      | 35                     | 0.0                  | 35                  | 0.0                   | * 0.086      | 8.3            | LOS A               | 0.8               | 5.7                 | 0.38           | 0.45                 | 0.38                      | 18.6           |
| Appro                   | ach    |              | 194                    | 0.0                  | 194                 | 0.0                   | 0.086        | 3.8            | LOS A               | 1.3               | 9.0                 | 0.32           | 0.31                 | 0.32                      | 22.5           |
| All Ve                  | hicles |              | 731                    | 3.9                  | 731                 | 3.9                   | 0.386        | 5.1            | LOS A               | 4.4               | 31.4                | 0.29           | 0.31                 | 0.29                      | 22.8           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedes   | strian Move   | ement F | Perforn | nance    |                     |         |       |              |        |        |       |
|---------|---------------|---------|---------|----------|---------------------|---------|-------|--------------|--------|--------|-------|
| Mov     | [             | Dem.    | Aver.   | Level of | AVERAGE             | BACK OF | Prop. | Eff.         | Travel | Travel | Aver. |
|         | rossing       | Flow    | Delay   | Service  | QUEUE<br>[Ped Dist] |         | Que   | Stop<br>Rate | lime   | Dist.  | Speed |
|         | p             | oed/h   | sec     |          | ped                 | m       |       |              | sec    | m      | m/sec |
| SouthE  | East: Bent St | (SE)    |         |          |                     |         |       |              |        |        |       |
| P5 Fi   | ull           | 83      | 33.4    | LOS D    | 0.2                 | 0.2     | 0.92  | 0.92         | 200.1  | 200.0  | 1.00  |
| NorthW  | Vest: Bent St | (NW)    |         |          |                     |         |       |              |        |        |       |
| P7 Fu   | ull           | 173     | 33.5    | LOS D    | 0.4                 | 0.4     | 0.92  | 0.92         | 200.2  | 200.0  | 1.00  |
| SouthV  | Nest: Bligh S | st (SW) |         |          |                     |         |       |              |        |        |       |
| P8 Fu   | ull           | 92      | 33.4    | LOS D    | 0.2                 | 0.2     | 0.92  | 0.92         | 200.1  | 200.0  | 1.00  |
| All Ped | destrians     | 347     | 33.5    | LOS D    | 0.4                 | 0.4     | 0.92  | 0.92         | 200.2  | 200.0  | 1.00  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Thursday, 7 November 2024 12:54:03 РЙ

Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\05 SM C&SW\_MPL (Block 4).sip9

Site: MPL04 [MPL04 Bent St / Phillip St (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: MPL-N1 [MPL Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

#### TCS 242

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Network Site User-Given Phase Times)

| Vehic  | le M   | ovemen    | t Performa            | nce                 |        |       |          |          |          |       |              |                  |         |
|--------|--------|-----------|-----------------------|---------------------|--------|-------|----------|----------|----------|-------|--------------|------------------|---------|
| Mov    | Turn   | Mov       | Demand                | Arrival             | Deg.   | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff.         | Aver.            | Aver.   |
| שו     |        | Class     | Flows<br>[ Total HV ] | Flows<br>[Total HV] | Sath   | Delay | Service  | [Veh.    | Dist ]   | Que   | Stop<br>Rate | NO. OF<br>Cycles | Speed   |
| South  | East:  | Bent St ( | SE)                   |                     | V/C    | 360   |          | VCII     |          | _     | _            |                  | K111/11 |
| 21     | L2     | All MCs   | 17 12.5               | 17 12.5             | 0.015  | 5.6   | LOS A    | 0.1      | 0.7      | 0.14  | 0.45         | 0.14             | 28.4    |
| 22     | T1     | All MCs   | 326 0.6               | 326 0.6             | *0.390 | 26.7  | LOS B    | 6.6      | 46.8     | 0.86  | 0.72         | 0.86             | 10.5    |
| 23a    | R1     | All MCs   | 52 0.0                | 52 0.0              | 0.390  | 30.7  | LOS C    | 5.6      | 39.6     | 0.87  | 0.73         | 0.87             | 18.4    |
| Appro  | ach    |           | 395 1.1               | 395 1.1             | 0.390  | 26.3  | LOS B    | 6.6      | 46.8     | 0.83  | 0.71         | 0.83             | 12.0    |
| North: | Philli | p St (N)  |                       |                     |        |       |          |          |          |       |              |                  |         |
| 7a     | L1     | All MCs   | 100 1.1               | 100 1.1             | 0.158  | 15.3  | LOS B    | 3.0      | 21.8     | 0.59  | 0.63         | 0.59             | 24.2    |
| 9a     | R1     | All MCs   | 175 15.7              | 175 15.7            | *0.158 | 12.5  | LOS A    | 3.0      | 21.8     | 0.56  | 0.59         | 0.56             | 22.1    |
| Appro  | ach    |           | 275 10.3              | 275 10.3            | 0.158  | 13.5  | LOS A    | 3.0      | 21.8     | 0.57  | 0.60         | 0.57             | 23.0    |
| North  | West:  | Bent St ( | NW)                   |                     |        |       |          |          |          |       |              |                  |         |
| 27b    | L3     | All MCs   | 8 0.0                 | 8 0.0               | 0.167  | 26.1  | LOS B    | 2.3      | 15.9     | 0.70  | 0.57         | 0.70             | 18.7    |
| 28     | T1     | All MCs   | 137 0.0               | 137 0.0             | 0.167  | 20.4  | LOS B    | 2.3      | 15.9     | 0.70  | 0.57         | 0.70             | 14.9    |
| 29     | R2     | All MCs   | 14 0.0                | 14 0.0              | 0.167  | 27.8  | LOS B    | 1.9      | 13.4     | 0.70  | 0.57         | 0.70             | 7.3     |
| Appro  | ach    |           | 159 0.0               | 159 0.0             | 0.167  | 21.3  | LOS B    | 2.3      | 15.9     | 0.70  | 0.57         | 0.70             | 14.6    |
| South  | West   | Phillip S | t (SW)                |                     |        |       |          |          |          |       |              |                  |         |
| 30     | L2     | All MCs   | 211 12.5              | 211 12.5            | 0.219  | 14.1  | LOS A    | 4.7      | 36.3     | 0.61  | 0.65         | 0.61             | 19.8    |
| 30a    | L1     | All MCs   | 287 12.1              | 287 12.1            | 0.271  | 10.7  | LOS A    | 5.9      | 45.6     | 0.57  | 0.58         | 0.57             | 28.8    |
| 32     | R2     | All MCs   | 165 1.3               | 165 1.3             | *0.293 | 17.9  | LOS B    | 4.3      | 30.8     | 0.83  | 0.69         | 0.83             | 21.3    |
| Appro  | ach    |           | 663 9.5               | 663 9.5             | 0.293  | 13.6  | LOS A    | 5.9      | 45.6     | 0.65  | 0.63         | 0.65             | 24.5    |
| All Ve | hicles |           | 1492 6.4              | 1492 6.4            | 0.390  | 17.7  | LOS B    | 6.6      | 46.8     | 0.69  | 0.64         | 0.69             | 19.8    |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian Mo      | vement       | Perform        | nance               |                |                |              |              |                |                 |                |
|--------------------|--------------|----------------|---------------------|----------------|----------------|--------------|--------------|----------------|-----------------|----------------|
| Mov<br>ID Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>EUE | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|                    | ped/h        | sec            |                     | [ Ped<br>ped   | Dist ]<br>m    |              | Rate         | sec            | m               | m/sec          |
| SouthEast: Bent    | St (SE)      |                |                     |                |                |              |              |                |                 |                |
| P5 Full            | 175          | 33.6           | LOS D               | 0.4            | 0.4            | 0.92         | 0.92         | 200.2          | 200.0           | 1.00           |

| North: Phillip St (N) | )       |      |       |     |     |      |      |       |       |      |
|-----------------------|---------|------|-------|-----|-----|------|------|-------|-------|------|
| P3 Full               | 68      | 33.4 | LOS D | 0.1 | 0.1 | 0.92 | 0.92 | 200.1 | 200.0 | 1.00 |
| NorthWest: Bent St    | t (NW)  |      |       |     |     |      |      |       |       |      |
| P7 Full               | 64      | 33.4 | LOS D | 0.1 | 0.1 | 0.91 | 0.91 | 200.1 | 200.0 | 1.00 |
| SouthWest: Phillip    | St (SW) |      |       |     |     |      |      |       |       |      |
| P8 Full               | 144     | 33.5 | LOS D | 0.3 | 0.3 | 0.92 | 0.92 | 200.2 | 200.0 | 1.00 |
| All Pedestrians       | 452     | 33.5 | LOS D | 0.4 | 0.4 | 0.92 | 0.92 | 200.2 | 200.0 | 1.00 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Thursday, 7 November 2024 12:54:03 PM

Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\05 SM C&SW\_MPL (Block 4).sip9

# Site: MPL05 [MPL05 Pedestrian Mid-block Crossing at Castlereagh St (Site Folder: Block 4 Model - 2024 Weekend Peak)]

#### Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TCS 245

Site Category: (None)

Pedestrian Crossing (Signalised) - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 45 seconds (Site User-Given Phase Times)

| Vehic                     | le Mo  | ovemen  | t Perfo   | rma  | nce     |       |        |       |          |       |         |       |      |        |       |
|---------------------------|--------|---------|-----------|------|---------|-------|--------|-------|----------|-------|---------|-------|------|--------|-------|
| Mov                       | Turn   | Mov     | Dem       | and  | Ar      | rival | Deg.   | Aver. | Level of | 95% E | Back Of | Prop. | Eff. | Aver.  | Aver. |
| ID                        |        | Class   | FI        | ows  | F       | lows  | Satn   | Delay | Service  | Qu    | eue     | Que   | Stop | No. of | Speed |
|                           |        |         | [ Total I | HV ] | [ Total | HV ]  |        |       |          | [Veh. | Dist]   |       | Rate | Cycles |       |
|                           |        |         | veh/h     | %    | veh/h   | %     | v/c    | sec   |          | veh   | m       |       |      |        | km/h  |
| North: Castlereagh St (N) |        |         |           |      |         |       |        |       |          |       |         |       |      |        |       |
| 8                         | T1     | All MCs | 216       | 1.5  | 216     | 1.5   | *0.180 | 12.6  | LOS A    | 1.8   | 12.6    | 0.76  | 0.60 | 0.76   | 26.4  |
| Appro                     | ach    |         | 216       | 1.5  | 216     | 1.5   | 0.180  | 12.6  | LOS A    | 1.8   | 12.6    | 0.76  | 0.60 | 0.76   | 26.4  |
| All Vel                   | nicles |         | 216       | 1.5  | 216     | 1.5   | 0.180  | 12.6  | LOS A    | 1.8   | 12.6    | 0.76  | 0.60 | 0.76   | 26.4  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian N       | loveme  | ent Perf | ormand | e:       |         |        |       |              |        |        |       |
|--------------------|---------|----------|--------|----------|---------|--------|-------|--------------|--------|--------|-------|
| Mov<br>Crossing    | Input   | Dem.     | Aver.  | Level of | AVERAGE |        | Prop. | Eff.<br>Stop | Travel | Travel | Aver. |
|                    | voi.    | 11000    | Delay  | Oervice  | [Ped    | Dist ] | Que   | Rate         | TITIC  | Dist.  | opeeu |
|                    | ped/h   | ped/h    | sec    |          | ped     | m      |       |              | sec    | m      | m/sec |
| South: Castler     | eagh St | (S)      |        |          |         |        |       |              |        |        |       |
| P1 Full            | 907     | 955      | 16.7   | LOS B    | 1.1     | 1.1    | 0.88  | 0.88         | 183.4  | 200.0  | 1.09  |
| All<br>Pedestrians | 907     | 955      | 16.7   | LOS B    | 1.1     | 1.1    | 0.88  | 0.88         | 183.4  | 200.0  | 1.09  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Thursday, 31 October 2024 3:35:31 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\05 SM C&SW\_MPL (Block 4).sip9

# Site: MPL06 [MPL06 Pedestrian Mid-block Crossing at Elizabeth St (Site Folder: Block 4 Model - 2024 Weekend Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

#### TCS 287

Site Category: (None)

Pedestrian Crossing (Signalised) - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site User-Given Phase Times)

| Vehic     | le M    | ovement      | Performa                | nce                     |                |                |                     |               |               |              |              |                 |                |
|-----------|---------|--------------|-------------------------|-------------------------|----------------|----------------|---------------------|---------------|---------------|--------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn    | Mov<br>Class | Demand<br>Flows         | Arrival<br>Flows        | Deg.<br>Satn   | Aver.<br>Delay | Level of<br>Service | 95% B<br>Qu   | ack Of<br>eue | Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |         |              | [ Total HV ]<br>veh/h % | [ Total HV ]<br>veh/h % | v/c            | sec            |                     | [ Veh.<br>veh | Dist ]<br>m   |              | Rate         | Cycles          | km/h           |
| South     | : Eliza | abeth St (S  | S)                      |                         |                |                |                     |               |               |              |              |                 |                |
| 2         | T1      | All MCs      | 901 7.5                 | 901 7.5                 | <b>*</b> 0.374 | 10.4           | LOS A               | 8.9           | 66.2          | 0.49         | 0.43         | 0.49            | 30.3           |
| Appro     | ach     |              | 901 7.5                 | 901 7.5                 | 0.374          | 8.4            | LOS A               | 8.9           | 66.2          | 0.49         | 0.43         | 0.49            | 28.1           |
| North:    | Eliza   | beth St (N   | 1)                      |                         |                |                |                     |               |               |              |              |                 |                |
| 8         | T1      | All MCs      | 297 20.6                | 297 20.6                | 0.191          | 6.8            | LOS A               | 4.2           | 29.4          | 0.43         | 0.36         | 0.43            | 31.3           |
| Appro     | ach     |              | 297 20.6                | 297 20.6                | 0.191          | 6.8            | LOS A               | 4.2           | 29.4          | 0.43         | 0.36         | 0.43            | 31.3           |
| All Ve    | hicles  |              | 1198 10.7               | 1198 10.7               | 0.374          | 9.5            | LOS A               | 8.9           | 66.2          | 0.48         | 0.41         | 0.48            | 28.8           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian M   | loveme     | nt Perf | ormand | e:       |         |           |       |      |        |        |       |
|----------------|------------|---------|--------|----------|---------|-----------|-------|------|--------|--------|-------|
| Mov            | Input      | Dem.    | Aver.  | Level of | AVERAGE | E BACK OF | Prop. | Eff. | Travel | Travel | Aver. |
| ID Crossing    | Vol.       | Flow    | Delay  | Service  | QU      | EUE       | Que   | Stop | Time   | Dist.  | Speed |
|                |            |         |        |          | [Ped    | Dist ]    |       | Rate |        |        |       |
|                | ped/h      | ped/h   | sec    |          | ped     | m         |       |      | sec    | m      | m/sec |
| South: Elizabe | eth St (S) |         |        |          |         |           |       |      |        |        |       |
| P1 Full        | 798        | 840     | 39.7   | LOS D    | 2.1     | 2.1       | 0.96  | 0.96 | 206.3  | 200.0  | 0.97  |
| All            | 798        | 840     | 39.7   | LOS D    | 2.1     | 2.1       | 0.96  | 0.96 | 206.3  | 200.0  | 0.97  |
| Pedestrians    |            |         |        |          |         |           |       |      |        |        |       |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Thursday, 31 October 2024 3:22:58 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\05 SM C&SW\_MPL (Block 4).sip9

### Site: PIT01 [PIT01 Pitt St / Bathurst St (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

### TCS 2312

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 60 seconds (Network Site User-Given Phase Times)

| Vehio     | le M     | ovemen       | t Perfo                         | orma                    | nce                          |                            |              |                |                     |                    |                          |                |                      |                           |                |
|-----------|----------|--------------|---------------------------------|-------------------------|------------------------------|----------------------------|--------------|----------------|---------------------|--------------------|--------------------------|----------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn     | Mov<br>Class | Dem<br>Fl<br>[ Total I<br>veb/b | and<br>ows<br>HV ]<br>% | Ar<br>Fl<br>[ Total<br>veb/b | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh. | k Of Queu<br>Dist ]<br>m | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| South     | : Pitt s | St (S)       | VG1/11                          | 70                      | VCH/H                        | 70                         | V/C          | 300            |                     | Ven                |                          |                |                      |                           | KIT/TT         |
| 2         | T1       | All MCs      | 249                             | 10.5                    | 249                          | 10.5                       | 0.334        | 25.2           | LOS B               | 3.7                | 27.9                     | 0.86           | 0.69                 | 0.86                      | 20.4           |
| 3         | R2       | All MCs      | 123                             | 9.4                     | 123                          | 9.4                        | *0.618       | 42.8           | LOS D               | 3.6                | 27.5                     | 0.97           | 0.83                 | 1.08                      | 16.0           |
| Appro     | ach      |              | 373                             | 10.2                    | 373                          | 10.2                       | 0.618        | 31.0           | LOS C               | 3.7                | 27.9                     | 0.90           | 0.74                 | 0.93                      | 16.2           |
| West:     | Bath     | urst St (N   | /)                              |                         |                              |                            |              |                |                     |                    |                          |                |                      |                           |                |
| 10        | L2       | All MCs      | 293                             | 5.4                     | 293                          | 5.4                        | *0.437       | 16.8           | LOS B               | 5.5                | 40.6                     | 0.68           | 0.73                 | 0.68                      | 15.3           |
| 11        | T1       | All MCs      | 952                             | 5.5                     | 952                          | 5.5                        | 0.332        | 8.9            | LOS A               | 5.5                | 40.1                     | 0.59           | 0.50                 | 0.59                      | 20.4           |
| Appro     | ach      |              | 1244                            | 5.5                     | 1244                         | 5.5                        | 0.437        | 10.7           | LOS A               | 5.5                | 40.6                     | 0.61           | 0.56                 | 0.61                      | 17.6           |
| All Ve    | hicles   |              | 1617                            | 6.6                     | 1617                         | 6.6                        | 0.618        | 15.4           | LOS B               | 5.5                | 40.6                     | 0.68           | 0.60                 | 0.68                      | 17.0           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov     | /ement       | Perform        | nance               |                |                         |              |                      |                |                 |                |
|--------------------|--------------|----------------|---------------------|----------------|-------------------------|--------------|----------------------|----------------|-----------------|----------------|
| Mov<br>ID Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>UE<br>Dist 1 | Prop.<br>Que | Eff.<br>Stop<br>Rate | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|                    | ped/h        | sec            |                     | ped            | m                       |              | rtato                | sec            | m               | m/sec          |
| South: Pitt St (S) |              |                |                     |                |                         |              |                      |                |                 |                |
| P1 Full            | 1554         | 26.0           | LOS C               | 2.5            | 2.5                     | 0.96         | 0.96                 | 42.6           | 20.0            | 0.47           |
| East: Bathurst St  | (E)          |                |                     |                |                         |              |                      |                |                 |                |
| P2 Full            | 526          | 24.8           | LOS C               | 0.8            | 0.8                     | 0.92         | 0.92                 | 41.5           | 20.0            | 0.48           |
| North: Pitt St (N) |              |                |                     |                |                         |              |                      |                |                 |                |
| P3 Full            | 765          | 25.1           | LOS C               | 1.2            | 1.2                     | 0.93         | 0.93                 | 41.8           | 20.0            | 0.48           |
| West: Bathurst St  | (W)          |                |                     |                |                         |              |                      |                |                 |                |
| P4 Full            | 980          | 24.4           | LOS C               | 1.5            | 1.5                     | 0.92         | 0.92                 | 41.1           | 20.0            | 0.49           |
| All Pedestrians    | 3825         | 25.2           | LOS C               | 2.5            | 2.5                     | 0.94         | 0.94                 | 41.9           | 20.0            | 0.48           |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 9:54:15 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\06 SM C&SW\_PIT (Block 4).sip9

Site: PIT02 [PIT02 Castlereagh St / Bathurst St (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: PIT-N1 [PIT Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

### TCS 2281

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 60 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfc              | orma                 | nce                 |                       |              |                |                     |                    |                    |                |                      |                           |                |
|-----------|--------|--------------|----------------------|----------------------|---------------------|-----------------------|--------------|----------------|---------------------|--------------------|--------------------|----------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl<br>[ Total | hand<br>lows<br>HV ] | Ar<br>Fl<br>[ Total | rival<br>lows<br>HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh. | Of Queue<br>Dist ] | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| North     | Cast   | lereadh S    | ven/n<br>St (N)      | %                    | ven/h               | %                     | V/C          | sec            | _                   | ven                | m                  |                |                      | _                         | Km/h           |
| 7         | 1.0    |              | 10                   | <u></u>              | 10                  | <u></u>               | 0.072        | 21.1           |                     | 0.6                | E                  | 0.74           | 0.62                 | 0.74                      | 11 E           |
| 1         |        | AII MCS      | 19                   | 22.2                 | 19                  | ZZ.Z                  | 0.072        | 21.1           | LUSB                | 0.6                | 5.5                | 0.74           | 0.03                 | 0.74                      | 11.5           |
| 8         | T1     | All MCs      | 246                  | 9.0                  | 246                 | 9.0                   | *0.389       | 16.8           | LOS B               | 5.5                | 40.3               | 0.81           | 0.67                 | 0.81                      | 26.4           |
| Appro     | ach    |              | 265                  | 9.9                  | 265                 | 9.9                   | 0.389        | 17.1           | LOS B               | 5.5                | 40.3               | 0.80           | 0.67                 | 0.80                      | 25.2           |
| West:     | Bath   | urst St (N   | /)                   |                      |                     |                       |              |                |                     |                    |                    |                |                      |                           |                |
| 11        | T1     | All MCs      | 958                  | 5.9                  | 958                 | 5.9                   | 0.324        | 4.0            | LOS A               | 3.5                | 25.9               | 0.29           | 0.27                 | 0.29                      | 28.7           |
| 12        | R2     | All MCs      | 117                  | 6.3                  | 117                 | 6.3                   | *0.324       | 12.2           | LOS A               | 3.1                | 22.8               | 0.46           | 0.53                 | 0.46                      | 28.8           |
| Appro     | ach    |              | 1075                 | 6.0                  | 1075                | 6.0                   | 0.324        | 4.9            | LOS A               | 3.5                | 25.9               | 0.31           | 0.30                 | 0.31                      | 28.8           |
| All Ve    | hicles |              | 1340                 | 6.8                  | 1340                | 6.8                   | 0.389        | 7.3            | LOS A               | 5.5                | 40.3               | 0.41           | 0.37                 | 0.41                      | 27.3           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov        | /ement       | Perform        | nance               |                |                         |              |                      |                |                 |                |  |
|-----------------------|--------------|----------------|---------------------|----------------|-------------------------|--------------|----------------------|----------------|-----------------|----------------|--|
| Mov<br>ID Crossing    | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>UE<br>Dist 1 | Prop.<br>Que | Eff.<br>Stop<br>Rate | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |  |
|                       | ped/h        | sec            |                     | ped            | m                       |              | Trate                | sec            | m               | m/sec          |  |
| South: Castlereag     | gh St (S)    |                |                     |                |                         |              |                      |                |                 |                |  |
| P1 Full               | 417          | 23.8           | LOS C               | 0.6            | 0.6                     | 0.90         | 0.90                 | 40.5           | 20.0            | 0.49           |  |
| East: Bathurst St (E) |              |                |                     |                |                         |              |                      |                |                 |                |  |
| P2 Full               | 273          | 23.7           | LOS C               | 0.4            | 0.4                     | 0.89         | 0.89                 | 40.3           | 20.0            | 0.50           |  |
| North: Castlereag     | h St (N)     |                |                     |                |                         |              |                      |                |                 |                |  |
| P3 Full               | 763          | 24.2           | LOS C               | 1.2            | 1.2                     | 0.91         | 0.91                 | 40.8           | 20.0            | 0.49           |  |
| West: Bathurst St     | (W)          |                |                     |                |                         |              |                      |                |                 |                |  |
| P4 Full               | 367          | 23.8           | LOS C               | 0.6            | 0.6                     | 0.90         | 0.90                 | 40.4           | 20.0            | 0.49           |  |
| All Pedestrians       | 1820         | 23.9           | LOS C               | 1.2            | 1.2                     | 0.90         | 0.90                 | 40.6           | 20.0            | 0.49           |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 9:54:15 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\06 SM C&SW\_PIT (Block 4).sip9

Site: PIT03 [PIT03 Park St / Castlereagh St (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: PIT-N1 [PIT Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

TCS 250

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site User-Given Phase Times)

| Vehic           | cle M           | ovemen             | t Perfo                           | rma                    | nce                                         |                           |                       |                         |                           |                         |                      |                      |                           |                        |
|-----------------|-----------------|--------------------|-----------------------------------|------------------------|---------------------------------------------|---------------------------|-----------------------|-------------------------|---------------------------|-------------------------|----------------------|----------------------|---------------------------|------------------------|
| Mov<br>ID       | Turn            | Mov<br>Class       | Dema<br>Flo<br>[ Total H<br>veh/h | and<br>ows<br>IV]<br>% | Arrival<br>Flows<br>[ Total HV ]<br>veh/h % | Deg.<br>Satn<br>v/c       | Aver.<br>Delay<br>sec | Level of<br>Service     | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | Prop.<br>Que         | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| East:           | Park \$         | St (E)             |                                   |                        |                                             |                           |                       |                         |                           |                         |                      |                      |                           |                        |
| 4<br>5<br>Appro | L2<br>T1<br>ach | All MCs<br>All MCs | 120<br>389 1<br>509 1             | 4.4<br>8.1<br>4.9      | 120 4.4<br>389 18.1<br>509 14.9             | 0.169<br>* 0.491<br>0.491 | 21.9<br>17.6<br>18.6  | LOS B<br>LOS B<br>LOS B | 3.4<br>10.5<br>10.5       | 24.5<br>77.4<br>77.4    | 0.68<br>0.72<br>0.71 | 0.69<br>0.62<br>0.64 | 0.68<br>0.72<br>0.71      | 7.0<br>8.3<br>8.0      |
| North           | Cast            | lereagh S          | St (N)                            |                        |                                             |                           |                       |                         |                           |                         |                      |                      |                           |                        |
| 7               | L2              | All MCs            | 104                               | 3.0                    | 104 3.0                                     | 0.201                     | 29.6                  | LOS C                   | 3.5                       | 25.0                    | 0.79                 | 0.73                 | 0.79                      | 18.8                   |
| 8               | T1              | All MCs            | 106                               | 9.9                    | 106 9.9                                     | *0.644                    | 58.3                  | LOS E                   | 7.8                       | 59.7                    | 0.97                 | 0.83                 | 1.01                      | 15.1                   |
| 9               | R2              | All MCs            | 78 1                              | 3.5                    | 78 13.5                                     | 0.644                     | 68.5                  | LOS E                   | 7.8                       | 59.7                    | 0.98                 | 0.84                 | 1.01                      | 15.1                   |
| Appro           | ach             |                    | 288                               | 8.4                    | 288 8.4                                     | 0.644                     | 50.7                  | LOS D                   | 7.8                       | 59.7                    | 0.91                 | 0.79                 | 0.93                      | 13.2                   |
| West:           | Park            | St (W)             |                                   |                        |                                             |                           |                       |                         |                           |                         |                      |                      |                           |                        |
| 11              | T1              | All MCs            | 142 3                             | 87.8                   | 142 37.8                                    | 0.307                     | 14.1                  | LOS A                   | 4.8                       | 43.6                    | 0.65                 | 0.57                 | 0.65                      | 16.5                   |
| 12              | R2              | All MCs            | 39 2                              | 27.0                   | 39 27.0                                     | *0.307                    | 20.0                  | LOS B                   | 4.8                       | 43.6                    | 0.65                 | 0.57                 | 0.65                      | 13.3                   |
| Appro           | ach             |                    | 1813                              | 85.5                   | 181 35.5                                    | 0.307                     | 15.4                  | LOS B                   | 4.8                       | 43.6                    | 0.65                 | 0.57                 | 0.65                      | 15.9                   |
| All Ve          | hicles          |                    | 979 1                             | 6.8                    | 979 16.8                                    | 0.644                     | 27.4                  | LOS B                   | 10.5                      | 77.4                    | 0.76                 | 0.67                 | 0.77                      | 11.9                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pe        | destrian Mov    | vement       | Perform        | nance               |                |                |              |              |                |                 |                |
|-----------|-----------------|--------------|----------------|---------------------|----------------|----------------|--------------|--------------|----------------|-----------------|----------------|
| Mov<br>ID | /<br>Crossing   | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>EUE | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|           |                 | 1.0          |                |                     | [Ped           | Dist ]         |              | Rate         |                |                 |                |
|           |                 | ped/n        | sec            |                     | ped            | m              |              |              | sec            | m               | m/sec          |
| Sou       | th: Castlereag  | gh St (S)    |                |                     |                |                |              |              |                |                 |                |
| P1        | Full            | 372          | 38.9           | LOS D               | 0.9            | 0.9            | 0.94         | 0.94         | 55.5           | 20.0            | 0.36           |
| Eas       | st: Park St (E) |              |                |                     |                |                |              |              |                |                 |                |
| P2        | Full            | 354          | 38.8           | LOS D               | 0.8            | 0.8            | 0.94         | 0.94         | 55.5           | 20.0            | 0.36           |
| Nor       | th: Castlereag  | h St (N)     |                |                     |                |                |              |              |                |                 |                |
| P3        | Full            | 1217         | 40.3           | LOS E               | 3.0            | 3.0            | 0.97         | 0.97         | 57.0           | 20.0            | 0.35           |
| We        | st: Park St (W  | )            |                |                     |                |                |              |              |                |                 |                |
| P4        | Full            | 482          | 39.1           | LOS D               | 1.2            | 1.2            | 0.94         | 0.94         | 55.7           | 20.0            | 0.36           |

| All Pedestrians | 2424 | 39.6 | LOS D | 3.0 | 3.0 | 0.95 | 0.95 | 56.3 | 20.0 | 0.36 |
|-----------------|------|------|-------|-----|-----|------|------|------|------|------|
|-----------------|------|------|-------|-----|-----|------|------|------|------|------|

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 9:54:15 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\06 SM C&SW\_PIT (Block 4).sip9

Site: PIT04 [PIT04 Park St / Pitt St (Site Folder: Block 4 Model - 2024 AM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: PIT-N1 [PIT Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

TCS 235

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site User-Given Phase Times)

| Vehic     | le M     | ovemen       | t Performa                    | nce                              |              |                |                     |          |                    |              |                      |                           |                |
|-----------|----------|--------------|-------------------------------|----------------------------------|--------------|----------------|---------------------|----------|--------------------|--------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn     | Mov<br>Class | Demand<br>Flows<br>[Total HV] | Arrival<br>Flows<br>[ Total HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back | Of Queue<br>Dist ] | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| South     | : Pitt s | St (S)       | ven/n %                       | ven/n %                          | V/C          | sec            | _                   | ven      | m                  | _            | _                    | _                         | Km/n           |
| 1         | L2       | All MCs      | 146 15.1                      | 146 15.1                         | 0.458        | 21.8           | LOS B               | 3.0      | 24.1               | 0.92         | 0.78                 | 0.92                      | 18.1           |
| 2         | T1       | All MCs      | 232 12.3                      | 232 12.3                         | *0.458       | 18.2           | LOS B               | 4.2      | 32.2               | 0.83         | 0.69                 | 0.83                      | 28.7           |
| 3         | R2       | All MCs      | 73 13.0                       | 73 13.0                          | 0.223        | 25.7           | LOS B               | 1.4      | 11.1               | 0.87         | 0.73                 | 0.87                      | 15.1           |
| Appro     | ach      |              | 451 13.3                      | 451 13.3                         | 0.458        | 20.6           | LOS B               | 4.2      | 32.2               | 0.87         | 0.72                 | 0.87                      | 22.0           |
| East:     | Park     | St (E)       |                               |                                  |              |                |                     |          |                    |              |                      |                           |                |
| 5         | T1       | All MCs      | 403 16.2                      | 403 16.2                         | 0.796        | 17.2           | LOS B               | 11.0     | 81.1               | 0.93         | 0.87                 | 1.02                      | 17.2           |
| 6         | R2       | All MCs      | 100 6.3                       | 100 6.3                          | *0.796       | 23.7           | LOS B               | 11.0     | 81.1               | 0.96         | 0.91                 | 1.06                      | 23.1           |
| Appro     | ach      |              | 503 14.2                      | 503 14.2                         | 0.796        | 18.5           | LOS B               | 11.0     | 81.1               | 0.93         | 0.88                 | 1.03                      | 18.8           |
| West:     | Park     | St (W)       |                               |                                  |              |                |                     |          |                    |              |                      |                           |                |
| 10        | L2       | All MCs      | 1 100.<br>0                   | 1 <sup>100.</sup><br>0           | 0.194        | 18.6           | LOS B               | 1.4      | 14.5               | 0.70         | 0.56                 | 0.70                      | 27.9           |
| 11        | T1       | All MCs      | 86 62.2                       | 86 62.2                          | 0.194        | 10.6           | LOS A               | 1.4      | 14.5               | 0.70         | 0.56                 | 0.70                      | 16.4           |
| Appro     | ach      |              | 87 62.7                       | 87 62.7                          | 0.194        | 10.7           | LOS A               | 1.4      | 14.5               | 0.70         | 0.56                 | 0.70                      | 16.7           |
| All Ve    | hicles   |              | 1041 17.9                     | 1041 17.9                        | 0.796        | 18.8           | LOS B               | 11.0     | 81.1               | 0.89         | 0.78                 | 0.93                      | 20.4           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pedestrian Mo      | vement       | Perform | nance    |         |        |       |              |                |                |       |
|--------------------|--------------|---------|----------|---------|--------|-------|--------------|----------------|----------------|-------|
| Mov<br>Crossing    | Dem.<br>Flow | Aver.   | Level of | AVERAGE |        | Prop. | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist | Aver. |
|                    | 110 10       | Belay   |          | [ Ped   | Dist ] | Que   | Rate         | mile           | Dist.          | opeeu |
|                    | ped/h        | sec     |          | ped     | m      |       |              | sec            | m              | m/sec |
| South: Pitt St (S) |              |         |          |         |        |       |              |                |                |       |
| P1 Full            | 957          | 16.7    | LOS B    | 1.1     | 1.1    | 0.88  | 0.88         | 33.4           | 20.0           | 0.60  |
| East: Park St (E)  |              |         |          |         |        |       |              |                |                |       |
| P2 Full            | 529          | 16.4    | LOS B    | 0.6     | 0.6    | 0.86  | 0.86         | 33.1           | 20.0           | 0.60  |
| North: Pitt St (N) |              |         |          |         |        |       |              |                |                |       |
| P3 Full            | 1292         | 18.8    | LOS B    | 1.6     | 1.6    | 0.94  | 0.94         | 35.5           | 20.0           | 0.56  |
| West: Park St (W   | )            |         |          |         |        |       |              |                |                |       |
| P4 Full            | 786          | 16.6    | LOS B    | 0.9     | 0.9    | 0.87  | 0.87         | 33.3           | 20.0           | 0.60  |

| All Pedestrians | 3564 | 17.4 | LOS B | 1.6 | 1.6 | 0.90 | 0.90 | 34.1 | 20.0 | 0.59 |
|-----------------|------|------|-------|-----|-----|------|------|------|------|------|
|-----------------|------|------|-------|-----|-----|------|------|------|------|------|

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 9:54:15 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\06 SM C&SW\_PIT (Block 4).sip9

### Site: PIT01 [PIT01 Pitt St / Bathurst St (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

### TCS 2312

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 85 seconds (Network Site User-Given Phase Times)

| Vehic     | le M      | ovemen       | t Perfo             | orma                 | nce                   |                       |              |                |                     |                    |                    |                |                      |                           |                |
|-----------|-----------|--------------|---------------------|----------------------|-----------------------|-----------------------|--------------|----------------|---------------------|--------------------|--------------------|----------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn      | Mov<br>Class | Dem<br>F<br>[ Total | nand<br>lows<br>HV ] | Ar<br>Fl<br>[ Total ] | rival<br>lows<br>HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh. | Of Queue<br>Dist ] | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
|           |           |              | veh/h               | %                    | veh/h                 | %                     | v/c          | sec            |                     | veh                | m                  |                |                      |                           | km/h           |
| South     | : Pitt \$ | St (S)       |                     |                      |                       |                       |              |                |                     |                    |                    |                |                      |                           |                |
| 2         | T1        | All MCs      | 293                 | 0.4                  | 293                   | 0.4                   | 0.305        | 28.4           | LOS B               | 5.0                | 35.2               | 0.86           | 0.69                 | 0.86                      | 17.1           |
| 3         | R2        | All MCs      | 145                 | 2.2                  | 145                   | 2.2                   | *0.427       | 37.7           | LOS C               | 5.5                | 39.1               | 0.93           | 0.79                 | 0.93                      | 14.2           |
| Appro     | ach       |              | 438                 | 1.0                  | 438                   | 1.0                   | 0.427        | 31.5           | LOS C               | 5.5                | 39.1               | 0.88           | 0.72                 | 0.88                      | 16.0           |
| West:     | Bathu     | urst St (N   | /)                  |                      |                       |                       |              |                |                     |                    |                    |                |                      |                           |                |
| 10        | L2        | All MCs      | 198                 | 2.1                  | 198                   | 2.1                   | 0.206        | 15.7           | LOS B               | 3.9                | 27.8               | 0.51           | 0.65                 | 0.51                      | 16.2           |
| 11        | T1        | All MCs      | 1108                | 1.8                  | 1108                  | 1.8                   | *0.341       | 9.5            | LOS A               | 8.0                | 57.1               | 0.52           | 0.46                 | 0.52                      | 19.7           |
| Appro     | ach       |              | 1306                | 1.9                  | 1306                  | 1.9                   | 0.341        | 10.4           | LOS A               | 8.0                | 57.1               | 0.52           | 0.49                 | 0.52                      | 17.9           |
| All Ve    | hicles    |              | 1744                | 1.6                  | 1744                  | 1.6                   | 0.427        | 15.7           | LOS B               | 8.0                | 57.1               | 0.61           | 0.55                 | 0.61                      | 17.0           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov     | vement       | Perform        | nance               |         |             |              |              |                |                 |                |
|--------------------|--------------|----------------|---------------------|---------|-------------|--------------|--------------|----------------|-----------------|----------------|
| Mov<br>ID Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service |         | BACK OF     | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|                    | ped/h        | sec            |                     | red و ا | DIST J<br>m |              | Rate         | sec            | m               | m/sec          |
| South: Pitt St (S) |              |                |                     |         |             |              |              |                |                 |                |
| P1 Full            | 1935         | 39.9           | LOS D               | 4.7     | 4.7         | 1.01         | 1.01         | 56.6           | 20.0            | 0.35           |
| East: Bathurst St  | (E)          |                |                     |         |             |              |              |                |                 |                |
| P2 Full            | 625          | 37.7           | LOS D               | 1.4     | 1.4         | 0.95         | 0.95         | 54.4           | 20.0            | 0.37           |
| North: Pitt St (N) |              |                |                     |         |             |              |              |                |                 |                |
| P3 Full            | 1015         | 38.3           | LOS D               | 2.4     | 2.4         | 0.97         | 0.97         | 55.0           | 20.0            | 0.36           |
| West: Bathurst St  | (W)          |                |                     |         |             |              |              |                |                 |                |
| P4 Full            | 1293         | 37.8           | LOS D               | 3.0     | 3.0         | 0.97         | 0.97         | 54.5           | 20.0            | 0.37           |
| All Pedestrians    | 4867         | 38.8           | LOS D               | 4.7     | 4.7         | 0.98         | 0.98         | 55.4           | 20.0            | 0.36           |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 9:54:18 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\06 SM C&SW\_PIT (Block 4).sip9

Site: PIT02 [PIT02 Castlereagh St / Bathurst St (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: PIT-N1 [PIT Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

### TCS 2281

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 85 seconds (Network Site User-Given Phase Times)

| Vehic                     | le M   | ovemen       | t Perfo                | orma               | nce                   |                       |              |                |                     |                    |          |                |                      |                           |                |
|---------------------------|--------|--------------|------------------------|--------------------|-----------------------|-----------------------|--------------|----------------|---------------------|--------------------|----------|----------------|----------------------|---------------------------|----------------|
| Mov<br>ID                 | Turn   | Mov<br>Class | Dem<br>Fl<br>[ Total I | and<br>ows<br>HV ] | Ar<br>Fl<br>[ Total ] | rival<br>lows<br>HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh. | Of Queue | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| North: Castlereagh St (N) |        |              |                        |                    |                       |                       |              |                |                     |                    | _        | _              | Km/n                 |                           |                |
| 7                         | L2     | All MCs      | 28                     | 0.0                | 28                    | 0.0                   | 0.150        | 23.6           | LOS B               | 1.9                | 19.7     | 0.67           | 0.60                 | 0.67                      | 11.5           |
| 8                         | T1     | All MCs      | 251                    | 18.9               | 251                   | 18.9                  | *0.260       | 16.9           | LOS B               | 5.6                | 40.1     | 0.68           | 0.58                 | 0.68                      | 26.2           |
| Appro                     | ach    |              | 279                    | 17.0               | 279                   | 17.0                  | 0.260        | 17.6           | LOS B               | 5.6                | 40.1     | 0.68           | 0.58                 | 0.68                      | 24.5           |
| West:                     | Bathu  | urst St (W   | ')                     |                    |                       |                       |              |                |                     |                    |          |                |                      |                           |                |
| 11                        | T1     | All MCs      | 1164                   | 1.9                | 1164                  | 1.9                   | 0.397        | 18.3           | LOS B               | 9.3                | 66.5     | 0.74           | 0.64                 | 0.74                      | 15.1           |
| 12                        | R2     | All MCs      | 89                     | 1.2                | 89                    | 1.2                   | *0.397       | 32.0           | LOS C               | 9.3                | 65.7     | 0.85           | 0.75                 | 0.85                      | 20.7           |
| Appro                     | ach    |              | 1254                   | 1.8                | 1254                  | 1.8                   | 0.397        | 19.3           | LOS B               | 9.3                | 66.5     | 0.74           | 0.64                 | 0.74                      | 15.5           |
| All Ve                    | hicles |              | 1533                   | 4.6                | 1533                  | 4.6                   | 0.397        | 19.0           | LOS B               | 9.3                | 66.5     | 0.73           | 0.63                 | 0.73                      | 17.9           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov     | vement       | Perform        | nance               |                |                         |              |                      |                |                 |                |
|--------------------|--------------|----------------|---------------------|----------------|-------------------------|--------------|----------------------|----------------|-----------------|----------------|
| Mov<br>ID Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>UE<br>Dist 1 | Prop.<br>Que | Eff.<br>Stop<br>Rate | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|                    | ped/h        | sec            |                     | ped            | m                       |              |                      | sec            | m               | m/sec          |
| South: Castlereag  | gh St (S)    |                |                     |                |                         |              |                      |                |                 |                |
| P1 Full            | 1377         | 38.0           | LOS D               | 3.2            | 3.2                     | 0.97         | 0.97                 | 54.6           | 20.0            | 0.37           |
| East: Bathurst St  | (E)          |                |                     |                |                         |              |                      |                |                 |                |
| P2 Full            | 320          | 36.3           | LOS D               | 0.7            | 0.7                     | 0.93         | 0.93                 | 52.9           | 20.0            | 0.38           |
| North: Castlereag  | h St (N)     |                |                     |                |                         |              |                      |                |                 |                |
| P3 Full            | 934          | 37.2           | LOS D               | 2.2            | 2.2                     | 0.95         | 0.95                 | 53.9           | 20.0            | 0.37           |
| West: Bathurst St  | : (W)        |                |                     |                |                         |              |                      |                |                 |                |
| P4 Full            | 555          | 36.6           | LOS D               | 1.3            | 1.3                     | 0.94         | 0.94                 | 53.3           | 20.0            | 0.38           |
| All Pedestrians    | 3185         | 37.4           | LOS D               | 3.2            | 3.2                     | 0.96         | 0.96                 | 54.0           | 20.0            | 0.37           |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 9:54:18 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\06 SM C&SW\_PIT (Block 4).sip9

Site: PIT03 [PIT03 Park St / Castlereagh St (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: PIT-N1 [PIT Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

TCS 250

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site User-Given Phase Times)

| Vehic           | cle M           | ovemen             | t Performa                                 | nce                                         |                           |                       |                         |                           |                         |                      |                      |                           |                        |
|-----------------|-----------------|--------------------|--------------------------------------------|---------------------------------------------|---------------------------|-----------------------|-------------------------|---------------------------|-------------------------|----------------------|----------------------|---------------------------|------------------------|
| Mov<br>ID       | Turn            | Mov<br>Class       | Demand<br>Flows<br>[ Total HV ]<br>veh/h % | Arrival<br>Flows<br>[ Total HV ]<br>veh/h % | Deg.<br>Satn<br>v/c       | Aver.<br>Delay<br>sec | Level of<br>Service     | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | e Prop.<br>Que       | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| East:           | Park \$         | St (E)             |                                            |                                             |                           |                       |                         |                           |                         |                      |                      |                           |                        |
| 4<br>5<br>Appro | L2<br>T1<br>ach | All MCs<br>All MCs | 32 3.3<br>329 20.8<br>361 19.2             | 32 3.3<br>329 20.8<br>361 19.2              | 0.095<br>* 0.308<br>0.308 | 22.0<br>16.3<br>16.8  | LOS B<br>LOS B<br>LOS B | 1.4<br>7.4<br>7.4         | 13.2<br>52.8<br>52.8    | 0.64<br>0.66<br>0.66 | 0.60<br>0.56<br>0.56 | 0.64<br>0.66<br>0.66      | 7.7<br>8.7<br>8.6      |
| North           | Cast            | lereagh S          | St (N)                                     |                                             |                           |                       |                         |                           |                         |                      |                      |                           |                        |
| 7               | L2              | All MCs            | 157 0.0                                    | 157 0.0                                     | 0.262                     | 27.8                  | LOS B                   | 5.1                       | 35.8                    | 0.78                 | 0.74                 | 0.78                      | 19.3                   |
| 8               | T1              | All MCs            | 205 21.5                                   | 205 21.5                                    | 0.753                     | 56.8                  | LOS E                   | 12.4                      | 90.3                    | 0.96                 | 0.86                 | 1.05                      | 15.4                   |
| 9               | R2              | All MCs            | 113 6.5                                    | 113 6.5                                     | *0.753                    | 72.9                  | LOS F                   | 12.4                      | 90.3                    | 0.99                 | 0.91                 | 1.10                      | 14.9                   |
| Appro           | ach             |                    | 475 10.9                                   | 475 10.9                                    | 0.753                     | 51.1                  | LOS D                   | 12.4                      | 90.3                    | 0.91                 | 0.83                 | 0.97                      | 13.1                   |
| West:           | Park            | St (W)             |                                            |                                             |                           |                       |                         |                           |                         |                      |                      |                           |                        |
| 11              | T1              | All MCs            | 149 33.1                                   | 149 33.1                                    | 0.213                     | 15.8                  | LOS B                   | 3.8                       | 27.1                    | 0.65                 | 0.55                 | 0.65                      | 15.9                   |
| 12              | R2              | All MCs            | 42 5.0                                     | 42 5.0                                      | *0.213                    | 19.8                  | LOS B                   | 3.8                       | 27.1                    | 0.67                 | 0.58                 | 0.67                      | 12.4                   |
| Appro           | ach             |                    | 192 26.9                                   | 192 26.9                                    | 0.213                     | 16.6                  | LOS B                   | 3.8                       | 27.1                    | 0.65                 | 0.55                 | 0.65                      | 15.2                   |
| All Ve          | hicles          |                    | 1027 16.8                                  | 1027 16.8                                   | 0.753                     | 32.6                  | LOS C                   | 12.4                      | 90.3                    | 0.77                 | 0.69                 | 0.80                      | 12.6                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Peo       | destrian Mov    | vement       | Perform        | nance               |                |         |              |              |                |                 |                |
|-----------|-----------------|--------------|----------------|---------------------|----------------|---------|--------------|--------------|----------------|-----------------|----------------|
| Mo∖<br>ID | /<br>Crossing   | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|           |                 | 1.0          |                |                     | [Ped           | Dist ]  |              | Rate         |                |                 | -              |
|           |                 | ped/n        | sec            |                     | ped            | m       |              |              | sec            | m               | m/sec          |
| Sou       | th: Castlereag  | h St (S)     |                |                     |                |         |              |              |                |                 |                |
| P1        | Full            | 304          | 38.8           | LOS D               | 0.7            | 0.7     | 0.93         | 0.93         | 55.4           | 20.0            | 0.36           |
| Eas       | t: Park St (E)  |              |                |                     |                |         |              |              |                |                 |                |
| P2        | Full            | 641          | 39.3           | LOS D               | 1.6            | 1.6     | 0.95         | 0.95         | 56.0           | 20.0            | 0.36           |
| Nor       | th: Castlereag  | h St (N)     |                |                     |                |         |              |              |                |                 |                |
| P3        | Full            | 2415         | 42.6           | LOS E               | 6.3            | 6.3     | 1.03         | 1.03         | 59.2           | 20.0            | 0.34           |
| We        | st: Park St (W) | )            |                |                     |                |         |              |              |                |                 |                |
| P4        | Full            | 857          | 39.7           | LOS D               | 2.1            | 2.1     | 0.96         | 0.96         | 56.4           | 20.0            | 0.35           |

| All Pedestrians | 4217 | 41.2 | LOS E | 6.3 | 6.3 | 0.99 | 0.99 | 57.9 | 20.0 | 0.35 |
|-----------------|------|------|-------|-----|-----|------|------|------|------|------|
|-----------------|------|------|-------|-----|-----|------|------|------|------|------|

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 9:54:18 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\06 SM C&SW\_PIT (Block 4).sip9

Site: PIT04 [PIT04 Park St / Pitt St (Site Folder: Block 4 Model - 2024 PM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: PIT-N1 [PIT Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

### TCS 235

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site User-Given Phase Times)

| Vehic     | <b>Vehicle Movement Performance</b><br>Mov Turn Mov Demand Arrival Deg. Aver. Level of 95% Back Of Queue P <u>rop. Eff. Aver. Aver.</u> |              |                                 |                                  |              |                |                     |          |                    |              |                      |                           |                |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------|----------------------------------|--------------|----------------|---------------------|----------|--------------------|--------------|----------------------|---------------------------|----------------|--|--|
| Mov<br>ID | Turn                                                                                                                                    | Mov<br>Class | Demand<br>Flows<br>[ Total HV ] | Arrival<br>Flows<br>[ Total HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back | Of Queue<br>Dist ] | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |  |  |
| South     | · Pitt 9                                                                                                                                | St (S)       | veh/h %                         | veh/h %                          | v/c          | sec            | _                   | veh      | m                  | _            | _                    | _                         | km/h           |  |  |
| Coun      |                                                                                                                                         | 01(0)        |                                 |                                  |              |                |                     |          |                    |              |                      |                           |                |  |  |
| 1         | L2                                                                                                                                      | All MCs      | 151 2.8                         | 151 2.8                          | 0.417        | 21.5           | LOS B               | 3.2      | 22.6               | 0.92         | 0.77                 | 0.92                      | 18.2           |  |  |
| 2         | T1                                                                                                                                      | All MCs      | 219 0.5                         | 219 0.5                          | 0.379        | 16.7           | LOS B               | 3.9      | 27.6               | 0.81         | 0.66                 | 0.81                      | 29.0           |  |  |
| 3         | R2                                                                                                                                      | All MCs      | 79 1.3                          | 79 1.3                           | 0.216        | 24.5           | LOS B               | 1.6      | 11.1               | 0.87         | 0.73                 | 0.87                      | 15.2           |  |  |
| Appro     | ach                                                                                                                                     |              | 448 1.4                         | 448 1.4                          | 0.417        | 19.7           | LOS B               | 3.9      | 27.6               | 0.85         | 0.71                 | 0.85                      | 22.2           |  |  |
| East:     | Park \$                                                                                                                                 | St (E)       |                                 |                                  |              |                |                     |          |                    |              |                      |                           |                |  |  |
| 5         | T1                                                                                                                                      | All MCs      | 452 16.3                        | 452 16.3                         | 0.657        | 12.5           | LOS A               | 8.2      | 59.0               | 0.86         | 0.74                 | 0.86                      | 20.6           |  |  |
| 6         | R2                                                                                                                                      | All MCs      | 37 0.0                          | 37 0.0                           | *0.657       | 18.2           | LOS B               | 8.2      | 59.0               | 0.88         | 0.77                 | 0.88                      | 26.3           |  |  |
| Appro     | ach                                                                                                                                     |              | 488 15.1                        | 488 15.1                         | 0.657        | 13.0           | LOS A               | 8.2      | 59.0               | 0.86         | 0.74                 | 0.86                      | 21.3           |  |  |
| West:     | Park                                                                                                                                    | St (W)       |                                 |                                  |              |                |                     |          |                    |              |                      |                           |                |  |  |
| 10        | L2                                                                                                                                      | All MCs      | 1 100.<br>0                     | 1 <sup>100.</sup><br>0           | 0.238        | 18.9           | LOS B               | 1.7      | 18.3               | 0.72         | 0.58                 | 0.72                      | 27.8           |  |  |
| 11        | T1                                                                                                                                      | All MCs      | 109 57.7                        | 109 57.7                         | 0.238        | 10.8           | LOS A               | 1.7      | 18.3               | 0.72         | 0.58                 | 0.72                      | 16.3           |  |  |
| Appro     | ach                                                                                                                                     |              | 111 58.1                        | 111 58.1                         | 0.238        | 10.9           | LOS A               | 1.7      | 18.3               | 0.72         | 0.58                 | 0.72                      | 16.5           |  |  |
| All Ve    | hicles                                                                                                                                  |              | 1047 13.8                       | 1047 13.8                        | 0.657        | 15.6           | LOS B               | 8.2      | 59.0               | 0.84         | 0.71                 | 0.84                      | 21.5           |  |  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pede      | estrian Mov    | vement                                    | Perform | nance          |                         |              |                      |                |                 |                |       |
|-----------|----------------|-------------------------------------------|---------|----------------|-------------------------|--------------|----------------------|----------------|-----------------|----------------|-------|
| Mov<br>ID | Crossing       | Dem. Aver. Level of<br>Flow Delay Service |         | AVERAGE<br>QUE | BACK OF<br>UE<br>Dist 1 | Prop.<br>Que | Eff.<br>Stop<br>Rate | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |       |
|           |                | ped/h                                     | sec     |                | ped                     | m            |                      |                | sec             | m              | m/sec |
| Sout      | h: Pitt St (S) |                                           |         |                |                         |              |                      |                |                 |                |       |
| P1        | Full           | 1979                                      | 17.5    | LOS B          | 2.4                     | 2.4          | 0.92                 | 0.92           | 34.2            | 20.0           | 0.59  |
| East:     | Park St (E)    |                                           |         |                |                         |              |                      |                |                 |                |       |
| P2        | Full           | 1314                                      | 17.0    | LOS B          | 1.5                     | 1.5          | 0.89                 | 0.89           | 33.7            | 20.0           | 0.59  |
| North     | n: Pitt St (N) |                                           |         |                |                         |              |                      |                |                 |                |       |
| P3        | Full           | 2243                                      | 19.6    | LOS B          | 2.9                     | 2.9          | 0.98                 | 0.98           | 36.3            | 20.0           | 0.55  |
| West      | :: Park St (W) | )                                         |         |                |                         |              |                      |                |                 |                |       |
| P4        | Full           | 1768                                      | 17.3    | LOS B          | 2.1                     | 2.1          | 0.91                 | 0.91           | 34.0            | 20.0           | 0.59  |

| All Pedestrians | 7304 | 18.0 | LOS B | 2.9 | 2.9 | 0.93 | 0.93 | 34.7 | 20.0 | 0.58 |
|-----------------|------|------|-------|-----|-----|------|------|------|------|------|
|-----------------|------|------|-------|-----|-----|------|------|------|------|------|

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 9:54:18 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\06 SM C&SW\_PIT (Block 4).sip9

### Site: PIT01 [PIT01 Pitt St / Bathurst St (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: PIT-N1 [PIT Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

### TCS 2312

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 45 seconds (Network Site User-Given Phase Times)

| Vehic     | le M      | ovemen       | t Perfo             | orma                 | nce                   |                       |              |                |                     |                    |                    |                |                      |                           |                |
|-----------|-----------|--------------|---------------------|----------------------|-----------------------|-----------------------|--------------|----------------|---------------------|--------------------|--------------------|----------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn      | Mov<br>Class | Dem<br>F<br>[ Total | hand<br>lows<br>HV ] | Ar<br>Fl<br>[ Total ] | rival<br>lows<br>HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh. | Of Queue<br>Dist ] | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| South     | · Ditt (  | St (S)       | ven/h               | %                    | ven/n                 | %                     | V/C          | sec            | _                   | ven                | m                  | _              | _                    | _                         | Km/h           |
| South     | . F III • | 51 (3)       |                     |                      |                       |                       |              |                |                     |                    |                    |                |                      |                           |                |
| 2         | T1        | All MCs      | 1                   | 0.0                  | 1                     | 0.0                   | 0.001        | 13.0           | LOS A               | 0.0                | 0.0                | 0.75           | 0.43                 | 0.75                      | 20.6           |
| 3         | R2        | All MCs      | 1                   | 0.0                  | 1                     | 0.0                   | 0.001        | 18.6           | LOS B               | 0.0                | 0.0                | 0.84           | 0.54                 | 0.84                      | 17.9           |
| Appro     | ach       |              | 2                   | 0.0                  | 2                     | 0.0                   | 0.001        | 15.8           | LOS B               | 0.0                | 0.0                | 0.79           | 0.49                 | 0.79                      | 19.2           |
| West:     | Bath      | urst St (N   | /)                  |                      |                       |                       |              |                |                     |                    |                    |                |                      |                           |                |
| 10        | L2        | All MCs      | 252                 | 1.7                  | 252                   | 1.7                   | *0.360       | 14.6           | LOS B               | 4.0                | 28.3               | 0.74           | 0.74                 | 0.74                      | 15.3           |
| 11        | T1        | All MCs      | 938                 | 2.1                  | 938                   | 2.1                   | 0.361        | 8.7            | LOS A               | 4.6                | 33.0               | 0.68           | 0.58                 | 0.68                      | 19.9           |
| Appro     | ach       |              | 1189                | 2.0                  | 1189                  | 2.0                   | 0.361        | 9.9            | LOS A               | 4.6                | 33.0               | 0.69           | 0.61                 | 0.69                      | 18.4           |
| All Ve    | hicles    |              | 1192                | 2.0                  | 1192                  | 2.0                   | 0.361        | 10.0           | LOS A               | 4.6                | 33.0               | 0.69           | 0.61                 | 0.69                      | 18.4           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov     | vement       | Perform        | nance               |                |                          |              |                      |                |                 |                |
|--------------------|--------------|----------------|---------------------|----------------|--------------------------|--------------|----------------------|----------------|-----------------|----------------|
| Mov<br>ID Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>EUE<br>Dist 1 | Prop.<br>Que | Eff.<br>Stop<br>Rate | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|                    | ped/h        | sec            |                     | ped            | m                        |              | Rate                 | sec            | m               | m/sec          |
| South: Pitt St (S) |              |                |                     |                |                          |              |                      |                |                 |                |
| P1 Full            | 1213         | 17.8           | LOS B               | 1.4            | 1.4                      | 0.91         | 0.91                 | 34.5           | 20.0            | 0.58           |
| East: Bathurst St  | (E)          |                |                     |                |                          |              |                      |                |                 |                |
| P2 Full            | 265          | 17.1           | LOS B               | 0.3            | 0.3                      | 0.88         | 0.88                 | 33.8           | 20.0            | 0.59           |
| North: Pitt St (N) |              |                |                     |                |                          |              |                      |                |                 |                |
| P3 Full            | 481          | 17.2           | LOS B               | 0.5            | 0.5                      | 0.88         | 0.88                 | 33.9           | 20.0            | 0.59           |
| West: Bathurst St  | : (W)        |                |                     |                |                          |              |                      |                |                 |                |
| P4 Full            | 918          | 16.7           | LOS B               | 1.0            | 1.0                      | 0.88         | 0.88                 | 33.3           | 20.0            | 0.60           |
| All Pedestrians    | 2877         | 17.3           | LOS B               | 1.4            | 1.4                      | 0.89         | 0.89                 | 34.0           | 20.0            | 0.59           |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 5:32:13 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\06 SM C&SW\_PIT (Block 4).sip9

### Site: PIT02 [PIT02 Castlereagh St / Bathurst St (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: PIT-N1 [PIT Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

### TCS 2281

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 45 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfo             | orma                 | nce                          |                            |              |                |                     |                    |                    |                |                      |                           |                |
|-----------|--------|--------------|---------------------|----------------------|------------------------------|----------------------------|--------------|----------------|---------------------|--------------------|--------------------|----------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F<br>[ Total | nand<br>lows<br>HV ] | Ar<br>Fl<br>[ Total<br>veb/b | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh. | Of Queue<br>Dist ] | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| North     | Cast   | lereagh S    | St (N)              | 70                   | VCH/H                        | 70                         | V/C          | 300            |                     | VCII               |                    |                |                      |                           | KIII/II        |
| 7         | L2     | All MCs      | 8                   | 12.5                 | 8                            | 12.5                       | 0.027        | 16.5           | LOS B               | 0.2                | 1.5                | 0.74           | 0.61                 | 0.74                      | 12.3           |
| 8         | T1     | All MCs      | 143                 | 2.2                  | 143                          | 2.2                        | *0.233       | 12.8           | LOS A               | 2.4                | 16.6               | 0.78           | 0.62                 | 0.78                      | 28.8           |
| Appro     | ach    |              | 152                 | 2.8                  | 152                          | 2.8                        | 0.233        | 13.0           | LOS A               | 2.4                | 16.6               | 0.78           | 0.62                 | 0.78                      | 27.7           |
| West:     | Bath   | urst St (N   | /)                  |                      |                              |                            |              |                |                     |                    |                    |                |                      |                           |                |
| 11        | T1     | All MCs      | 866                 | 1.6                  | 866                          | 1.6                        | *0.306       | 2.7            | LOS A               | 1.3                | 9.4                | 0.25           | 0.23                 | 0.25                      | 31.7           |
| 12        | R2     | All MCs      | 72                  | 8.8                  | 72                           | 8.8                        | 0.306        | 7.8            | LOS A               | 1.0                | 7.6                | 0.25           | 0.36                 | 0.25                      | 32.8           |
| Appro     | ach    |              | 938                 | 2.1                  | 938                          | 2.1                        | 0.306        | 3.0            | LOS A               | 1.3                | 9.4                | 0.25           | 0.24                 | 0.25                      | 31.9           |
| All Ve    | hicles |              | 1089                | 2.2                  | 1089                         | 2.2                        | 0.306        | 4.4            | LOS A               | 2.4                | 16.6               | 0.32           | 0.29                 | 0.32                      | 30.5           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov     | vement       | Perform        | nance               |                |                         |              |                      |                |                 |                |
|--------------------|--------------|----------------|---------------------|----------------|-------------------------|--------------|----------------------|----------------|-----------------|----------------|
| Mov<br>ID Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>UE<br>Dist 1 | Prop.<br>Que | Eff.<br>Stop<br>Rate | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|                    | ped/h        | sec            |                     | ped            | m                       |              | Trate                | sec            | m               | m/sec          |
| South: Castlereag  | gh St (S)    |                |                     |                |                         |              |                      |                |                 |                |
| P1 Full            | 623          | 16.5           | LOS B               | 0.7            | 0.7                     | 0.87         | 0.87                 | 33.1           | 20.0            | 0.60           |
| East: Bathurst St  | (E)          |                |                     |                |                         |              |                      |                |                 |                |
| P2 Full            | 99           | 16.1           | LOS B               | 0.1            | 0.1                     | 0.85         | 0.85                 | 32.8           | 20.0            | 0.61           |
| North: Castlereag  | h St (N)     |                |                     |                |                         |              |                      |                |                 |                |
| P3 Full            | 225          | 16.2           | LOS B               | 0.2            | 0.2                     | 0.85         | 0.85                 | 32.9           | 20.0            | 0.61           |
| West: Bathurst St  | : (W)        |                |                     |                |                         |              |                      |                |                 |                |
| P4 Full            | 235          | 16.2           | LOS B               | 0.3            | 0.3                     | 0.85         | 0.85                 | 32.9           | 20.0            | 0.61           |
| All Pedestrians    | 1182         | 16.3           | LOS B               | 0.7            | 0.7                     | 0.86         | 0.86                 | 33.0           | 20.0            | 0.61           |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 5:32:13 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\06 SM C&SW\_PIT (Block 4).sip9

### Site: PIT03 [PIT03 Park St / Castlereagh St (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: PIT-N1 [PIT Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

### TCS 250

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site User-Given Phase Times)

| Vehic           | le M            | ovemen             | t Perfo                      | orma                      | nce                            |                           |                           |                       |                         |                           |                         |                      |                      |                           |                        |
|-----------------|-----------------|--------------------|------------------------------|---------------------------|--------------------------------|---------------------------|---------------------------|-----------------------|-------------------------|---------------------------|-------------------------|----------------------|----------------------|---------------------------|------------------------|
| Mov<br>ID       | Turn            | Mov<br>Class       | Dem<br>F<br>[ Total<br>veh/h | nand<br>Iows<br>HV ]<br>% | Ar<br>Fl<br>[ Total ]<br>veh/h | rival<br>ows<br>HV ]<br>% | Deg.<br>Satn<br>v/c       | Aver.<br>Delay<br>sec | Level of<br>Service     | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | Prop.<br>Que         | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| East:           | Park \$         | St (E)             |                              |                           |                                |                           |                           |                       |                         |                           |                         |                      |                      |                           |                        |
| 4<br>5<br>Appro | L2<br>T1<br>ach | All MCs<br>All MCs | 46<br>486<br>533             | 2.3<br>7.1<br>6.7         | 46<br>486<br>533               | 2.3<br>7.1<br>6.7         | 0.045<br>* 0.448<br>0.448 | 12.1<br>9.4<br>9.6    | LOS A<br>LOS A<br>LOS A | 0.9<br>10.5<br>10.5       | 6.3<br>75.0<br>75.0     | 0.47<br>0.55<br>0.55 | 0.60<br>0.49<br>0.50 | 0.47<br>0.55<br>0.55      | 11.0<br>13.2<br>13.0   |
| North:          | Cast            | lereagh S          | St (N)                       |                           |                                |                           |                           |                       |                         |                           |                         |                      |                      |                           |                        |
| 7               | L2              | All MCs            | 126                          | 1.7                       | 126                            | 1.7                       | 0.249                     | 30.8                  | LOS C                   | 4.3                       | 30.8                    | 0.82                 | 0.74                 | 0.82                      | 18.4                   |
| 8               | T1              | All MCs            | 88                           | 3.6                       | 88                             | 3.6                       | *0.560                    | 56.6                  | LOS E                   | 6.9                       | 49.7                    | 0.96                 | 0.79                 | 0.96                      | 15.2                   |
| 9               | R2              | All MCs            | 79                           | 5.3                       | 79                             | 5.3                       | 0.560                     | 64.6                  | LOS E                   | 6.9                       | 49.7                    | 0.96                 | 0.79                 | 0.96                      | 15.2                   |
| Appro           | ach             |                    | 294                          | 3.2                       | 294                            | 3.2                       | 0.560                     | 47.7                  | LOS D                   | 6.9                       | 49.7                    | 0.90                 | 0.77                 | 0.90                      | 13.8                   |
| West:           | Park            | St (W)             |                              |                           |                                |                           |                           |                       |                         |                           |                         |                      |                      |                           |                        |
| 11              | T1              | All MCs            | 80                           | 36.8                      | 80                             | 36.8                      | 0.090                     | 9.4                   | LOS A                   | 1.4                       | 10.2                    | 0.50                 | 0.42                 | 0.50                      | 20.8                   |
| 12              | R2              | All MCs            | 18                           | 5.9                       | 18                             | 5.9                       | *0.090                    | 13.3                  | LOS A                   | 1.4                       | 10.2                    | 0.51                 | 0.45                 | 0.51                      | 17.0                   |
| Appro           | ach             |                    | 98                           | 31.2                      | 98                             | 31.2                      | 0.090                     | 10.1                  | LOS A                   | 1.4                       | 10.2                    | 0.50                 | 0.43                 | 0.50                      | 20.1                   |
| All Ve          | hicles          |                    | 924                          | 8.2                       | 924                            | 8.2                       | 0.560                     | 21.8                  | LOS B                   | 10.5                      | 75.0                    | 0.65                 | 0.58                 | 0.65                      | 14.0                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Peo       | destrian Mov    | rement       | Perform        | nance               |                |         |              |              |                |                 |                |
|-----------|-----------------|--------------|----------------|---------------------|----------------|---------|--------------|--------------|----------------|-----------------|----------------|
| Mov<br>ID | /<br>Crossing   | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|           |                 | nod/h        |                |                     | [Ped           | Dist ]  |              | Rate         |                |                 | m/200          |
| Car       | the Castlerage  |              | sec            | _                   | peu            | m       | _            | _            | sec            | 111             | m/sec          |
| 500       | ith: Castlereag | n 51 (5)     |                |                     |                |         |              |              |                |                 |                |
| P1        | Full            | 258          | 38.7           | LOS D               | 0.6            | 0.6     | 0.93         | 0.93         | 55.4           | 20.0            | 0.36           |
| Eas       | t: Park St (E)  |              |                |                     |                |         |              |              |                |                 |                |
| P2        | Full            | 327          | 38.8           | LOS D               | 0.8            | 0.8     | 0.93         | 0.93         | 55.5           | 20.0            | 0.36           |
| Nor       | th: Castlereag  | h St (N)     |                |                     |                |         |              |              |                |                 |                |
| P3        | Full            | 961          | 39.9           | LOS D               | 2.4            | 2.4     | 0.96         | 0.96         | 56.5           | 20.0            | 0.35           |
| We        | st: Park St (W) |              |                |                     |                |         |              |              |                |                 |                |
| P4        | Full            | 81           | 38.4           | LOS D               | 0.2            | 0.2     | 0.93         | 0.93         | 55.1           | 20.0            | 0.36           |

| All Pedestrians | 1627 | 39.4 | LOS D | 2.4 | 2.4 | 0.95 | 0.95 | 56.1 | 20.0 | 0.36 |
|-----------------|------|------|-------|-----|-----|------|------|------|------|------|
|-----------------|------|------|-------|-----|-----|------|------|------|------|------|

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 5:32:13 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\06 SM C&SW\_PIT (Block 4).sip9

Site: PIT04 [PIT04 Park St / Pitt St (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: PIT-N1 [PIT Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

### TCS 235

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site User-Given Phase Times)

| Vehic     | le M      | ovemen       | t Perfo    | orma                  | nce      |                       |              |                |                     |          |          |              |                      |                 |                |
|-----------|-----------|--------------|------------|-----------------------|----------|-----------------------|--------------|----------------|---------------------|----------|----------|--------------|----------------------|-----------------|----------------|
| Mov<br>ID | Turn      | Mov<br>Class | Derr<br>Fl | hand<br>lows<br>มหาวา | Ar<br>Fl | rival<br>ows<br>HV/ 1 | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back | Of Queue | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of | Aver.<br>Speed |
|           |           |              | veh/h      | %                     | veh/h    | %                     | v/c          | sec            |                     | veh      | m        |              | Trate                | Cycles          | km/h           |
| South     | : Pitt \$ | St (S)       |            |                       |          |                       |              |                |                     |          |          |              |                      |                 |                |
| 1         | L2        | All MCs      | 85         | 1.2                   | 85       | 1.2                   | 0.262        | 21.9           | LOS B               | 1.9      | 13.5     | 0.90         | 0.74                 | 0.90            | 18.1           |
| 2         | T1        | All MCs      | 126        | 2.5                   | 126      | 2.5                   | 0.213        | 12.9           | LOS A               | 2.4      | 17.1     | 0.77         | 0.62                 | 0.77            | 28.9           |
| 3         | R2        | All MCs      | 40         | 0.0                   | 40       | 0.0                   | 0.121        | 21.3           | LOS B               | 0.9      | 6.0      | 0.87         | 0.70                 | 0.87            | 14.9           |
| Appro     | ach       |              | 252        | 1.7                   | 252      | 1.7                   | 0.262        | 17.3           | LOS B               | 2.4      | 17.1     | 0.83         | 0.67                 | 0.83            | 23.6           |
| East:     | Park \$   | St (E)       |            |                       |          |                       |              |                |                     |          |          |              |                      |                 |                |
| 5         | T1        | All MCs      | 505        | 7.3                   | 505      | 7.3                   | 0.732        | 12.3           | LOS A               | 10.7     | 76.8     | 0.88         | 0.78                 | 0.89            | 20.8           |
| 6         | R2        | All MCs      | 60         | 3.5                   | 60       | 3.5                   | *0.732       | 17.0           | LOS B               | 10.7     | 76.8     | 0.90         | 0.80                 | 0.91            | 26.5           |
| Appro     | ach       |              | 565        | 6.9                   | 565      | 6.9                   | 0.732        | 12.8           | LOS A               | 10.7     | 76.8     | 0.88         | 0.78                 | 0.89            | 21.7           |
| West:     | Park      | St (W)       |            |                       |          |                       |              |                |                     |          |          |              |                      |                 |                |
| 10        | L2        | All MCs      | 1          | 100.<br>0             | 1        | 100.<br>0             | 0.111        | 15.9           | LOS B               | 0.8      | 8.4      | 0.63         | 0.50                 | 0.63            | 29.2           |
| 11        | T1        | All MCs      | 58         | 52.7                  | 58       | 52.7                  | 0.111        | 8.7            | LOS A               | 0.8      | 8.4      | 0.63         | 0.50                 | 0.63            | 18.2           |
| Appro     | ach       |              | 59         | 53.6                  | 59       | 53.6                  | 0.111        | 8.9            | LOS A               | 0.8      | 8.4      | 0.63         | 0.50                 | 0.63            | 18.7           |
| All Ve    | hicles    |              | 876        | 8.5                   | 876      | 8.5                   | 0.732        | 13.8           | LOS A               | 10.7     | 76.8     | 0.85         | 0.73                 | 0.86            | 22.3           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pe  | destrian Mov    | /ement | Perform | nance    |         |         |       |      |        |        |       |
|-----|-----------------|--------|---------|----------|---------|---------|-------|------|--------|--------|-------|
| Mo  | /<br>Crossing   | Dem.   | Aver.   | Level of | AVERAGE | BACK OF | Prop. | Eff. | Travel | Travel | Aver. |
| שו  | orecomig        | FIOW   | Delay   | Service  | [Ped    | Dist ]  | Que   | Rate | nne    | DISI.  | Speed |
|     |                 | ped/h  | sec     |          | ped     | m       |       |      | sec    | m      | m/sec |
| Soι | th: Pitt St (S) |        |         |          |         |         |       |      |        |        |       |
| P1  | Full            | 865    | 16.8    | LOS B    | 1.1     | 1.1     | 0.88  | 0.88 | 33.5   | 20.0   | 0.60  |
| Eas | st: Park St (E) |        |         |          |         |         |       |      |        |        |       |
| P2  | Full            | 582    | 16.6    | LOS B    | 0.7     | 0.7     | 0.87  | 0.87 | 33.3   | 20.0   | 0.60  |
| Nor | th: Pitt St (N) |        |         |          |         |         |       |      |        |        |       |
| Р3  | Full            | 1477   | 19.1    | LOS B    | 2.0     | 2.0     | 0.95  | 0.95 | 35.8   | 20.0   | 0.56  |
| We  | st: Park St (W  | )      |         |          |         |         |       |      |        |        |       |
| P4  | Full            | 1898   | 17.6    | LOS B    | 2.5     | 2.5     | 0.92  | 0.92 | 34.3   | 20.0   | 0.58  |

| All Pedestrians | 4822 | 17.8 | LOS B | 2.5 | 2.5 | 0.91 | 0.91 | 34.5 | 20.0 | 0.58 |
|-----------------|------|------|-------|-----|-----|------|------|------|------|------|
|-----------------|------|------|-------|-----|-----|------|------|------|------|------|

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 5:32:13 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\06 SM C&SW\_PIT (Block 4).sip9

# CCG MOVEMENT SUMMARY

### □□ Common Control Group: CCG1 [CEN-N1] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

#### ■ Network: CEN-N1 [CEN Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 110 seconds (CCG User-Given Phase Times)

| Vehic     | le M    | ovement      | t Perfo              | orma                 | nce (C              | CCG)                  |              |                |                     |                    |                    |              |                      |                           |                |
|-----------|---------|--------------|----------------------|----------------------|---------------------|-----------------------|--------------|----------------|---------------------|--------------------|--------------------|--------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn    | Mov<br>Class | Dem<br>Fl<br>[ Total | nand<br>lows<br>HV ] | Ar<br>Fl<br>[ Total | rival<br>lows<br>HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh. | Of Queue<br>Dist ] | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| Site: 0   | CEN0    | 1 [CEN01     | Elizab               | eth S                | st / Edd            | y Ave                 | ]            | 360            | _                   | Ven                |                    | _            | _                    | _                         | N111/11        |
| South     | : Eliza | abeth St (   | S)                   |                      |                     |                       | -            |                |                     |                    |                    |              |                      |                           | _              |
| 1a        | L1      | All MCs      | 245                  | 6.0                  | 245                 | 6.0                   | 0.229        | 5.5            | LOS A               | 1.0                | 7.8                | 0.10         | 0.36                 | 0.10                      | 30.2           |
| 2         | T1      | All MCs      | 1244                 | 5.3                  | 1244                | 5.3                   | *0.728       | 13.6           | LOS A               | 8.0                | 57.1               | 0.69         | 0.70                 | 0.69                      | 21.5           |
| Appro     | ach     |              | 1489                 | 5.4                  | 1489                | 5.4                   | 0.728        | 12.3           | LOS A               | 8.0                | 57.1               | 0.59         | 0.64                 | 0.59                      | 20.7           |
| North:    | Eliza   | beth St (N   | ۷)                   |                      |                     |                       |              |                |                     |                    |                    |              |                      |                           |                |
| 8         | T1      | All MCs      | 485                  | 6.1                  | 485                 | 6.1                   | * 0.733      | 29.6           | LOS C               | 21.5               | 155.1              | 0.90         | 0.80                 | 0.90                      | 10.9           |
| 9b        | R3      | All MCs      | 223                  | 15.6                 | 223                 | 15.6                  | 0.485        | 50.8           | LOS D               | 5.6                | 44.8               | 0.96         | 0.79                 | 0.96                      | 9.9            |
| Appro     | ach     |              | 708                  | 9.1                  | 708                 | 9.1                   | 0.733        | 36.3           | LOS C               | 21.5               | 155.1              | 0.92         | 0.80                 | 0.92                      | 10.5           |
| North     | Nest:   | Eddy Ave     | e (NW)               |                      |                     |                       |              |                |                     |                    |                    |              |                      |                           |                |
| 27b       | L3      | All MCs      | 599                  | 7.2                  | 599                 | 7.2                   | *0.749       | 24.0           | LOS B               | 10.5               | 78.1               | 0.89         | 0.83                 | 0.92                      | 16.6           |
| 29a       | R1      | All MCs      | 137                  | 15.4                 | 137                 | 15.4                  | *0.832       | 56.2           | LOS D               | 7.8                | 61.6               | 1.00         | 0.92                 | 1.16                      | 4.0            |
| Appro     | ach     |              | 736                  | 8.7                  | 736                 | 8.7                   | 0.832        | 30.0           | LOS C               | 10.5               | 78.1               | 0.91         | 0.84                 | 0.97                      | 13.4           |
| All Ve    | hicles  |              | 2934                 | 7.1                  | 2934                | 7.1                   | 0.832        | 22.5           | LOS B               | 21.5               | 155.1              | 0.75         | 0.73                 | 0.77                      | 15.1           |
| Site: 0   | EN0     | 2 [CEN02     | Elizab               | eth S                | st / Fov            | eaux                  | St]          |                |                     |                    |                    |              |                      |                           |                |
| South     | : Eliza | abeth St (   | S)                   |                      |                     |                       |              |                |                     |                    |                    |              |                      |                           |                |
| 2         | T1      | All MCs      | 953                  | 6.5                  | 953                 | 6.5                   | 0.636        | 27.9           | LOS B               | 20.4               | 150.5              | 0.86         | 0.76                 | 0.86                      | 13.1           |
| Appro     | ach     |              | 953                  | 6.5                  | 953                 | 6.5                   | 0.636        | 27.9           | LOS B               | 20.4               | 150.5              | 0.86         | 0.76                 | 0.86                      | 13.1           |
| South     | East:   | Foveaux      | St (SE)              | )                    |                     |                       |              |                |                     |                    |                    |              |                      |                           |                |
| 21b       | L3      | All MCs      | 218                  | 7.7                  | 218                 | 7.7                   | 0.370        | 29.8           | LOS C               | 8.3                | 62.2               | 0.76         | 0.76                 | 0.76                      | 18.1           |
| 23a       | R1      | All MCs      | 537                  | 3.5                  | 537                 | 3.5                   | 0.628        | 26.9           | LOS B               | 11.1               | 80.2               | 0.81         | 0.78                 | 0.81                      | 12.3           |
| Appro     | ach     |              | 755                  | 4.7                  | 755                 | 4.7                   | 0.628        | 27.8           | LOS B               | 11.1               | 80.2               | 0.79         | 0.78                 | 0.79                      | 14.4           |
| North:    | Eliza   | beth St (N   | ۷)                   |                      |                     |                       |              |                |                     |                    |                    |              |                      |                           |                |
| 8         | T1      | All MCs      | 622                  | 8.1                  | 622                 | 8.1                   | 0.385        | 10.4           | LOS A               | 7.9                | 57.1               | 0.36         | 0.30                 | 0.36                      | 24.7           |
| Appro     | ach     |              | 622                  | 8.1                  | 622                 | 8.1                   | 0.385        | 10.4           | LOS A               | 7.9                | 57.1               | 0.36         | 0.30                 | 0.36                      | 24.7           |
| All Ve    | hicles  |              | 2329                 | 6.4                  | 2329                | 6.4                   | 0.636        | 23.2           | LOS B               | 20.4               | 150.5              | 0.70         | 0.64                 | 0.70                      | 15.8           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Thursday, 31 October 2024 9:32:00 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\07 SM C&SW\_CEN (Block 4).sip9
V Site: CEN03 [CEN03 Elizabeth St / Cooper St (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA Site Category: (None) Give-Way (Two-Way)

| Vehio     | cle M   | ovemen       | t Perfo          | orma         | nce              |               |              |                |                     |               |            |                |              |                 |                |
|-----------|---------|--------------|------------------|--------------|------------------|---------------|--------------|----------------|---------------------|---------------|------------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn    | Mov<br>Class | Dem<br>F         | nand<br>Iows | Ar<br>F          | rival<br>Iows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Bac       | k Of Queu  | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |         |              | [ Total<br>veh/h | HV ]<br>%    | [ Total<br>veh/h | HV ]<br>%     | v/c          | sec            |                     | [ Veh.<br>veh | Dist]<br>m |                | Rate         | Cycles          | km/h           |
| South     | East:   | Cooper S     | St (SE)          |              |                  |               |              |                |                     |               |            |                |              |                 |                |
| 21b       | L3      | All MCs      | 78               | 4.1          | 78               | 4.1           | 0.091        | 6.9            | LOS A               | 0.4           | 2.6        | 0.54           | 0.70         | 0.54            | 33.2           |
| Appro     | ach     |              | 78               | 4.1          | 78               | 4.1           | 0.091        | 6.9            | LOS A               | 0.4           | 2.6        | 0.54           | 0.70         | 0.54            | 33.2           |
| North     | : Eliza | ibeth St (   | N)               |              |                  |               |              |                |                     |               |            |                |              |                 |                |
| 7a        | L1      | All MCs      | 78               | 4.1          | 78               | 4.1           | 0.224        | 3.6            | LOS A               | 0.7           | 5.3        | 0.22           | 0.23         | 0.22            | 36.7           |
| 8         | T1      | All MCs      | 747              | 9.4          | 747              | 9.4           | 0.224        | 0.2            | LOS A               | 0.7           | 5.3        | 0.08           | 0.08         | 0.08            | 38.4           |
| Appro     | ach     |              | 825              | 8.9          | 825              | 8.9           | 0.224        | 0.5            | NA                  | 0.7           | 5.3        | 0.09           | 0.10         | 0.09            | 38.1           |
| All Ve    | hicles  | ;            | 903              | 8.5          | 903              | 8.5           | 0.224        | 1.1            | NA                  | 0.7           | 5.3        | 0.13           | 0.15         | 0.13            | 36.9           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Wednesday, 30 October 2024 10:43:00 AM

Site: CEN05 [CEN05 Elizabeth St / Randle St (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: CEN-N2 [CEN Network 2 (Network Folder: Block 4 Network - 2024 AM Peak)]

### TCS 2916

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 110 seconds (Site User-Given Phase Times)

| Vehio     | le M   | ovemen       | t Perfo          | orma         | nce              |               |              |                |                     |               |            |                |              |                 |                |
|-----------|--------|--------------|------------------|--------------|------------------|---------------|--------------|----------------|---------------------|---------------|------------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F         | nand<br>Iows | Ar<br>F          | rival<br>Iows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back      | Of Queue   | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total<br>veh/h | HV ]<br>%    | [ Total<br>veh/h | HV ]<br>%     | v/c          | sec            |                     | [ Veh.<br>veh | Dist]<br>m |                | Rate         | Cycles          | km/h           |
| North     | Eliza  | beth St (I   | N)               |              |                  |               |              |                |                     |               |            |                |              |                 |                |
| 8         | T1     | All MCs      | 757              | 8.8          | 757              | 8.8           | 0.258        | 2.4            | LOS A               | 4.6           | 34.4       | 0.25           | 0.22         | 0.25            | 33.9           |
| Appro     | ach    |              | 757              | 8.8          | 757              | 8.8           | 0.258        | 2.4            | LOS A               | 4.6           | 34.4       | 0.25           | 0.22         | 0.25            | 33.9           |
| South     | West:  | Randle S     | St (SW)          | )            |                  |               |              |                |                     |               |            |                |              |                 |                |
| 30a       | L1     | All MCs      | 958              | 6.5          | 958              | 6.5           | *0.404       | 7.3            | LOS A               | 7.0           | 51.8       | 0.24           | 0.54         | 0.24            | 29.5           |
| 32b       | R3     | All MCs      | 68               | 10.8         | 68               | 10.8          | 0.404        | 4.2            | LOS A               | 0.0           | 0.0        | 0.00           | 0.43         | 0.00            | 31.9           |
| Appro     | ach    |              | 1026             | 6.8          | 1026             | 6.8           | 0.404        | 7.1            | LOS A               | 7.0           | 51.8       | 0.22           | 0.53         | 0.22            | 29.5           |
| All Ve    | hicles |              | 1783             | 7.6          | 1783             | 7.6           | 0.404        | 5.1            | LOS A               | 7.0           | 51.8       | 0.23           | 0.40         | 0.23            | 30.8           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov   | /ement     | Perform | nance    |              |              |       |              |        |        |       |
|------------------|------------|---------|----------|--------------|--------------|-------|--------------|--------|--------|-------|
| Mov              | Dem.       | Aver.   | Level of | AVERAGE      | BACK OF      | Prop. | Eff.         | Travel | Travel | Aver. |
| ID Crossing      | Flow       | Delay   | Service  | QUE<br>[ Ped | UE<br>Dist ] | Que   | Stop<br>Rate | Time   | Dist.  | Speed |
|                  | ped/h      | sec     |          | ped          | m            |       |              | sec    | m      | m/sec |
| South: Elizabeth | St (S)     |         |          |              |              |       |              |        |        |       |
| P1 Full          | 217        | 48.7    | LOS E    | 0.6          | 0.6          | 0.94  | 0.94         | 215.3  | 200.0  | 0.93  |
| SouthWest: Rand  | lle St (S\ | N)      |          |              |              |       |              |        |        |       |
| P8 Full          | 248        | 22.4    | LOS C    | 0.5          | 0.5          | 0.85  | 0.85         | 189.1  | 200.0  | 1.06  |
| All Pedestrians  | 465        | 34.6    | LOS D    | 0.6          | 0.6          | 0.89  | 0.89         | 201.3  | 200.0  | 0.99  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Wednesday, 30 October 2024 10:43:00 AM

# CCG MOVEMENT SUMMARY

### □□ Common Control Group: CCG1 [CCGName] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

### ■ Network: CEN-N1 [CEN Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 110 seconds (CCG User-Given Phase Times)

| Vehic     | le M    | ovemen       | t Perfo  | orma                  | nce (0              | CCG)                   |              |                |                     |          |          |                |                      |                 |                |
|-----------|---------|--------------|----------|-----------------------|---------------------|------------------------|--------------|----------------|---------------------|----------|----------|----------------|----------------------|-----------------|----------------|
| Mov<br>ID | Turn    | Mov<br>Class | Dem<br>F | nand<br>lows<br>H\/ 1 | Ar<br>Fl<br>[ Total | rival<br>lows<br>HV/ 1 | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back | Of Queue | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of | Aver.<br>Speed |
|           |         |              | veh/h    | %                     | veh/h               | <u>%</u>               | v/c          | sec            |                     | veh      | m        |                | 110                  |                 | km/h           |
| Site: 0   | CEN0    | 1 [CEN01     | Elizab   | eth S                 | st / Edd            | y Ave                  | ]            |                |                     |          |          |                |                      |                 |                |
| South     | : Eliza | abeth St (   | S)       |                       |                     |                        |              |                |                     |          |          |                |                      |                 |                |
| 1a        | L1      | All MCs      | 433      | 2.4                   | 433                 | 2.4                    | 0.409        | 4.3            | LOS A               | 5.4      | 41.1     | 0.29           | 0.49                 | 0.29            | 25.6           |
| 2         | T1      | All MCs      | 964      | 4.1                   | 964                 | 4.1                    | *0.618       | 13.1           | LOS A               | 8.1      | 57.1     | 0.69           | 0.67                 | 0.69            | 20.9           |
| Appro     | ach     |              | 1397     | 3.6                   | 1397                | 3.6                    | 0.618        | 10.4           | LOS A               | 8.1      | 57.1     | 0.57           | 0.61                 | 0.57            | 21.8           |
| North:    | Eliza   | beth St (I   | N)       |                       |                     |                        |              |                |                     |          |          |                |                      |                 |                |
| 8         | T1      | All MCs      | 546      | 4.0                   | 546                 | 4.0                    | *0.822       | 39.7           | LOS C               | 28.0     | 198.2    | 0.98           | 0.92                 | 1.05            | 8.7            |
| 9b        | R3      | All MCs      | 504      | 6.7                   | 504                 | 6.7                    | *0.864       | 63.7           | LOS E               | 15.2     | 112.5    | 1.00           | 1.03                 | 1.27            | 8.7            |
| Appro     | ach     |              | 1051     | 5.3                   | 1051                | 5.3                    | 0.864        | 51.2           | LOS D               | 28.0     | 198.2    | 0.99           | 0.97                 | 1.16            | 8.5            |
| North     | Nest:   | Eddy Ave     | e (NW)   |                       |                     |                        |              |                |                     |          |          |                |                      |                 |                |
| 27b       | L3      | All MCs      | 633      | 5.0                   | 633                 | 5.0                    | 0.624        | 16.9           | LOS B               | 8.3      | 60.6     | 0.73           | 0.75                 | 0.73            | 20.0           |
| 29a       | R1      | All MCs      | 136      | 14.0                  | 136                 | 14.0                   | *0.627       | 49.4           | LOS D               | 7.0      | 54.6     | 0.96           | 0.79                 | 0.98            | 4.5            |
| Appro     | ach     |              | 768      | 6.6                   | 768                 | 6.6                    | 0.627        | 22.6           | LOS B               | 8.3      | 60.6     | 0.77           | 0.76                 | 0.78            | 16.1           |
| All Ve    | hicles  |              | 3216     | 4.9                   | 3216                | 4.9                    | 0.864        | 26.6           | LOS B               | 28.0     | 198.2    | 0.75           | 0.76                 | 0.81            | 13.5           |
| Site: 0   | CEN0    | 2 [CEN02     | l Elizab | eth S                 | st / Fov            | eaux                   | St]          |                |                     |          |          |                |                      |                 |                |
| South     | : Eliza | abeth St (   | S)       |                       |                     |                        |              |                |                     |          |          |                |                      |                 |                |
| 2         | T1      | All MCs      | 694      | 4.9                   | 694                 | 4.9                    | 0.554        | 32.1           | LOS C               | 15.2     | 110.8    | 0.87           | 0.75                 | 0.87            | 11.8           |
| Appro     | ach     |              | 694      | 4.9                   | 694                 | 4.9                    | 0.554        | 32.1           | LOS C               | 15.2     | 110.8    | 0.87           | 0.75                 | 0.87            | 11.8           |
| South     | East:   | Foveaux      | St (SE   | )                     |                     |                        |              |                |                     |          |          |                |                      |                 |                |
| 21b       | L3      | All MCs      | 176      | 2.4                   | 176                 | 2.4                    | 0.239        | 23.1           | LOS B               | 5.6      | 40.3     | 0.64           | 0.72                 | 0.64            | 20.5           |
| 23a       | R1      | All MCs      | 703      | 2.4                   | 703                 | 2.4                    | 0.890        | 50.5           | LOS D               | 22.5     | 160.7    | 0.95           | 1.07                 | 1.25            | 7.6            |
| Appro     | ach     |              | 879      | 2.4                   | 879                 | 2.4                    | 0.890        | 45.0           | LOS D               | 22.5     | 160.7    | 0.89           | 1.00                 | 1.13            | 9.8            |
| North     | Eliza   | beth St (I   | N)       |                       |                     |                        |              |                |                     |          |          |                |                      |                 |                |
| 8         | T1      | All MCs      | 682      | 6.0                   | 682                 | 6.0                    | 0.500        | 10.8           | LOS A               | 8.1      | 57.1     | 0.37           | 0.32                 | 0.37            | 24.4           |
| Appro     | ach     |              | 682      | 6.0                   | 682                 | 6.0                    | 0.500        | 10.8           | LOS A               | 8.1      | 57.1     | 0.37           | 0.32                 | 0.37            | 24.4           |
| All Ve    | hicles  |              | 2255     | 4.2                   | 2255                | 4.2                    | 0.890        | 30.7           | LOS C               | 22.5     | 160.7    | 0.73           | 0.72                 | 0.82            | 13.1           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 5 November 2024 12:23:52 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\07 SM C&SW\_CEN (Block 4).sip9

V Site: CEN03 [CEN03 Elizabeth St / Cooper St (Site Folder: Block 4 Model - 2024 PM Peak)] **Output produced by SIDRA INTERSECTION Version: 9.1.6.228** 

Stop

Rate

Que

Dist ]

Aver

Speed

km/h

Aver.

Cycles

NA Site Category: (None) Give-Way (Two-Way)

### Vehicle Movement Performance Deg. Mov Turn Mov Level of 95% Back Of Queue Prop. Demand Arrival ID Class Flows Satn Delay Service Flows [ Total HV ] [ Total HV ] [Veh. veh/h SouthEast: Cooper St (SE)

|        |        | •           | · · / |     |      |     |       |     |       |     |     |      |      |      |      |
|--------|--------|-------------|-------|-----|------|-----|-------|-----|-------|-----|-----|------|------|------|------|
| 21b    | L3     | All MCs     | 93    | 2.3 | 93   | 2.3 | 0.135 | 8.4 | LOS A | 0.5 | 3.7 | 0.61 | 0.80 | 0.61 | 32.2 |
| Appro  | ach    |             | 93    | 2.3 | 93   | 2.3 | 0.135 | 8.4 | LOS A | 0.5 | 3.7 | 0.61 | 0.80 | 0.61 | 32.2 |
| North: | Eliza  | ibeth St (N | 1)    |     |      |     |       |     |       |     |     |      |      |      |      |
| 7a     | L1     | All MCs     | 57    | 0.0 | 57   | 0.0 | 0.298 | 3.5 | LOS A | 0.6 | 4.0 | 0.12 | 0.12 | 0.12 | 37.5 |
| 8      | T1     | All MCs     | 1068  | 4.7 | 1068 | 4.7 | 0.298 | 0.1 | LOS A | 0.6 | 4.0 | 0.05 | 0.05 | 0.05 | 39.0 |
| Appro  | ach    |             | 1125  | 4.5 | 1125 | 4.5 | 0.298 | 0.3 | NA    | 0.6 | 4.0 | 0.05 | 0.06 | 0.05 | 38.8 |
| All Ve | hicles |             | 1218  | 43  | 1218 | 43  | 0 298 | 0.9 | NA    | 0.6 | 40  | 0 10 | 0 11 | 0 10 | 37.3 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Wednesday, 30 October 2024 10:43:02 AM

Site: CEN05 [CEN05 Elizabeth St / Randle St (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

### TCS 2916

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 110 seconds (Site User-Given Phase Times)

| Vehio     | cle M   | ovement      | t Perfo            | orma         | nce                |               |                |                |                     |               |            |              |              |                 |                |
|-----------|---------|--------------|--------------------|--------------|--------------------|---------------|----------------|----------------|---------------------|---------------|------------|--------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn    | Mov<br>Class | Dem<br>Fl          | nand<br>lows | Ar<br>Fl           | rival<br>lows | Deg.<br>Satn   | Aver.<br>Delay | Level of<br>Service | 95% Back      | Of Queue   | Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |         |              | [ Total  <br>veh/h | HV ]<br>%    | [ Total  <br>veh/h | HV ]<br>%     | v/c            | sec            |                     | [ Veh.<br>veh | Dist]<br>m |              | Rate         | Cycles          | km/h           |
| North     | : Eliza | beth St (N   | ۷)                 |              |                    |               |                |                |                     |               |            |              |              |                 |                |
| 8         | T1      | All MCs      | 1044               | 4.6          | 1044               | 4.6           | 0.346          | 2.9            | LOS A               | 7.3           | 52.9       | 0.29         | 0.26         | 0.29            | 32.9           |
| Appro     | ach     |              | 1044               | 4.6          | 1044               | 4.6           | 0.346          | 2.9            | LOS A               | 7.3           | 52.9       | 0.29         | 0.26         | 0.29            | 32.9           |
| South     | West:   | Randle S     | St (SW)            |              |                    |               |                |                |                     |               |            |              |              |                 |                |
| 30a       | L1      | All MCs      | 721                | 5.7          | 721                | 5.7           | <b>*</b> 0.313 | 6.4            | LOS A               | 4.8           | 35.5       | 0.23         | 0.53         | 0.23            | 30.3           |
| 32b       | R3      | All MCs      | 80                 | 2.6          | 80                 | 2.6           | 0.313          | 4.2            | LOS A               | 0.0           | 0.0        | 0.00         | 0.44         | 0.00            | 31.7           |
| Appro     | ach     |              | 801                | 5.4          | 801                | 5.4           | 0.313          | 6.2            | LOS A               | 4.8           | 35.5       | 0.21         | 0.52         | 0.21            | 30.4           |
| All Ve    | hicles  |              | 1845               | 5.0          | 1845               | 5.0           | 0.346          | 4.3            | LOS A               | 7.3           | 52.9       | 0.25         | 0.37         | 0.25            | 31.4           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov   | vement     | Perform | nance    |              |              |       |              |        |        |       |
|------------------|------------|---------|----------|--------------|--------------|-------|--------------|--------|--------|-------|
| Mov              | Dem.       | Aver.   | Level of | AVERAGE      | BACK OF      | Prop. | Eff.         | Travel | Travel | Aver. |
| ID Crossing      | Flow       | Delay   | Service  | QUE<br>[ Ped | UE<br>Dist ] | Que   | Stop<br>Rate | Time   | Dist.  | Speed |
|                  | ped/h      | sec     |          | ped          | m            |       |              | sec    | m      | m/sec |
| South: Elizabeth | St (S)     |         |          |              |              |       |              |        |        |       |
| P1 Full          | 348        | 48.9    | LOS E    | 1.0          | 1.0          | 0.95  | 0.95         | 215.6  | 200.0  | 0.93  |
| SouthWest: Rand  | lle St (S\ | N)      |          |              |              |       |              |        |        |       |
| P8 Full          | 366        | 22.9    | LOS C    | 0.7          | 0.7          | 0.85  | 0.85         | 189.5  | 200.0  | 1.06  |
| All Pedestrians  | 715        | 35.6    | LOS D    | 1.0          | 1.0          | 0.90  | 0.90         | 202.2  | 200.0  | 0.99  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Wednesday, 30 October 2024 10:43:02 AM

# CCG MOVEMENT SUMMARY

### □□ Common Control Group: CCG1 [CCGName] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

### ■ Network: CEN-N1 [CEN Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 105 seconds (CCG User-Given Phase Times)

| Vehic     | le M           | ovemen       | t Perfo             | orma                 | nce (C                | CCG)                  |              |                |                     |                    |                    |                |                      |                           |                |
|-----------|----------------|--------------|---------------------|----------------------|-----------------------|-----------------------|--------------|----------------|---------------------|--------------------|--------------------|----------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn           | Mov<br>Class | Dem<br>F<br>[ Total | nand<br>lows<br>HV ] | Ar<br>Fl<br>[ Total ] | rival<br>lows<br>HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh. | Of Queue<br>Dist ] | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| Site: (   |                |              | veh/h               | %<br>oth S           | veh/h                 | %<br>v Ave            | v/c          | sec            | -                   | veh                | m                  | -              | -                    | -                         | km/h           |
| South     |                | beth St (    | S)                  | euro                 |                       | улче                  | .1           |                |                     |                    |                    |                |                      |                           |                |
| 19        | . בוובנ<br>  1 |              | 201                 | 16                   | 201                   | 16                    | 0 405        | 3.1            |                     | 62                 | <b>11 1</b>        | 0.46           | 0.49                 | 0.46                      | 24.3           |
| 2         | T1             | All MCs      | 965                 | 3.7                  | 965                   | 3.7                   | * 0.405      | 6.9            | LOSA                | 6.2                | 44.4               | 0.51           | 0.46                 | 0.51                      | 27.5           |
| Appro     | ach            |              | 1166                | 3.3                  | 1166                  | 3.3                   | 0.405        | 6.2            | LOSA                | 6.2                | 44.4               | 0.50           | 0.46                 | 0.50                      | 27.1           |
| North:    | Eliza          | beth St (I   | (N                  |                      |                       |                       |              |                |                     |                    |                    |                |                      |                           |                |
| 8         | T1             | All MCs      | 425                 | 5.7                  | 425                   | 5.7                   | 0.288        | 22.8           | LOS B               | 7.3                | 53.9               | 0.72           | 0.61                 | 0.72                      | 13.0           |
| 9b        | R3             | All MCs      | 224                 | 7.5                  | 224                   | 7.5                   | 0.458        | 48.5           | LOS D               | 5.4                | 40.1               | 0.95           | 0.78                 | 0.95                      | 10.3           |
| Appro     | ach            |              | 649                 | 6.3                  | 649                   | 6.3                   | 0.458        | 31.7           | LOS C               | 7.3                | 53.9               | 0.80           | 0.67                 | 0.80                      | 11.6           |
| North     | Nest:          | Eddy Ave     | e (NW)              |                      |                       |                       |              |                |                     |                    |                    |                |                      |                           |                |
| 27b       | L3             | All MCs      | 462                 | 3.6                  | 462                   | 3.6                   | *0.573       | 21.1           | LOS B               | 6.7                | 48.4               | 0.80           | 0.76                 | 0.80                      | 17.8           |
| 29a       | R1             | All MCs      | 106                 | 5.0                  | 106                   | 5.0                   | *0.615       | 50.4           | LOS D               | 5.4                | 39.2               | 0.98           | 0.79                 | 1.00                      | 4.5            |
| Appro     | ach            |              | 568                 | 3.9                  | 568                   | 3.9                   | 0.615        | 26.6           | LOS B               | 6.7                | 48.4               | 0.83           | 0.76                 | 0.84                      | 14.5           |
| All Ve    | hicles         |              | 2384                | 4.3                  | 2384                  | 4.3                   | 0.615        | 18.0           | LOS B               | 7.3                | 53.9               | 0.66           | 0.59                 | 0.66                      | 17.2           |
| Site: 0   | CEN0           | 2 [CEN02     | Elizab              | eth S                | st / Fove             | eaux                  | St]          |                |                     |                    |                    |                |                      |                           |                |
| South     | : Eliza        | abeth St (   | S)                  |                      |                       |                       |              |                |                     |                    |                    |                |                      |                           |                |
| 2         | T1             | All MCs      | 749                 | 3.7                  | 749                   | 3.7                   | *0.498       | 25.3           | LOS B               | 14.3               | 103.5              | 0.80           | 0.70                 | 0.80                      | 13.9           |
| Appro     | ach            |              | 749                 | 3.7                  | 749                   | 3.7                   | 0.498        | 25.3           | LOS B               | 14.3               | 103.5              | 0.80           | 0.70                 | 0.80                      | 13.9           |
| South     | East:          | Foveaux      | St (SE              | )                    |                       |                       |              |                |                     |                    |                    |                |                      |                           |                |
| 21b       | L3             | All MCs      | 143                 | 2.9                  | 143                   | 2.9                   | 0.232        | 27.2           | LOS B               | 4.9                | 35.2               | 0.71           | 0.73                 | 0.71                      | 19.0           |
| 23a       | R1             | All MCs      | 417                 | 2.8                  | 417                   | 2.8                   | 0.310        | 21.1           | LOS B               | 7.0                | 50.2               | 0.66           | 0.69                 | 0.66                      | 14.4           |
| Appro     | ach            |              | 560                 | 2.8                  | 560                   | 2.8                   | 0.310        | 22.7           | LOS B               | 7.0                | 50.2               | 0.68           | 0.70                 | 0.68                      | 16.1           |
| North:    | Eliza          | beth St (I   | V)                  |                      |                       |                       |              |                |                     |                    |                    |                |                      |                           |                |
| 8         | T1             | All MCs      | 532                 | 5.5                  | 532                   | 5.5                   | 0.307        | 9.2            | LOS A               | 6.6                | 47.3               | 0.32           | 0.27                 | 0.32                      | 25.9           |
| Appro     | ach            |              | 532                 | 5.5                  | 532                   | 5.5                   | 0.307        | 9.2            | LOS A               | 6.6                | 47.3               | 0.32           | 0.27                 | 0.32                      | 25.9           |
| All Ve    | hicles         |              | 1841                | 3.9                  | 1841                  | 3.9                   | 0.498        | 19.9           | LOS B               | 14.3               | 103.5              | 0.62           | 0.57                 | 0.62                      | 17.2           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Wednesday, 30 October 2024 9:29:33 АЙ

V Site: CEN03 [CEN03 Elizabeth St / Cooper St (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA Site Category: (None) Give-Way (Two-Way)

| Vehi      | cle M   | ovemen       | t Perfo          | orma         | nce              |               |              |                |                     |               |             |                |              |                 |                |
|-----------|---------|--------------|------------------|--------------|------------------|---------------|--------------|----------------|---------------------|---------------|-------------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn    | Mov<br>Class | Dem<br>F         | nand<br>Iows | Ar<br>F          | rival<br>Iows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Bac       | k Of Queue  | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |         |              | [ Total<br>veh/h | HV ]<br>%    | [ Total<br>veh/h | HV ]<br>%     | v/c          | sec            |                     | [ Veh.<br>veh | Dist ]<br>m |                | Rate         | Cycles          | km/h           |
| South     | East:   | Cooper S     | St (SE)          |              |                  |               |              |                |                     |               |             |                |              |                 |                |
| 21b       | L3      | All MCs      | 71               | 0.0          | 71               | 0.0           | 0.068        | 5.9            | LOS A               | 0.3           | 1.9         | 0.47           | 0.62         | 0.47            | 33.9           |
| Appro     | bach    |              | 71               | 0.0          | 71               | 0.0           | 0.068        | 5.9            | LOS A               | 0.3           | 1.9         | 0.47           | 0.62         | 0.47            | 33.9           |
| North     | : Eliza | beth St (l   | N)               |              |                  |               |              |                |                     |               |             |                |              |                 |                |
| 7a        | L1      | All MCs      | 41               | 2.6          | 41               | 2.6           | 0.180        | 2.8            | LOS A               | 0.3           | 2.5         | 0.10           | 0.11         | 0.10            | 37.6           |
| 8         | T1      | All MCs      | 668              | 5.7          | 668              | 5.7           | 0.180        | 0.1            | LOS A               | 0.3           | 2.5         | 0.04           | 0.04         | 0.04            | 39.2           |
| Appro     | bach    |              | 709              | 5.5          | 709              | 5.5           | 0.180        | 0.2            | NA                  | 0.3           | 2.5         | 0.04           | 0.05         | 0.04            | 39.0           |
| All Ve    | hicles  |              | 780              | 5.0          | 780              | 5.0           | 0.180        | 0.7            | NA                  | 0.3           | 2.5         | 0.08           | 0.10         | 0.08            | 37.7           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Wednesday, 30 October 2024 10:43:03 AM

### Site: CEN05 [CEN05 Elizabeth St / Randle St (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

### ■ Network: CEN-N2 [CEN Network 2 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

### TCS 2916

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 105 seconds (Site User-Given Phase Times)

| Vehio     | cle M   | ovemen       | t Perfo          | orma         | nce              |               |              |                |                     |               |            |                |              |                 |                |
|-----------|---------|--------------|------------------|--------------|------------------|---------------|--------------|----------------|---------------------|---------------|------------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn    | Mov<br>Class | Derr<br>Fl       | nand<br>lows | Ar<br>Fl         | rival<br>lows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back      | Of Queue   | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |         |              | [ Total<br>veh/h | HV ]<br>%    | [ Total<br>veh/h | HV ]<br>%     | v/c          | sec            |                     | [ Veh.<br>veh | Dist]<br>m |                | Rate         | Cycles          | km/h           |
| North     | : Eliza | beth St (    | N)               |              |                  |               |              |                |                     |               |            |                |              |                 |                |
| 8         | T1      | All MCs      | 665              | 5.5          | 665              | 5.5           | 0.220        | 2.2            | LOS A               | 3.7           | 26.9       | 0.24           | 0.21         | 0.24            | 34.4           |
| Appro     | ach     |              | 665              | 5.5          | 665              | 5.5           | 0.220        | 2.2            | LOS A               | 3.7           | 26.9       | 0.24           | 0.21         | 0.24            | 34.4           |
| South     | West:   | Randle       | St (SW)          |              |                  |               |              |                |                     |               |            |                |              |                 |                |
| 30a       | L1      | All MCs      | 744              | 5.0          | 744              | 5.0           | *0.310       | 6.2            | LOS A               | 4.5           | 32.7       | 0.22           | 0.51         | 0.22            | 30.6           |
| 32b       | R3      | All MCs      | 44               | 4.8          | 44               | 4.8           | 0.310        | 4.2            | LOS A               | 0.0           | 0.0        | 0.00           | 0.43         | 0.00            | 31.9           |
| Appro     | ach     |              | 788              | 4.9          | 788              | 4.9           | 0.310        | 6.1            | LOS A               | 4.5           | 32.7       | 0.21           | 0.51         | 0.21            | 30.6           |
| All Ve    | hicles  |              | 1454             | 5.2          | 1454             | 5.2           | 0.310        | 4.3            | LOS A               | 4.5           | 32.7       | 0.22           | 0.37         | 0.22            | 31.8           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov   | vement     | Perform | nance    |              |              |       |              |        |        |       |
|------------------|------------|---------|----------|--------------|--------------|-------|--------------|--------|--------|-------|
| Mov              | Dem.       | Aver.   | Level of | AVERAGE      | BACK OF      | Prop. | Eff.         | Travel | Travel | Aver. |
| ID Crossing      | Flow       | Delay   | Service  | QUE<br>[ Ped | UE<br>Dist ] | Que   | Stop<br>Rate | Time   | Dist.  | Speed |
|                  | ped/h      | sec     |          | ped          | m            |       |              | sec    | m      | m/sec |
| South: Elizabeth | St (S)     |         |          |              |              |       |              |        |        |       |
| P1 Full          | 93         | 45.9    | LOS E    | 0.3          | 0.3          | 0.94  | 0.94         | 212.6  | 200.0  | 0.94  |
| SouthWest: Rand  | lle St (S\ | N)      |          |              |              |       |              |        |        |       |
| P8 Full          | 85         | 20.4    | LOS C    | 0.1          | 0.1          | 0.83  | 0.83         | 187.0  | 200.0  | 1.07  |
| All Pedestrians  | 178        | 33.7    | LOS D    | 0.3          | 0.3          | 0.89  | 0.89         | 200.3  | 200.0  | 1.00  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Wednesday, 30 October 2024 10:43:03 AM

Site: WLO01 [WLO01 Botany Rd / Raglan St / Henderson Rd (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: WLO-N1 [WLO Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

TCS 47

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 115 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfo             | orma                 | nce                 |                       |              |                |                     |                    |                    |              |                      |                           |                |
|-----------|--------|--------------|---------------------|----------------------|---------------------|-----------------------|--------------|----------------|---------------------|--------------------|--------------------|--------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Den<br>F<br>[ Total | nand<br>lows<br>HV ] | Ar<br>Fl<br>[ Total | rival<br>lows<br>HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh. | Of Queue<br>Dist ] | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| South     | . Doto | my Dd (S     | veh/h               | %                    | veh/h               | %                     | V/C          | sec            | _                   | veh                | m                  |              |                      | _                         | km/h           |
| South     | . DOla |              | )                   |                      |                     |                       |              |                |                     |                    |                    |              |                      |                           |                |
| 1         | L2     | All MCs      | 828                 | 6.9                  | 828                 | 6.9                   | *0.689       | 30.9           | LOS C               | 18.0               | 133.5              | 0.82         | 0.81                 | 0.82                      | 17.8           |
| Appro     | ach    |              | 828                 | 6.9                  | 828                 | 6.9                   | 0.689        | 30.9           | LOS C               | 18.0               | 133.5              | 0.82         | 0.81                 | 0.82                      | 17.8           |
| East:     | Ragla  | n St (E)     |                     |                      |                     |                       |              |                |                     |                    |                    |              |                      |                           |                |
| 4         | L2     | All MCs      | 24                  | 8.7                  | 24                  | 8.7                   | 0.432        | 58.6           | LOS E               | 5.3                | 39.2               | 0.97         | 0.77                 | 0.97                      | 4.8            |
| 5         | T1     | All MCs      | 183                 | 7.5                  | 183                 | 7.5                   | 0.432        | 50.2           | LOS D               | 5.8                | 42.9               | 0.96         | 0.76                 | 0.96                      | 4.9            |
| Appro     | ach    |              | 207                 | 7.6                  | 207                 | 7.6                   | 0.432        | 51.2           | LOS D               | 5.8                | 42.9               | 0.96         | 0.76                 | 0.96                      | 4.9            |
| North:    | Bota   | ny Rd (N)    | )                   |                      |                     |                       |              |                |                     |                    |                    |              |                      |                           |                |
| 7         | L2     | All MCs      | 48                  | 17.4                 | 48                  | 17.4                  | 0.320        | 11.4           | LOS A               | 7.7                | 58.8               | 0.37         | 0.37                 | 0.37                      | 35.6           |
| 8         | T1     | All MCs      | 783                 | 9.5                  | 783                 | 9.5                   | 0.320        | 5.3            | LOS A               | 7.9                | 59.8               | 0.37         | 0.35                 | 0.37                      | 36.1           |
| 9         | R2     | All MCs      | 480                 | 5.0                  | 480                 | 5.0                   | *0.681       | 51.8           | LOS D               | 12.8               | 93.7               | 0.98         | 0.84                 | 1.00                      | 10.8           |
| Appro     | ach    |              | 1312                | 8.2                  | 1312                | 8.2                   | 0.681        | 22.6           | LOS B               | 12.8               | 93.7               | 0.59         | 0.53                 | 0.60                      | 19.5           |
| West:     | Hend   | lerson Rd    | (W)                 |                      |                     |                       |              |                |                     |                    |                    |              |                      |                           |                |
| 11        | T1     | All MCs      | 220                 | 2.4                  | 220                 | 2.4                   | *0.622       | 13.0           | LOS A               | 3.8                | 28.0               | 0.44         | 0.38                 | 0.45                      | 15.0           |
| 12        | R2     | All MCs      | 45                  | 11.6                 | 45                  | 11.6                  | 0.622        | 30.5           | LOS C               | 3.8                | 28.0               | 0.67         | 0.61                 | 0.68                      | 9.2            |
| Appro     | ach    |              | 265                 | 4.0                  | 265                 | 4.0                   | 0.622        | 16.0           | LOS B               | 3.8                | 28.0               | 0.48         | 0.42                 | 0.49                      | 13.5           |
| All Ve    | hicles |              | 2613                | 7.3                  | 2613                | 7.3                   | 0.689        | 26.8           | LOS B               | 18.0               | 133.5              | 0.68         | 0.63                 | 0.69                      | 16.9           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pede      | estrian Mov  | /ement       | Perforr        | nance               |                |                          |              |                      |                |                 |                |
|-----------|--------------|--------------|----------------|---------------------|----------------|--------------------------|--------------|----------------------|----------------|-----------------|----------------|
| Mov<br>ID | Crossing     | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>EUE<br>Dist 1 | Prop.<br>Que | Eff.<br>Stop<br>Rate | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|           |              | ped/h        | sec            |                     | ped            | m                        |              | rtato                | sec            | m               | m/sec          |
| South     | n: Botany Rd | (S)          |                |                     |                |                          |              |                      |                |                 |                |
| P1        | Full         | 454          | 51.7           | LOS E               | 1.4            | 1.4                      | 0.96         | 0.96                 | 68.4           | 20.0            | 0.29           |
| East:     | Raglan St (I | E)           |                |                     |                |                          |              |                      |                |                 |                |
| P2        | Full         | 99           | 50.9           | LOS E               | 0.3            | 0.3                      | 0.94         | 0.94                 | 67.6           | 20.0            | 0.30           |

| North: Botany Rd       | (N) |      |       |     |     |      |      |      |      |      |  |
|------------------------|-----|------|-------|-----|-----|------|------|------|------|------|--|
| P3 Full                | 154 | 51.0 | LOS E | 0.5 | 0.5 | 0.95 | 0.95 | 67.7 | 20.0 | 0.30 |  |
| West: Henderson Rd (W) |     |      |       |     |     |      |      |      |      |      |  |
| P4 Full                | 55  | 50.8 | LOS E | 0.2 | 0.2 | 0.94 | 0.94 | 67.5 | 20.0 | 0.30 |  |
| All Pedestrians        | 761 | 51.4 | LOS E | 1.4 | 1.4 | 0.95 | 0.95 | 68.1 | 20.0 | 0.29 |  |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 5 November 2024 4:02:17 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\08 SM C&SW\_WLO (Block 4).sip9

Site: WLO02 [WLO02 Raglan St / Cope St (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: WLO-N1 [WLO Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

TCS 5057

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 35 seconds (Site User-Given Phase Times)

| Vehio  | cle M  | ovemen    | t Perfo      | orma | nce           |       |        |       |          |          |           |       |      |        |       |
|--------|--------|-----------|--------------|------|---------------|-------|--------|-------|----------|----------|-----------|-------|------|--------|-------|
| Mov    | Turn   | Mov       | Dem          | hand | Ar            | rival | Deg.   | Aver. | Level of | 95% Back | COf Queue | Prop. | Eff. | Aver.  | Aver. |
| שו     |        | Class     | ٦<br>Total آ | HV 1 | اح<br>Total آ | HV 1  | Sam    | Delay | Service  | [Veh.    | Dist 1    | Que   | Rate | Cvcles | Speed |
|        |        |           | veh/h        | %    | veh/h         | %     | v/c    | sec   |          | veh      | m         |       |      | - 5    | km/h  |
| South  | : Cop  | e St (S)  |              |      |               |       |        |       |          |          |           |       |      |        |       |
| 1      | L2     | All MCs   | 36           | 2.9  | 36            | 2.9   | 0.141  | 15.7  | LOS B    | 0.8      | 6.0       | 0.80  | 0.68 | 0.80   | 16.3  |
| 2      | T1     | All MCs   | 17           | 0.0  | 17            | 0.0   | 0.141  | 10.4  | LOS A    | 0.8      | 6.0       | 0.80  | 0.68 | 0.80   | 30.9  |
| 3      | R2     | All MCs   | 7            | 0.0  | 7             | 0.0   | 0.141  | 13.8  | LOS A    | 0.8      | 6.0       | 0.80  | 0.68 | 0.80   | 30.8  |
| Appro  | ach    |           | 60           | 1.8  | 60            | 1.8   | 0.141  | 14.0  | LOS A    | 0.8      | 6.0       | 0.80  | 0.68 | 0.80   | 24.4  |
| East:  | Ragla  | n St (E)  |              |      |               |       |        |       |          |          |           |       |      |        |       |
| 4      | L2     | All MCs   | 12           | 0.0  | 12            | 0.0   | 0.185  | 15.8  | LOS B    | 1.4      | 10.3      | 0.74  | 0.60 | 0.74   | 34.8  |
| 5      | T1     | All MCs   | 192          | 7.7  | 192           | 7.7   | 0.185  | 8.9   | LOS A    | 1.4      | 10.3      | 0.74  | 0.60 | 0.74   | 34.8  |
| 6      | R2     | All MCs   | 13           | 8.3  | 13            | 8.3   | 0.185  | 15.2  | LOS B    | 1.3      | 9.8       | 0.74  | 0.60 | 0.74   | 38.9  |
| Appro  | ach    |           | 216          | 7.3  | 216           | 7.3   | 0.185  | 9.6   | LOS A    | 1.4      | 10.3      | 0.74  | 0.60 | 0.74   | 35.2  |
| North  | Cope   | e St (N)  |              |      |               |       |        |       |          |          |           |       |      |        |       |
| 7      | L2     | All MCs   | 12           | 9.1  | 12            | 9.1   | 0.042  | 14.4  | LOS A    | 0.3      | 2.1       | 0.72  | 0.62 | 0.72   | 36.9  |
| 8      | T1     | All MCs   | 11           | 10.0 | 11            | 10.0  | 0.042  | 10.2  | LOS A    | 0.3      | 2.1       | 0.72  | 0.62 | 0.72   | 30.7  |
| 9      | R2     | All MCs   | 42           | 2.5  | 42            | 2.5   | *0.302 | 23.2  | LOS B    | 0.8      | 5.6       | 0.97  | 0.72 | 0.97   | 23.0  |
| Appro  | ach    |           | 64           | 4.9  | 64            | 4.9   | 0.302  | 19.5  | LOS B    | 0.8      | 5.6       | 0.88  | 0.69 | 0.88   | 27.1  |
| West:  | Ragla  | an St (W) | )            |      |               |       |        |       |          |          |           |       |      |        |       |
| 10     | L2     | All MCs   | 54           | 5.9  | 54            | 5.9   | 0.108  | 14.7  | LOS B    | 0.7      | 5.2       | 0.77  | 0.70 | 0.77   | 29.4  |
| 11     | T1     | All MCs   | 212          | 5.5  | 212           | 5.5   | *0.334 | 9.6   | LOS A    | 2.8      | 20.6      | 0.78  | 0.64 | 0.78   | 36.6  |
| Appro  | ach    |           | 265          | 5.6  | 265           | 5.6   | 0.334  | 10.7  | LOS A    | 2.8      | 20.6      | 0.78  | 0.65 | 0.78   | 35.0  |
| All Ve | hicles |           | 605          | 5.7  | 605           | 5.7   | 0.334  | 11.5  | LOS A    | 2.8      | 20.6      | 0.78  | 0.64 | 0.78   | 33.1  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Peo | destrian Mov   | vement | Perforr | nance    |         |         |       |      |        |        |       |
|-----|----------------|--------|---------|----------|---------|---------|-------|------|--------|--------|-------|
| Mov |                | Dem.   | Aver.   | Level of | AVERAGE | BACK OF | Prop. | Eff. | Travel | Travel | Aver. |
| ID  | Crossing       | Flow   | Delay   | Service  | QUE     | UE      | Que   | Stop | Time   | Dist.  | Speed |
|     |                |        |         |          | [Ped    | Dist ]  |       | Rate |        |        |       |
|     |                | ped/h  | sec     |          | ped     | m       |       |      | sec    | m      | m/sec |
| Sou | th: Cope St (S | S)     |         |          |         |         |       |      |        |        |       |
| P1  | Full           | 198    | 12.1    | LOS B    | 0.2     | 0.2     | 0.84  | 0.84 | 178.8  | 200.0  | 1.12  |

| East: Raglan St (E | )   |      |       |     |     |      |      |      |       |      |
|--------------------|-----|------|-------|-----|-----|------|------|------|-------|------|
| P2 Full            | 41  | 12.0 | LOS B | 0.0 | 0.0 | 0.83 | 0.83 | 28.7 | 20.0  | 0.70 |
| North: Cope St (N) |     |      |       |     |     |      |      |      |       |      |
| P3 Full            | 86  | 12.1 | LOS B | 0.1 | 0.1 | 0.83 | 0.83 | 28.7 | 20.0  | 0.70 |
| West: Raglan St (V | V)  |      |       |     |     |      |      |      |       |      |
| P4 Full            | 103 | 12.1 | LOS B | 0.1 | 0.1 | 0.83 | 0.83 | 28.7 | 20.0  | 0.70 |
| All Pedestrians    | 428 | 12.1 | LOS B | 0.2 | 0.2 | 0.83 | 0.83 | 98.0 | 103.1 | 1.05 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 5 November 2024 4:02:17 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\08 SM C&SW\_WLO (Block 4).sip9

Site: WLO03 [WLO03 Botany Rd / Wellington St / Buckland St (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TCS 137

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 115 seconds (Network Site User-Given Phase Times)

| Vehic  | le M          | ovemen     | t Perfo     | orma         | nce           |              |        |       |          |          |          |       |              |                  |       |
|--------|---------------|------------|-------------|--------------|---------------|--------------|--------|-------|----------|----------|----------|-------|--------------|------------------|-------|
| Mov    | Turn          | Mov        | Dem         | nand         | Ar            | rival        | Deg.   | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff.         | Aver.            | Aver. |
| ID     |               | Class      | FI<br>Total | IOWS<br>HV/1 | Fl<br>[ Total | lows<br>HV/1 | Satn   | Delay | Service  | [ Veh    | Dist 1   | Que   | Stop<br>Rate | No. of<br>Cycles | Speed |
|        |               |            | veh/h       | %            | veh/h         | %            | v/c    | sec   |          | veh      | m        |       | rtato        | Cycles           | km/h  |
| South  | : Bota        | ny Rd (S   | )           |              |               |              |        |       |          |          |          |       |              |                  |       |
| 2      | T1            | All MCs    | 797         | 7.1          | 797           | 7.1          | 0.361  | 4.7   | LOS A    | 8.9      | 66.4     | 0.36  | 0.34         | 0.36             | 40.6  |
| 3      | R2            | All MCs    | 56          | 9.4          | 56            | 9.4          | *0.361 | 12.4  | LOS A    | 6.7      | 49.9     | 0.37  | 0.39         | 0.37             | 39.3  |
| Appro  | ach           |            | 853         | 7.3          | 853           | 7.3          | 0.361  | 5.2   | LOS A    | 8.9      | 66.4     | 0.36  | 0.34         | 0.36             | 40.5  |
| East:  | Wellir        | ngton St ( | E)          |              |               |              |        |       |          |          |          |       |              |                  |       |
| 4      | L2            | All MCs    | 35          | 3.0          | 35            | 3.0          | 0.222  | 59.3  | LOS E    | 1.9      | 13.6     | 0.97  | 0.73         | 0.97             | 15.3  |
| 6      | R2            | All MCs    | 11          | 0.0          | 11            | 0.0          | 0.069  | 57.1  | LOS E    | 0.6      | 3.9      | 0.94  | 0.68         | 0.94             | 4.5   |
| Appro  | Approach 45 2 |            |             | 2.3          | 45            | 2.3          | 0.222  | 58.8  | LOS E    | 1.9      | 13.6     | 0.96  | 0.72         | 0.96             | 13.4  |
| North: | Bota          | ny Rd (N   | )           |              |               |              |        |       |          |          |          |       |              |                  |       |
| 7      | L2            | All MCs    | 18          | 29.4         | 18            | 29.4         | 0.314  | 8.7   | LOS A    | 6.2      | 46.9     | 0.29  | 0.27         | 0.29             | 40.9  |
| 8      | T1            | All MCs    | 835         | 9.2          | 835           | 9.2          | 0.314  | 3.6   | LOS A    | 6.3      | 47.6     | 0.29  | 0.26         | 0.29             | 45.6  |
| Appro  | ach           |            | 853         | 9.6          | 853           | 9.6          | 0.314  | 3.7   | LOS A    | 6.3      | 47.6     | 0.29  | 0.26         | 0.29             | 45.5  |
| West:  | Buck          | land St (\ | V)          |              |               |              |        |       |          |          |          |       |              |                  |       |
| 10     | L2            | All MCs    | 21          | 0.0          | 21            | 0.0          | 0.340  | 54.4  | LOS D    | 4.4      | 30.8     | 0.95  | 0.75         | 0.95             | 5.3   |
| 11     | T1            | All MCs    | 62          | 1.7          | 62            | 1.7          | *0.340 | 50.0  | LOS D    | 4.4      | 30.8     | 0.95  | 0.75         | 0.95             | 5.3   |
| 12     | R2            | All MCs    | 26          | 4.0          | 26            | 4.0          | 0.173  | 58.0  | LOS E    | 1.4      | 10.3     | 0.96  | 0.71         | 0.96             | 15.3  |
| Appro  | ach           |            | 109         | 1.9          | 109           | 1.9          | 0.340  | 52.8  | LOS D    | 4.4      | 30.8     | 0.95  | 0.74         | 0.95             | 8.5   |
| All Ve | hicles        |            | 1860        | 7.9          | 1860          | 7.9          | 0.361  | 8.6   | LOS A    | 8.9      | 66.4     | 0.38  | 0.34         | 0.38             | 38.3  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

 ${\rm HV}$  (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Peo | destrian Mov   | vement | Perforr | nance    |         |         |       |      |        |        |       |
|-----|----------------|--------|---------|----------|---------|---------|-------|------|--------|--------|-------|
| Mov |                | Dem.   | Aver.   | Level of | AVERAGE | BACK OF | Prop. | Eff. | Travel | Travel | Aver. |
| ID  | Crossing       | Flow   | Delay   | Service  | QUE     | UE      | Que   | Stop | Time   | Dist.  | Speed |
|     |                |        |         |          | [Ped    | Dist ]  |       | Rate |        |        |       |
|     |                | ped/h  | sec     |          | ped     | m       |       |      | sec    | m      | m/sec |
| Sou | ith: Botany Ro | l (S)  |         |          |         |         |       |      |        |        |       |
| P1  | Full           | 184    | 51.1    | LOS E    | 0.6     | 0.6     | 0.95  | 0.95 | 67.8   | 20.0   | 0.30  |
| Eas | t: Wellington  | St (E) |         |          |         |         |       |      |        |        |       |

| P2 Full            | 23  | 50.8 | LOS E | 0.1 | 0.1 | 0.94 | 0.94 | 67.4 | 20.0 | 0.30 |
|--------------------|-----|------|-------|-----|-----|------|------|------|------|------|
| North: Botany Rd ( | N)  |      |       |     |     |      |      |      |      |      |
| P3 Full            | 29  | 50.8 | LOS E | 0.1 | 0.1 | 0.94 | 0.94 | 67.4 | 20.0 | 0.30 |
| West: Buckland St  | (W) |      |       |     |     |      |      |      |      |      |
| P4 Full            | 60  | 50.8 | LOS E | 0.2 | 0.2 | 0.94 | 0.94 | 67.5 | 20.0 | 0.30 |
| All Pedestrians    | 297 | 51.0 | LOS E | 0.6 | 0.6 | 0.94 | 0.94 | 67.7 | 20.0 | 0.30 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 5 November 2024 4:02:17 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\08 SM C&SW\_WLO (Block 4).sip9

Site: WLO04 [WLO04 Cope St / Wellington St (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: WLO-N1 [WLO Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

### NA Site Category: (None) Stop (Two-Way)

| Vehic  | le M     | ovemen      | t Perfo    | orma         | nce            |              |       |       |          |          |          |       |              |                  |       |
|--------|----------|-------------|------------|--------------|----------------|--------------|-------|-------|----------|----------|----------|-------|--------------|------------------|-------|
| Mov    | Turn     | Mov         | Dem        | nand         | Ar             | rival        | Deg.  | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff.         | Aver.            | Aver. |
| ID     |          | Class       | H<br>Total | lows<br>HV 1 | H<br>  Total آ | lows<br>HV 1 | Satn  | Delay | Service  | [ Veh    | Dist 1   | Que   | Stop<br>Rate | No. of<br>Cvcles | Speed |
|        |          |             | veh/h      | %            | veh/h          | %            | v/c   | sec   |          | veh      | m        |       |              |                  | km/h  |
| South  | : Cop    | e St (S)    |            |              |                |              |       |       |          |          |          |       |              |                  |       |
| 1      | L2       | All MCs     | 17         | 6.3          | 17             | 6.3          | 0.038 | 7.8   | LOS A    | 0.1      | 1.0      | 0.15  | 0.93         | 0.15             | 29.8  |
| 2      | T1       | All MCs     | 12         | 0.0          | 12             | 0.0          | 0.038 | 8.3   | LOS A    | 0.1      | 1.0      | 0.15  | 0.93         | 0.15             | 29.8  |
| 3      | R2       | All MCs     | 11         | 0.0          | 11             | 0.0          | 0.038 | 8.5   | LOS A    | 0.1      | 1.0      | 0.15  | 0.93         | 0.15             | 33.4  |
| Appro  | ach      |             | 39         | 2.7          | 39             | 2.7          | 0.038 | 8.1   | LOS A    | 0.1      | 1.0      | 0.15  | 0.93         | 0.15             | 31.1  |
| East:  | Wellir   | igton St (I | E)         |              |                |              |       |       |          |          |          |       |              |                  |       |
| 4      | L2       | All MCs     | 12         | 9.1          | 12             | 9.1          | 0.043 | 5.1   | LOS A    | 0.2      | 1.4      | 0.29  | 0.34         | 0.29             | 38.5  |
| 5      | T1       | All MCs     | 24         | 0.0          | 24             | 0.0          | 0.043 | 0.8   | LOS A    | 0.2      | 1.4      | 0.29  | 0.34         | 0.29             | 37.0  |
| 6      | R2       | All MCs     | 13         | 8.3          | 13             | 8.3          | 0.043 | 5.8   | LOS A    | 0.2      | 1.4      | 0.29  | 0.34         | 0.29             | 37.0  |
| Appro  | Approach |             | 48         | 4.3          | 48             | 4.3          | 0.043 | 3.1   | NA       | 0.2      | 1.4      | 0.29  | 0.34         | 0.29             | 37.6  |
| North: | Cope     | e St (N)    |            |              |                |              |       |       |          |          |          |       |              |                  |       |
| 7      | L2       | All MCs     | 2          | 0.0          | 2              | 0.0          | 0.011 | 7.8   | LOS A    | 0.0      | 0.3      | 0.33  | 0.88         | 0.33             | 30.5  |
| 8      | T1       | All MCs     | 5          | 0.0          | 5              | 0.0          | 0.011 | 7.6   | LOS A    | 0.0      | 0.3      | 0.33  | 0.88         | 0.33             | 31.7  |
| 9      | R2       | All MCs     | 3          | 0.0          | 3              | 0.0          | 0.011 | 7.7   | LOS A    | 0.0      | 0.3      | 0.33  | 0.88         | 0.33             | 24.1  |
| Appro  | ach      |             | 11         | 0.0          | 11             | 0.0          | 0.011 | 7.6   | LOS A    | 0.0      | 0.3      | 0.33  | 0.88         | 0.33             | 29.9  |
| West:  | Welli    | ngton St (  | (W)        |              |                |              |       |       |          |          |          |       |              |                  |       |
| 10     | L2       | All MCs     | 22         | 0.0          | 22             | 0.0          | 0.074 | 4.8   | LOS A    | 0.2      | 1.5      | 0.08  | 0.20         | 0.08             | 36.6  |
| 11     | T1       | All MCs     | 81         | 7.8          | 81             | 7.8          | 0.074 | 0.1   | LOS A    | 0.2      | 1.5      | 0.08  | 0.20         | 0.08             | 43.8  |
| 12     | R2       | All MCs     | 22         | 0.0          | 22             | 0.0          | 0.074 | 4.7   | LOS A    | 0.2      | 1.5      | 0.08  | 0.20         | 0.08             | 39.6  |
| Appro  | ach      |             | 125        | 5.0          | 125            | 5.0          | 0.074 | 1.7   | NA       | 0.2      | 1.5      | 0.08  | 0.20         | 0.08             | 42.2  |
| All Ve | hicles   |             | 223        | 4.2          | 223            | 4.2          | 0.074 | 3.4   | NA       | 0.2      | 1.5      | 0.15  | 0.39         | 0.15             | 37.9  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 5 November 2024 4:02:17 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\08 SM C&SW\_WLO (Block 4).sip9

Site: WLO05 [WLO05 Wyndham St / Henderson Rd (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TCS 55

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 115 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfo                      | orma                      | nce                          |                            |                     |                       |                     |                           |                         |              |                      |                           |                        |
|-----------|--------|--------------|------------------------------|---------------------------|------------------------------|----------------------------|---------------------|-----------------------|---------------------|---------------------------|-------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F<br>[ Total<br>veh/h | nand<br>lows<br>HV ]<br>% | Ar<br>Fl<br>[ Total<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Wyn  | dham St      | (S)                          |                           |                              |                            |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 1         | L2     | All MCs      | 12                           | 9.1                       | 12                           | 9.1                        | 0.633               | 61.4                  | LOS E               | 9.8                       | 73.6                    | 0.97         | 0.81                 | 0.98                      | 12.3                   |
| 2         | T1     | All MCs      | 356                          | 8.6                       | 356                          | 8.6                        | *0.633              | 52.7                  | LOS D               | 9.8                       | 74.1                    | 0.97         | 0.81                 | 0.98                      | 19.8                   |
| 3         | R2     | All MCs      | 4                            | 50.0                      | 4                            | 50.0                       | 0.633               | 60.8                  | LOS E               | 9.8                       | 74.1                    | 0.97         | 0.80                 | 0.98                      | 13.2                   |
| Appro     | ach    |              | 372                          | 9.1                       | 372                          | 9.1                        | 0.633               | 53.1                  | LOS D               | 9.8                       | 74.1                    | 0.97         | 0.81                 | 0.98                      | 18.1                   |
| East:     | Hende  | erson Rd     | (E)                          |                           |                              |                            |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 4         | L2     | All MCs      | 113                          | 2.8                       | 113                          | 2.8                        | 0.289               | 6.4                   | LOS A               | 2.0                       | 14.2                    | 0.11         | 0.24                 | 0.11                      | 40.6                   |
| 5         | T1     | All MCs      | 623                          | 5.4                       | 623                          | 5.4                        | 0.289               | 1.3                   | LOS A               | 2.0                       | 14.2                    | 0.10         | 0.15                 | 0.10                      | 41.7                   |
| 6         | R2     | All MCs      | 756                          | 7.7                       | 756                          | 7.7                        | *0.618              | 13.5                  | LOS A               | 6.9                       | 51.5                    | 0.63         | 0.74                 | 0.63                      | 27.8                   |
| Appro     | ach    |              | 1492                         | 6.4                       | 1492                         | 6.4                        | 0.618               | 7.9                   | LOS A               | 6.9                       | 51.5                    | 0.37         | 0.46                 | 0.37                      | 31.6                   |
| West:     | Hend   | lerson Rd    | (W)                          |                           |                              |                            |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 10        | L2     | All MCs      | 349                          | 6.0                       | 349                          | 6.0                        | *0.742              | 74.0                  | LOS F               | 9.8                       | 72.2                    | 0.99         | 0.88                 | 1.11                      | 12.7                   |
| 11        | T1     | All MCs      | 262                          | 3.6                       | 262                          | 3.6                        | 0.572               | 41.5                  | LOS C               | 13.0                      | 94.1                    | 0.93         | 0.79                 | 0.93                      | 5.5                    |
| Appro     | ach    |              | 612                          | 5.0                       | 612                          | 5.0                        | 0.742               | 60.1                  | LOS E               | 13.0                      | 94.1                    | 0.97         | 0.84                 | 1.04                      | 8.8                    |
| All Ve    | hicles |              | 2475                         | 6.4                       | 2475                         | 6.4                        | 0.742               | 27.6                  | LOS B               | 13.0                      | 94.1                    | 0.61         | 0.60                 | 0.63                      | 18.8                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pec                   | destrian Mov  | vement | Perform | nance    |              |              |       |              |        |        |       |  |  |
|-----------------------|---------------|--------|---------|----------|--------------|--------------|-------|--------------|--------|--------|-------|--|--|
| Mo                    | ′ <u> </u>    | Dem.   | Aver.   | Level of | AVERAGE      | BACK OF      | Prop. | Eff.         | Travel | Travel | Aver. |  |  |
| ID                    | Crossing      | Flow   | Delay   | Service  | QUE<br>[ Ped | UE<br>Dist ] | Que   | Stop<br>Rate | Time   | Dist.  | Speed |  |  |
|                       |               | ped/h  | sec     |          | ped          | m            |       |              | sec    | m      | m/sec |  |  |
| South: Wyndham St (S) |               |        |         |          |              |              |       |              |        |        |       |  |  |
| P1                    | Full          | 247    | 51.2    | LOS E    | 0.8          | 0.8          | 0.95  | 0.95         | 67.9   | 20.0   | 0.29  |  |  |
| Eas                   | t: Henderson  | Rd (E) |         |          |              |              |       |              |        |        |       |  |  |
| P2                    | Full          | 127    | 51.0    | LOS E    | 0.4          | 0.4          | 0.94  | 0.94         | 67.7   | 20.0   | 0.30  |  |  |
| Nor                   | th: Wyndham   | St (N) |         |          |              |              |       |              |        |        |       |  |  |
| P3                    | Full          | 194    | 51.1    | LOS E    | 0.6          | 0.6          | 0.95  | 0.95         | 67.8   | 20.0   | 0.30  |  |  |
| Wes                   | st: Henderson | Rd (W) |         |          |              |              |       |              |        |        |       |  |  |

| P4 Full         | 143 | 51.0 | LOS E | 0.4 | 0.4 | 0.94 | 0.94 | 67.7 | 20.0 | 0.30 |
|-----------------|-----|------|-------|-----|-----|------|------|------|------|------|
| All Pedestrians | 712 | 51.1 | LOS E | 0.8 | 0.8 | 0.95 | 0.95 | 67.8 | 20.0 | 0.30 |

### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 5 November 2024 4:02:17 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\08 SM C&SW\_WLO (Block 4).sip9

Site: WLO06 [WLO06 Pedestrian Mid-block Crossing at Cope St (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None) Pedestrian Crossing (Unsignalised)

| Vehic     | le M   | ovemen       | t Perfc          | orma         | nce              |               |              |                |                     |               |             |              |              |                 |                |
|-----------|--------|--------------|------------------|--------------|------------------|---------------|--------------|----------------|---------------------|---------------|-------------|--------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl        | nand<br>Iows | Ar<br>Fl         | rival<br>lows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back      | Of Queue    | Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total<br>veh/h | HV ]<br>%    | [ Total<br>veh/h | HV ]<br>%     | v/c          | sec            |                     | [ Veh.<br>veh | Dist ]<br>m |              | Rate         | Cycles          | km/h           |
| South     | : Cop  | e St (S)     |                  |              |                  |               |              |                |                     |               |             |              |              |                 |                |
| 2         | T1     | All MCs      | 46               | 2.3          | 46               | 2.3           | 0.030        | 2.2            | LOS A               | 0.1           | 0.8         | 0.14         | 0.36         | 0.14            | 32.0           |
| Appro     | ach    |              | 46               | 2.3          | 46               | 2.3           | 0.030        | 2.2            | LOS A               | 0.1           | 0.8         | 0.14         | 0.36         | 0.14            | 32.0           |
| North:    | Cope   | e St (N)     |                  |              |                  |               |              |                |                     |               |             |              |              |                 |                |
| 8         | T1     | All MCs      | 11               | 0.0          | 11               | 0.0           | 0.007        | 2.2            | LOS A               | 0.0           | 0.2         | 0.13         | 0.35         | 0.13            | 31.1           |
| Appro     | ach    |              | 11               | 0.0          | 11               | 0.0           | 0.007        | 2.2            | LOS A               | 0.0           | 0.2         | 0.13         | 0.35         | 0.13            | 31.1           |
| All Ve    | hicles |              | 57               | 1.9          | 57               | 1.9           | 0.030        | 2.2            | NA                  | 0.1           | 0.8         | 0.14         | 0.35         | 0.14            | 31.9           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Akçelik M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 5 November 2024 4:02:17 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\08 SM C&SW\_WLO (Block 4).sip9

Site: WLO01 [WLO01 Botany Rd / Raglan St / Henderson Rd (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TCS 47

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfo          | orma         | nce              |               |              |                |                     |              |             |                |              |                 |                |
|-----------|--------|--------------|------------------|--------------|------------------|---------------|--------------|----------------|---------------------|--------------|-------------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F         | nand<br>Iows | Ar<br>F          | rival<br>Iows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back     | Of Queue    | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total<br>veh/h | HV ]<br>%    | [ Total<br>veh/h | HV ]<br>%     | v/c          | sec            |                     | [Veh.<br>veh | Dist ]<br>m |                | Rate         | Cycles          | km/h           |
| South     | : Bota | ny Rd (S     | )                |              |                  |               |              |                |                     |              |             |                |              |                 |                |
| 1         | L2     | All MCs      | 655              | 5.5          | 655              | 5.5           | *0.916       | 72.7           | LOS F               | 23.2         | 169.9       | 1.00           | 1.04         | 1.27            | 9.5            |
| Appro     | ach    |              | 655              | 5.5          | 655              | 5.5           | 0.916        | 72.7           | LOS F               | 23.2         | 169.9       | 1.00           | 1.04         | 1.27            | 9.5            |
| East:     | Ragla  | n St (E)     |                  |              |                  |               |              |                |                     |              |             |                |              |                 |                |
| 4         | L2     | All MCs      | 24               | 0.0          | 24               | 0.0           | 0.803        | 70.2           | LOS E               | 9.3          | 67.0        | 1.00           | 0.96         | 1.21            | 4.1            |
| 5         | T1     | All MCs      | 267              | 3.9          | 267              | 3.9           | 0.803        | 62.0           | LOS E               | 9.3          | 67.0        | 1.00           | 0.96         | 1.22            | 4.1            |
| Appro     | ach    |              | 292              | 3.6          | 292              | 3.6           | 0.803        | 62.7           | LOS E               | 9.3          | 67.0        | 1.00           | 0.96         | 1.22            | 4.1            |
| North:    | Bota   | ny Rd (N     | )                |              |                  |               |              |                |                     |              |             |                |              |                 |                |
| 7         | L2     | All MCs      | 49               | 10.6         | 49               | 10.6          | 0.358        | 11.3           | LOS A               | 9.4          | 68.8        | 0.36           | 0.36         | 0.36            | 36.3           |
| 8         | T1     | All MCs      | 952              | 4.6          | 952              | 4.6           | 0.358        | 5.0            | LOS A               | 9.6          | 69.8        | 0.36           | 0.34         | 0.36            | 36.7           |
| 9         | R2     | All MCs      | 634              | 1.3          | 634              | 1.3           | *0.849       | 59.5           | LOS E               | 20.5         | 145.3       | 1.00           | 0.96         | 1.18            | 9.6            |
| Appro     | ach    |              | 1635             | 3.5          | 1635             | 3.5           | 0.849        | 26.3           | LOS B               | 20.5         | 145.3       | 0.61           | 0.58         | 0.68            | 17.7           |
| West:     | Henc   | lerson Rd    | (W)              |              |                  |               |              |                |                     |              |             |                |              |                 |                |
| 11        | T1     | All MCs      | 223              | 0.9          | 223              | 0.9           | * 0.904      | 15.2           | LOS B               | 9.6          | 68.1        | 0.74           | 0.68         | 0.86            | 13.9           |
| 12        | R2     | All MCs      | 57               | 0.0          | 57               | 0.0           | 0.904        | 57.1           | LOS E               | 3.9          | 27.4        | 1.00           | 0.83         | 1.21            | 4.7            |
| Appro     | ach    |              | 280              | 0.8          | 280              | 0.8           | 0.904        | 23.7           | LOS B               | 9.6          | 68.1        | 0.79           | 0.71         | 0.93            | 10.0           |
| All Ve    | hicles |              | 2861             | 3.7          | 2861             | 3.7           | 0.916        | 40.4           | LOS C               | 23.2         | 169.9       | 0.75           | 0.73         | 0.89            | 12.4           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pe        | destrian Mo    | vement       | Perform        | nance               |                |                |              |              |                |                 |                |
|-----------|----------------|--------------|----------------|---------------------|----------------|----------------|--------------|--------------|----------------|-----------------|----------------|
| Mov<br>ID | /<br>Crossing  | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>EUE | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|           |                | ped/h        | sec            |                     | ped            | m              |              | Naic         | sec            | m               | m/sec          |
| Sou       | ith: Botany Ro | d (S)        |                |                     |                |                |              |              |                |                 |                |
| P1        | Full           | 451          | 54.2           | LOS E               | 1.5            | 1.5            | 0.96         | 0.96         | 70.9           | 20.0            | 0.28           |
| Eas       | t: Raglan St ( | E)           |                |                     |                |                |              |              |                |                 |                |
| P2        | Full           | 157          | 53.6           | LOS E               | 0.5            | 0.5            | 0.95         | 0.95         | 70.2           | 20.0            | 0.28           |

| North: Botany Rd | (N)    |      |       |     |     |      |      |      |      |      |
|------------------|--------|------|-------|-----|-----|------|------|------|------|------|
| P3 Full          | 148    | 53.5 | LOS E | 0.5 | 0.5 | 0.95 | 0.95 | 70.2 | 20.0 | 0.28 |
| West: Henderson  | Rd (W) |      |       |     |     |      |      |      |      |      |
| P4 Full          | 137    | 53.5 | LOS E | 0.4 | 0.4 | 0.95 | 0.95 | 70.2 | 20.0 | 0.28 |
| All Pedestrians  | 893    | 53.9 | LOS E | 1.5 | 1.5 | 0.95 | 0.95 | 70.5 | 20.0 | 0.28 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 5 November 2024 4:02:21 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\08 SM C&SW\_WLO (Block 4).sip9

Site: WLO02 [WLO02 Raglan St / Cope St (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: WLO-N1 [WLO Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

TCS 5057

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 45 seconds (Site User-Given Phase Times)

| Vehio  | le M   | ovemen    | t Perfo         | rma  | nce                  |         |       |          |          |            |         |              |                  |       |
|--------|--------|-----------|-----------------|------|----------------------|---------|-------|----------|----------|------------|---------|--------------|------------------|-------|
| Mov    | Turn   | Mov       | Dem             | and  | Arriva               | I Deg.  | Aver. | Level of | 95% Back | c Of Queue | e Prop. | Eff.         | Aver.            | Aver. |
| ID     |        | Class     | H<br>Total I    | OWS  | Flow:<br>\/H Hotal H | s Satn  | Delay | Service  | [ \/eh   | Dist 1     | Que     | Stop<br>Rate | No. of<br>Cycles | Speed |
|        |        |           | veh/h           | %    | veh/h %              | v/c     | sec   |          | veh      | m          |         | Rate         | Cycles           | km/h  |
| South  | : Cop  | e St (S)  |                 |      |                      |         |       |          |          |            |         |              |                  |       |
| 1      | L2     | All MCs   | 22              | 0.0  | 22 0.0               | 0.114   | 19.7  | LOS B    | 0.8      | 5.7        | 0.81    | 0.67         | 0.81             | 14.1  |
| 2      | T1     | All MCs   | 12              | 0.0  | 12 0.0               | 0.114   | 13.5  | LOS A    | 0.8      | 5.7        | 0.81    | 0.67         | 0.81             | 28.5  |
| 3      | R2     | All MCs   | 12              | 0.0  | 12 0.0               | 0.114   | 17.0  | LOS B    | 0.8      | 5.7        | 0.81    | 0.67         | 0.81             | 28.6  |
| Appro  | ach    |           | 45              | 0.0  | 45 0.0               | 0.114   | 17.4  | LOS B    | 0.8      | 5.7        | 0.81    | 0.67         | 0.81             | 23.5  |
| East:  | Ragla  | n St (E)  |                 |      |                      |         |       |          |          |            |         |              |                  |       |
| 4      | L2     | All MCs   | 13              | 0.0  | 13 0.0               | 0.218   | 17.2  | LOS B    | 2.1      | 15.2       | 0.71    | 0.59         | 0.71             | 33.4  |
| 5      | T1     | All MCs   | 254             | 4.6  | 254 4.6              | 0.218   | 10.4  | LOS A    | 2.1      | 15.2       | 0.71    | 0.58         | 0.71             | 33.6  |
| 6      | R2     | All MCs   | 33              | 33.3 | 3 33.3               | 0.218   | 17.7  | LOS B    | 2.1      | 15.0       | 0.71    | 0.58         | 0.71             | 38.1  |
| Appro  | ach    |           | 269             | 4.7  | 269 4.1              | 0.218   | 10.8  | LOS A    | 2.1      | 15.2       | 0.71    | 0.58         | 0.71             | 33.6  |
| North  | Cope   | e St (N)  |                 |      |                      |         |       |          |          |            |         |              |                  |       |
| 7      | L2     | All MCs   | 11 <sup>-</sup> | 10.0 | 11 10.0              | 0.023   | 15.9  | LOS B    | 0.2      | 1.4        | 0.69    | 0.63         | 0.69             | 35.1  |
| 8      | T1     | All MCs   | 2               | 0.0  | 2 0.0                | 0.023   | 11.7  | LOS A    | 0.2      | 1.4        | 0.69    | 0.63         | 0.69             | 28.3  |
| 9      | R2     | All MCs   | 57              | 1.9  | 57 1.9               | * 0.252 | 24.1  | LOS B    | 1.2      | 8.5        | 0.91    | 0.74         | 0.91             | 22.4  |
| Appro  | ach    |           | 69              | 3.0  | 69 3.0               | 0.252   | 22.5  | LOS B    | 1.2      | 8.5        | 0.87    | 0.72         | 0.87             | 25.0  |
| West:  | Ragla  | an St (W) |                 |      |                      |         |       |          |          |            |         |              |                  |       |
| 10     | L2     | All MCs   | 43              | 0.0  | 43 0.0               | 0.070   | 15.5  | LOS B    | 0.7      | 4.6        | 0.71    | 0.68         | 0.71             | 28.9  |
| 11     | T1     | All MCs   | 189             | 4.4  | 189 4.4              | * 0.269 | 10.7  | LOS A    | 3.0      | 21.5       | 0.73    | 0.60         | 0.73             | 35.5  |
| Appro  | ach    |           | 233             | 3.6  | 233 3.0              | 0.269   | 11.6  | LOS A    | 3.0      | 21.5       | 0.73    | 0.61         | 0.73             | 34.2  |
| All Ve | hicles |           | 617             | 3.8  | 617 3.8              | 0.269   | 12.9  | LOS A    | 3.0      | 21.5       | 0.74    | 0.62         | 0.74             | 31.9  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Peo | destrian Mov   | vement | Perforr | nance    |         |         |       |      |        |        |       |
|-----|----------------|--------|---------|----------|---------|---------|-------|------|--------|--------|-------|
| Mov |                | Dem.   | Aver.   | Level of | AVERAGE | BACK OF | Prop. | Eff. | Travel | Travel | Aver. |
| ID  | Crossing       | Flow   | Delay   | Service  | QUE     | UE      | Que   | Stop | Time   | Dist.  | Speed |
|     |                |        |         |          | [Ped    | Dist ]  |       | Rate |        |        |       |
|     |                | ped/h  | sec     |          | ped     | m       |       |      | sec    | m      | m/sec |
| Sou | th: Cope St (S | S)     |         |          |         |         |       |      |        |        |       |
| P1  | Full           | 124    | 17.0    | LOS B    | 0.1     | 0.1     | 0.87  | 0.87 | 183.7  | 200.0  | 1.09  |

| East: Raglan St (E | )   |      |       |     |     |      |      |      |      |      |
|--------------------|-----|------|-------|-----|-----|------|------|------|------|------|
| P2 Full            | 44  | 16.9 | LOS B | 0.0 | 0.0 | 0.87 | 0.87 | 33.6 | 20.0 | 0.60 |
| North: Cope St (N) |     |      |       |     |     |      |      |      |      |      |
| P3 Full            | 107 | 17.0 | LOS B | 0.1 | 0.1 | 0.87 | 0.87 | 33.6 | 20.0 | 0.59 |
| West: Raglan St (V | V)  |      |       |     |     |      |      |      |      |      |
| P4 Full            | 156 | 17.0 | LOS B | 0.2 | 0.2 | 0.87 | 0.87 | 33.7 | 20.0 | 0.59 |
| All Pedestrians    | 432 | 17.0 | LOS B | 0.2 | 0.2 | 0.87 | 0.87 | 76.8 | 71.8 | 0.93 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 5 November 2024 4:02:21 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\08 SM C&SW\_WLO (Block 4).sip9

Site: WLO03 [WLO03 Botany Rd / Wellington St / Buckland St (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TCS 137

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfo  | orma         | nce      |               |              |                |                     |          |          |                |              |                 |                |
|-----------|--------|--------------|----------|--------------|----------|---------------|--------------|----------------|---------------------|----------|----------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Den<br>F | nand<br>Iows | Ar<br>Fl | rival<br>lows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back | Of Queue | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total  | HV ]         | [ Total  | HV]           | vic          | 800            |                     | [Veh.    | Dist ]   |                | Rate         | Cycles          | km/h           |
| South     | : Bota | iny Rd (S    | )        | 70           | VCH/H    | 70            | V/C          | 300            |                     | VCIT     |          | _              | _            |                 | NIT/TT         |
| 2         | T1     | All MCs      | 616      | 5.8          | 616      | 5.8           | 0.363        | 5.2            | LOS A               | 9.7      | 71.0     | 0.37           | 0.36         | 0.37            | 39.7           |
| 3         | R2     | All MCs      | 95       | 0.0          | 95       | 0.0           | *0.363       | 12.6           | LOS A               | 4.5      | 32.1     | 0.40           | 0.50         | 0.40            | 35.8           |
| Appro     | ach    |              | 711      | 5.0          | 711      | 5.0           | 0.363        | 6.1            | LOS A               | 9.7      | 71.0     | 0.37           | 0.38         | 0.37            | 39.1           |
| East:     | Wellir | igton St (I  | E)       |              |          |               |              |                |                     |          |          |                |              |                 |                |
| 4         | L2     | All MCs      | 64       | 0.0          | 64       | 0.0           | 0.319        | 59.4           | LOS E               | 3.6      | 25.1     | 0.96           | 0.76         | 0.96            | 15.3           |
| 6         | R2     | All MCs      | 20       | 0.0          | 20       | 0.0           | 0.120        | 58.2           | LOS E               | 1.1      | 7.6      | 0.93           | 0.71         | 0.93            | 4.4            |
| Appro     | ach    |              | 84       | 0.0          | 84       | 0.0           | 0.319        | 59.1           | LOS E               | 3.6      | 25.1     | 0.96           | 0.74         | 0.96            | 13.3           |
| North     | Bota   | ny Rd (N)    | )        |              |          |               |              |                |                     |          |          |                |              |                 |                |
| 7         | L2     | All MCs      | 18       | 0.0          | 18       | 0.0           | 0.365        | 7.6            | LOS A               | 5.8      | 41.7     | 0.21           | 0.20         | 0.21            | 43.2           |
| 8         | T1     | All MCs      | 1015     | 4.4          | 1015     | 4.4           | 0.365        | 2.4            | LOS A               | 5.8      | 41.7     | 0.21           | 0.19         | 0.21            | 46.9           |
| Appro     | ach    |              | 1033     | 4.3          | 1033     | 4.3           | 0.365        | 2.5            | LOS A               | 5.8      | 41.7     | 0.21           | 0.19         | 0.21            | 46.9           |
| West:     | Buck   | land St (V   | V)       |              |          |               |              |                |                     |          |          |                |              |                 |                |
| 10        | L2     | All MCs      | 19       | 0.0          | 19       | 0.0           | 0.306        | 55.7           | LOS D               | 4.2      | 30.3     | 0.94           | 0.74         | 0.94            | 5.2            |
| 11        | T1     | All MCs      | 60       | 3.5          | 60       | 3.5           | *0.306       | 50.3           | LOS D               | 4.2      | 30.3     | 0.94           | 0.74         | 0.94            | 5.2            |
| 12        | R2     | All MCs      | 19       | 0.0          | 19       | 0.0           | 0.107        | 56.9           | LOS E               | 1.0      | 7.2      | 0.93           | 0.70         | 0.93            | 15.5           |
| Appro     | ach    |              | 98       | 2.2          | 98       | 2.2           | 0.306        | 52.6           | LOS D               | 4.2      | 30.3     | 0.94           | 0.73         | 0.94            | 7.9            |
| All Ve    | hicles |              | 1925     | 4.3          | 1925     | 4.3           | 0.365        | 8.9            | LOS A               | 9.7      | 71.0     | 0.34           | 0.31         | 0.34            | 38.4           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

 ${\rm HV}$  (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Peo                                                        | destrian Mov  | vement | Perform | nance    |         |         |       |      |        |        |       |  |
|------------------------------------------------------------|---------------|--------|---------|----------|---------|---------|-------|------|--------|--------|-------|--|
| Mo                                                         |               | Dem.   | Aver.   | Level of | AVERAGE | BACK OF | Prop. | Eff. | Travel | Travel | Aver. |  |
| ID Crossing Flow Delay Service QUEUE Que Stop Time Dist. S |               |        |         |          |         |         |       |      |        |        |       |  |
|                                                            |               |        |         |          | [Ped    | Dist]   |       | Rate |        |        |       |  |
|                                                            |               | ped/h  | sec     |          | ped     | m       |       |      | sec    | m      | m/sec |  |
| Sou                                                        | th: Botany Ro | I (S)  |         |          |         |         |       |      |        |        |       |  |
| P1                                                         | Full          | 87     | 53.4    | LOS E    | 0.3     | 0.3     | 0.95  | 0.95 | 70.1   | 20.0   | 0.29  |  |
| Eas                                                        | t: Wellington | St (E) |         |          |         |         |       |      |        |        |       |  |

| P2 Full            | 46  | 53.3 | LOS E | 0.1 | 0.1 | 0.94 | 0.94 | 70.0 | 20.0 | 0.29 |
|--------------------|-----|------|-------|-----|-----|------|------|------|------|------|
| North: Botany Rd ( | N)  |      |       |     |     |      |      |      |      |      |
| P3 Full            | 71  | 53.4 | LOS E | 0.2 | 0.2 | 0.94 | 0.94 | 70.0 | 20.0 | 0.29 |
| West: Buckland St  | (W) |      |       |     |     |      |      |      |      |      |
| P4 Full            | 73  | 53.4 | LOS E | 0.2 | 0.2 | 0.94 | 0.94 | 70.0 | 20.0 | 0.29 |
| All Pedestrians    | 277 | 53.4 | LOS E | 0.3 | 0.3 | 0.94 | 0.94 | 70.0 | 20.0 | 0.29 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 5 November 2024 4:02:21 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\08 SM C&SW\_WLO (Block 4).sip9

Site: WLO04 [WLO04 Cope St / Wellington St (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: WLO-N1 [WLO Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

### NA Site Category: (None) Stop (Two-Way)

| Vehic  | le M   | ovemen      | t Perfo    | orma         | nce           |              |       |       |          |          |          |       |              |                  |       |
|--------|--------|-------------|------------|--------------|---------------|--------------|-------|-------|----------|----------|----------|-------|--------------|------------------|-------|
| Mov    | Turn   | Mov         | Dem        | nand         | Ar            | rival        | Deg.  | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff.         | Aver.            | Aver. |
| ID     |        | Class       | H<br>Total | lows<br>HV 1 | Fl<br>[ Total | lows<br>HV 1 | Satn  | Delay | Service  | [ Veh    | Dist 1   | Que   | Stop<br>Rate | No. of<br>Cvcles | Speed |
|        |        |             | veh/h      | %            | veh/h         | %            | v/c   | sec   |          | veh      | m        |       | 11010        |                  | km/h  |
| South  | Сор    | e St (S)    |            |              |               |              |       |       |          |          |          |       |              |                  |       |
| 1      | L2     | All MCs     | 33         | 0.0          | 33            | 0.0          | 0.040 | 7.6   | LOS A    | 0.2      | 1.1      | 0.16  | 0.91         | 0.16             | 30.2  |
| 2      | T1     | All MCs     | 7          | 0.0          | 7             | 0.0          | 0.040 | 8.5   | LOS A    | 0.2      | 1.1      | 0.16  | 0.91         | 0.16             | 30.2  |
| 3      | R2     | All MCs     | 6          | 0.0          | 6             | 0.0          | 0.040 | 8.6   | LOS A    | 0.2      | 1.1      | 0.16  | 0.91         | 0.16             | 33.7  |
| Appro  | ach    |             | 46         | 0.0          | 46            | 0.0          | 0.040 | 7.9   | LOS A    | 0.2      | 1.1      | 0.16  | 0.91         | 0.16             | 30.9  |
| East:  | Wellir | igton St (l | E)         |              |               |              |       |       |          |          |          |       |              |                  |       |
| 4      | L2     | All MCs     | 9          | 0.0          | 9             | 0.0          | 0.052 | 4.9   | LOS A    | 0.2      | 1.6      | 0.23  | 0.20         | 0.23             | 41.8  |
| 5      | T1     | All MCs     | 44         | 0.0          | 44            | 0.0          | 0.052 | 0.5   | LOS A    | 0.2      | 1.6      | 0.23  | 0.20         | 0.23             | 41.0  |
| 6      | R2     | All MCs     | 5          | 0.0          | 5             | 0.0          | 0.052 | 5.5   | LOS A    | 0.2      | 1.6      | 0.23  | 0.20         | 0.23             | 41.0  |
| Appro  | ach    |             | 59         | 0.0          | 59            | 0.0          | 0.052 | 1.7   | NA       | 0.2      | 1.6      | 0.23  | 0.20         | 0.23             | 41.2  |
| North: | Cope   | e St (N)    |            |              |               |              |       |       |          |          |          |       |              |                  |       |
| 7      | L2     | All MCs     | 3          | 0.0          | 3             | 0.0          | 0.011 | 7.7   | LOS A    | 0.0      | 0.3      | 0.35  | 0.85         | 0.35             | 30.3  |
| 8      | T1     | All MCs     | 1          | 0.0          | 1             | 0.0          | 0.011 | 7.7   | LOS A    | 0.0      | 0.3      | 0.35  | 0.85         | 0.35             | 31.5  |
| 9      | R2     | All MCs     | 5          | 0.0          | 5             | 0.0          | 0.011 | 7.9   | LOS A    | 0.0      | 0.3      | 0.35  | 0.85         | 0.35             | 23.9  |
| Appro  | ach    |             | 9          | 0.0          | 9             | 0.0          | 0.011 | 7.8   | LOS A    | 0.0      | 0.3      | 0.35  | 0.85         | 0.35             | 27.7  |
| West:  | Welli  | ngton St (  | (W)        |              |               |              |       |       |          |          |          |       |              |                  |       |
| 10     | L2     | All MCs     | 23         | 0.0          | 23            | 0.0          | 0.094 | 4.7   | LOS A    | 0.2      | 1.6      | 0.07  | 0.15         | 0.07             | 39.4  |
| 11     | T1     | All MCs     | 123        | 3.4          | 123           | 3.4          | 0.094 | 0.1   | LOS A    | 0.2      | 1.6      | 0.07  | 0.15         | 0.07             | 45.3  |
| 12     | R2     | All MCs     | 19         | 0.0          | 19            | 0.0          | 0.094 | 4.7   | LOS A    | 0.2      | 1.6      | 0.07  | 0.15         | 0.07             | 40.7  |
| Appro  | ach    |             | 165        | 2.5          | 165           | 2.5          | 0.094 | 1.3   | NA       | 0.2      | 1.6      | 0.07  | 0.15         | 0.07             | 44.2  |
| All Ve | nicles |             | 280        | 1.5          | 280           | 1.5          | 0.094 | 2.7   | NA       | 0.2      | 1.6      | 0.13  | 0.31         | 0.13             | 40.0  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 5 November 2024 4:02:21 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\08 SM C&SW\_WLO (Block 4).sip9

Site: WLO05 [WLO05 Wyndham St / Henderson Rd (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TCS 55

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfo                      | orma                      | nce                          |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
|-----------|--------|--------------|------------------------------|---------------------------|------------------------------|----------------------------|---------------------|-----------------------|---------------------|---------------------------|-------------------------|----------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F<br>[ Total<br>veh/h | nand<br>Iows<br>HV ]<br>% | Ar<br>Fl<br>[ Total<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Wyn  | dham St      | (S)                          |                           |                              |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 1         | L2     | All MCs      | 13                           | 0.0                       | 13                           | 0.0                        | 0.677               | 68.2                  | LOS E               | 10.1                      | 72.1                    | 0.99           | 0.84                 | 1.04                      | 11.5                   |
| 2         | T1     | All MCs      | 332                          | 2.9                       | 332                          | 2.9                        | *0.677              | 58.5                  | LOS E               | 10.1                      | 73.0                    | 0.99           | 0.84                 | 1.04                      | 18.3                   |
| 3         | R2     | All MCs      | 8                            | 25.0                      | 8                            | 25.0                       | 0.677               | 65.4                  | LOS E               | 10.1                      | 73.0                    | 0.99           | 0.84                 | 1.04                      | 12.0                   |
| Appro     | ach    |              | 353                          | 3.3                       | 353                          | 3.3                        | 0.677               | 59.0                  | LOS E               | 10.1                      | 73.0                    | 0.99           | 0.84                 | 1.04                      | 16.8                   |
| East:     | Hende  | erson Rd     | (E)                          |                           |                              |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 4         | L2     | All MCs      | 214                          | 2.5                       | 214                          | 2.5                        | 0.329               | 14.0                  | LOS A               | 10.6                      | 75.7                    | 0.46           | 0.52                 | 0.46                      | 31.7                   |
| 5         | T1     | All MCs      | 687                          | 1.5                       | 687                          | 1.5                        | 0.329               | 6.9                   | LOS A               | 11.2                      | 79.7                    | 0.46           | 0.40                 | 0.46                      | 27.4                   |
| 6         | R2     | All MCs      | 655                          | 5.9                       | 655                          | 5.9                        | *0.402              | 23.0                  | LOS B               | 9.8                       | 72.4                    | 0.69           | 0.81                 | 0.69                      | 21.9                   |
| Appro     | ach    |              | 1556                         | 3.5                       | 1556                         | 3.5                        | 0.402               | 14.6                  | LOS B               | 11.2                      | 79.7                    | 0.56           | 0.59                 | 0.56                      | 24.7                   |
| West:     | Hend   | lerson Rd    | (W)                          |                           |                              |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 10        | L2     | All MCs      | 276                          | 3.4                       | 276                          | 3.4                        | *0.651              | 72.6                  | LOS F               | 8.2                       | 58.8                    | 0.98           | 0.82                 | 1.02                      | 12.5                   |
| 11        | T1     | All MCs      | 273                          | 0.4                       | 273                          | 0.4                        | 0.651               | 47.9                  | LOS D               | 14.3                      | 100.4                   | 0.97           | 0.82                 | 0.97                      | 4.9                    |
| Appro     | ach    |              | 548                          | 1.9                       | 548                          | 1.9                        | 0.651               | 60.3                  | LOS E               | 14.3                      | 100.4                   | 0.98           | 0.82                 | 1.00                      | 8.3                    |
| All Ve    | hicles |              | 2457                         | 3.1                       | 2457                         | 3.1                        | 0.677               | 31.2                  | LOS C               | 14.3                      | 100.4                   | 0.71           | 0.68                 | 0.72                      | 17.2                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pec | lestrian Mov  | /ement | Perform | nance    |                              |         |       |              |        |        |       |
|-----|---------------|--------|---------|----------|------------------------------|---------|-------|--------------|--------|--------|-------|
| Mo  |               | Dem.   | Aver.   | Level of | AVERAGE                      | BACK OF | Prop. | Eff.         | Travel | Travel | Aver. |
| ID  | Crossing      | Flow   | Delay   | Service  | QUEUE<br>[Ped Dist]<br>ped m |         | Que   | Stop<br>Rate | Time   | Dist.  | Speed |
|     |               | ped/h  | sec     |          | ped                          | m       |       |              | sec    | m      | m/sec |
| Sou | th: Wyndham   | St (S) |         |          |                              |         |       |              |        |        |       |
| P1  | Full          | 297    | 53.9    | LOS E    | 1.0                          | 1.0     | 0.95  | 0.95         | 70.5   | 20.0   | 0.28  |
| Eas | t: Henderson  | Rd (E) |         |          |                              |         |       |              |        |        |       |
| P2  | Full          | 71     | 53.4    | LOS E    | 0.2                          | 0.2     | 0.94  | 0.94         | 70.0   | 20.0   | 0.29  |
| Nor | th: Wyndham   | St (N) |         |          |                              |         |       |              |        |        |       |
| P3  | Full          | 181    | 53.6    | LOS E    | 0.6                          | 0.6     | 0.95  | 0.95         | 70.3   | 20.0   | 0.28  |
| Wes | st: Henderson | Rd (W) |         |          |                              |         |       |              |        |        |       |

| P4 Full         | 164 | 53.6 | LOS E | 0.5 | 0.5 | 0.95 | 0.95 | 70.2 | 20.0 | 0.28 |
|-----------------|-----|------|-------|-----|-----|------|------|------|------|------|
| All Pedestrians | 713 | 53.7 | LOS E | 1.0 | 1.0 | 0.95 | 0.95 | 70.4 | 20.0 | 0.28 |

### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 5 November 2024 4:02:21 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\08 SM C&SW\_WLO (Block 4).sip9

Site: WLO06 [WLO06 Pedestrian Mid-block Crossing at Cope St (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None) Pedestrian Crossing (Unsignalised)

| Vehic     | le M   | ovemen       | t Perfc          | orma         | nce                |               |              |                |                     |               |            |              |              |                 |                |
|-----------|--------|--------------|------------------|--------------|--------------------|---------------|--------------|----------------|---------------------|---------------|------------|--------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl        | nand<br>Iows | Ar<br>Fl           | rival<br>lows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back      | Of Queue   | Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total<br>veh/h | HV ]<br>%    | [ Total  <br>veh/h | HV ]<br>%     | v/c          | sec            |                     | [ Veh.<br>veh | Dist]<br>m |              | Rate         | Cycles          | km/h           |
| South     | : Cop  | e St (S)     |                  |              |                    |               |              |                |                     |               |            |              |              |                 |                |
| 2         | T1     | All MCs      | 36               | 0.0          | 36                 | 0.0           | 0.022        | 2.1            | LOS A               | 0.1           | 0.5        | 0.09         | 0.35         | 0.09            | 32.5           |
| Appro     | ach    |              | 36               | 0.0          | 36                 | 0.0           | 0.022        | 2.1            | LOS A               | 0.1           | 0.5        | 0.09         | 0.35         | 0.09            | 32.5           |
| North:    | Cope   | e St (N)     |                  |              |                    |               |              |                |                     |               |            |              |              |                 |                |
| 8         | T1     | All MCs      | 7                | 0.0          | 7                  | 0.0           | 0.005        | 2.1            | LOS A               | 0.0           | 0.1        | 0.09         | 0.35         | 0.09            | 31.6           |
| Appro     | ach    |              | 7                | 0.0          | 7                  | 0.0           | 0.005        | 2.1            | LOS A               | 0.0           | 0.1        | 0.09         | 0.35         | 0.09            | 31.6           |
| All Ve    | hicles |              | 43               | 0.0          | 43                 | 0.0           | 0.022        | 2.1            | NA                  | 0.1           | 0.5        | 0.09         | 0.35         | 0.09            | 32.4           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Akçelik M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 5 November 2024 4:02:21 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\08 SM C&SW\_WLO (Block 4).sip9

Site: WLO01 [WLO01 Botany Rd / Raglan St / Henderson Rd (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TCS 47

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfo             | orma                 | nce                 |                       |              |                |                     |                    |                    |                |                      |                           |                |
|-----------|--------|--------------|---------------------|----------------------|---------------------|-----------------------|--------------|----------------|---------------------|--------------------|--------------------|----------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F<br>[ Total | nand<br>lows<br>HV ] | Ar<br>Fl<br>[ Total | rival<br>lows<br>HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh. | Of Queue<br>Dist ] | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| South     | : Bota | ny Rd (S     | )<br>)              | %                    | ven/n               | %                     | V/C          | sec            | _                   | ven                | m                  | _              | _                    | _                         | Km/n           |
| 1         | L2     | All MCs      | ,<br>551            | 3.8                  | 551                 | 3.8                   | * 0.556      | 45.6           | LOS D               | 14.3               | 103.5              | 0.93           | 0.83                 | 0.93                      | 13.6           |
| Appro     | ach    |              | 551                 | 3.8                  | 551                 | 3.8                   | 0.556        | 45.6           | LOS D               | 14.3               | 103.5              | 0.93           | 0.83                 | 0.93                      | 13.6           |
| East:     | Ragla  | n St (E)     |                     |                      |                     |                       |              |                |                     |                    |                    |                |                      |                           |                |
| 4         | L2     | All MCs      | 15                  | 0.0                  | 15                  | 0.0                   | 0.508        | 62.7           | LOS E               | 6.0                | 44.2               | 0.98           | 0.78                 | 0.98                      | 4.6            |
| 5         | T1     | All MCs      | 197                 | 7.0                  | 197                 | 7.0                   | 0.508        | 54.5           | LOS D               | 6.0                | 44.4               | 0.98           | 0.78                 | 0.98                      | 4.6            |
| Appro     | ach    |              | 212                 | 6.5                  | 212                 | 6.5                   | 0.508        | 55.1           | LOS D               | 6.0                | 44.4               | 0.98           | 0.78                 | 0.98                      | 4.6            |
| North:    | Bota   | ny Rd (N)    | )                   |                      |                     |                       |              |                |                     |                    |                    |                |                      |                           |                |
| 7         | L2     | All MCs      | 76                  | 9.7                  | 76                  | 9.7                   | 0.103        | 10.7           | LOS A               | 2.1                | 15.8               | 0.30           | 0.46                 | 0.30                      | 33.6           |
| 8         | T1     | All MCs      | 763                 | 4.3                  | 763                 | 4.3                   | 0.516        | 7.0            | LOS A               | 16.0               | 116.4              | 0.42           | 0.40                 | 0.42                      | 35.2           |
| 9         | R2     | All MCs      | 600                 | 2.8                  | 600                 | 2.8                   | *0.792       | 56.8           | LOS E               | 17.7               | 126.5              | 0.99           | 0.90                 | 1.10                      | 10.5           |
| Appro     | ach    |              | 1439                | 4.0                  | 1439                | 4.0                   | 0.792        | 28.0           | LOS B               | 17.7               | 126.5              | 0.65           | 0.61                 | 0.70                      | 17.0           |
| West:     | Hend   | lerson Rd    | (W)                 |                      |                     |                       |              |                |                     |                    |                    |                |                      |                           |                |
| 11        | T1     | All MCs      | 191                 | 2.2                  | 191                 | 2.2                   | *0.708       | 12.2           | LOS A               | 4.1                | 29.4               | 0.46           | 0.39                 | 0.48                      | 15.8           |
| 12        | R2     | All MCs      | 62                  | 0.0                  | 62                  | 0.0                   | 0.708        | 37.1           | LOS C               | 3.9                | 27.5               | 0.77           | 0.71                 | 0.81                      | 7.4            |
| Appro     | ach    |              | 253                 | 1.7                  | 253                 | 1.7                   | 0.708        | 18.3           | LOS B               | 4.1                | 29.4               | 0.54           | 0.47                 | 0.56                      | 12.3           |
| All Ve    | hicles |              | 2454                | 3.9                  | 2454                | 3.9                   | 0.792        | 33.3           | LOS C               | 17.7               | 126.5              | 0.73           | 0.66                 | 0.76                      | 14.3           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pe       | destrian Mo     | vement       | Perform        | nance               |                |                          |              |                      |                |                 |                |
|----------|-----------------|--------------|----------------|---------------------|----------------|--------------------------|--------------|----------------------|----------------|-----------------|----------------|
| Mo<br>ID | v<br>Crossing   | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF<br>EUE<br>Dist 1 | Prop.<br>Que | Eff.<br>Stop<br>Rate | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|          |                 | ped/h        | sec            |                     | ped            | m                        |              | Tuto                 | sec            | m               | m/sec          |
| Sou      | uth: Botany Ro  | d (S)        |                |                     |                |                          |              |                      |                |                 |                |
| P1       | Full            | 181          | 53.6           | LOS E               | 0.6            | 0.6                      | 0.95         | 0.95                 | 70.3           | 20.0            | 0.28           |
| Eas      | st: Raglan St ( | E)           |                |                     |                |                          |              |                      |                |                 |                |
| P2       | Full            | 95           | 53.4           | LOS E               | 0.3            | 0.3                      | 0.95         | 0.95                 | 70.1           | 20.0            | 0.29           |

| North: Botany Rd | (N)    |      |       |     |     |      |      |      |      |      |
|------------------|--------|------|-------|-----|-----|------|------|------|------|------|
| P3 Full          | 85     | 53.4 | LOS E | 0.3 | 0.3 | 0.95 | 0.95 | 70.1 | 20.0 | 0.29 |
| West: Henderson  | Rd (W) |      |       |     |     |      |      |      |      |      |
| P4 Full          | 87     | 53.4 | LOS E | 0.3 | 0.3 | 0.95 | 0.95 | 70.1 | 20.0 | 0.29 |
| All Pedestrians  | 448    | 53.5 | LOS E | 0.6 | 0.6 | 0.95 | 0.95 | 70.2 | 20.0 | 0.29 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 5 November 2024 4:02:27 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\08 SM C&SW\_WLO (Block 4).sip9

Site: WLO02 [WLO02 Raglan St / Cope St (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: WLO-N1 [WLO Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

TCS 5057

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 35 seconds (Site User-Given Phase Times)

| Vehic     | cle M  | ovemen       | t Perfo  | orma         | ince    |               |              |                |                     |          |          |                |              |                 |                |
|-----------|--------|--------------|----------|--------------|---------|---------------|--------------|----------------|---------------------|----------|----------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F | nand<br>Iows | Ar<br>F | rival<br>Iows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back | Of Queue | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total  | HV]          | [ Total | HV]           |              |                |                     | [Veh.    | Dist ]   |                | Rate         | Cycles          | km/b           |
| South     | · Con  | e St (S)     | ven/n    | 70           | ven/n   | 70            | V/C          | Sec            | _                   | ven      | 111      | _              | _            | _               | K111/11        |
| 1         | 10     |              | 10       | 0.0          | 10      | 0.0           | 0.077        | 15.9           |                     | 0.5      | 2.2      | 0.70           | 0.62         | 0.70            | 16.9           |
|           |        |              | 12       | 0.0          | 12      | 0.0           | 0.077        | 15.0           |                     | 0.5      | 3.3      | 0.79           | 0.03         | 0.79            | 10.0           |
| 2         | 11     |              | 15       | 7.1          | 15      | 7.1           | 0.077        | 10.5           | LUSA                | 0.5      | 3.3      | 0.79           | 0.63         | 0.79            | 31.5           |
| 3         | R2     | All MCs      | 7        | 0.0          | 7       | 0.0           | 0.077        | 14.0           | LOSA                | 0.5      | 3.3      | 0.79           | 0.63         | 0.79            | 31.3           |
| Appro     | ach    |              | 34       | 3.1          | 34      | 3.1           | 0.077        | 13.1           | LOS A               | 0.5      | 3.3      | 0.79           | 0.63         | 0.79            | 28.2           |
| East:     | Ragla  | n St (E)     |          |              |         |               |              |                |                     |          |          |                |              |                 |                |
| 4         | L2     | All MCs      | 2        | 0.0          | 2       | 0.0           | 0.168        | 16.0           | LOS B               | 1.3      | 9.6      | 0.73           | 0.58         | 0.73            | 35.4           |
| 5         | T1     | All MCs      | 199      | 4.8          | 199     | 4.8           | 0.168        | 8.9            | LOS A               | 1.3      | 9.6      | 0.73           | 0.58         | 0.73            | 35.3           |
| 6         | R2     | All MCs      | 7        | 0.0          | 7       | 0.0           | 0.168        | 15.1           | LOS B               | 1.3      | 9.2      | 0.73           | 0.58         | 0.73            | 39.2           |
| Appro     | ach    |              | 208      | 4.5          | 208     | 4.5           | 0.168        | 9.2            | LOS A               | 1.3      | 9.6      | 0.73           | 0.58         | 0.73            | 35.5           |
| North     | Cope   | e St (N)     |          |              |         |               |              |                |                     |          |          |                |              |                 |                |
| 7         | L2     | All MCs      | 14       | 0.0          | 14      | 0.0           | 0.031        | 13.2           | LOS A               | 0.2      | 1.5      | 0.69           | 0.63         | 0.69            | 37.2           |
| 8         | T1     | All MCs      | 5        | 0.0          | 5       | 0.0           | 0.031        | 9.2            | LOS A               | 0.2      | 1.5      | 0.69           | 0.63         | 0.69            | 30.9           |
| 9         | R2     | All MCs      | 38       | 2.8          | 38      | 2.8           | *0.195       | 21.4           | LOS B               | 0.7      | 4.7      | 0.94           | 0.71         | 0.94            | 23.9           |
| Appro     | ach    |              | 57       | 1.9          | 57      | 1.9           | 0.195        | 18.3           | LOS B               | 0.7      | 4.7      | 0.85           | 0.68         | 0.85            | 28.4           |
| West:     | Ragla  | an St (W)    | )        |              |         |               |              |                |                     |          |          |                |              |                 |                |
| 10        | L2     | All MCs      | 46       | 2.3          | 46      | 2.3           | 0.089        | 14.6           | LOS B               | 0.6      | 4.3      | 0.76           | 0.69         | 0.76            | 29.5           |
| 11        | T1     | All MCs      | 207      | 4.6          | 207     | 4.6           | *0.324       | 9.6            | LOS A               | 2.7      | 20.0     | 0.78           | 0.64         | 0.78            | 36.7           |
| Appro     | ach    |              | 254      | 4.1          | 254     | 4.1           | 0.324        | 10.5           | LOS A               | 2.7      | 20.0     | 0.78           | 0.65         | 0.78            | 35.2           |
| All Ve    | hicles |              | 553      | 4.0          | 553     | 4.0           | 0.324        | 11.0           | LOS A               | 2.7      | 20.0     | 0.77           | 0.63         | 0.77            | 34.0           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Pe        | destrian Mov  | vement       | Perforr        | nance               |                |         |              |              |                |                 |                |
|-----------|---------------|--------------|----------------|---------------------|----------------|---------|--------------|--------------|----------------|-----------------|----------------|
| Mov<br>ID | /<br>Crossing | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUE | BACK OF | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|           |               | ned/h        | 50C            |                     | [Ped]          | Dist ]  |              | Rate         | 80C            | m               | m/sec          |
| Sou       | th: Cope St ( | S)           | 000            |                     | peu            |         |              |              | 500            |                 | m/800          |
| P1        | Full          | 151          | 12.1           | LOS B               | 0.1            | 0.1     | 0.83         | 0.83         | 178.8          | 200.0           | 1.12           |

| East: Raglan St (E | )   |      |       |     |     |      |      |      |      |      |
|--------------------|-----|------|-------|-----|-----|------|------|------|------|------|
| P2 Full            | 45  | 12.0 | LOS B | 0.0 | 0.0 | 0.83 | 0.83 | 28.7 | 20.0 | 0.70 |
| North: Cope St (N) |     |      |       |     |     |      |      |      |      |      |
| P3 Full            | 122 | 12.1 | LOS B | 0.1 | 0.1 | 0.83 | 0.83 | 28.7 | 20.0 | 0.70 |
| West: Raglan St (V | V)  |      |       |     |     |      |      |      |      |      |
| P4 Full            | 125 | 12.1 | LOS B | 0.1 | 0.1 | 0.83 | 0.83 | 28.7 | 20.0 | 0.70 |
| All Pedestrians    | 443 | 12.1 | LOS B | 0.1 | 0.1 | 0.83 | 0.83 | 79.7 | 81.1 | 1.02 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 5 November 2024 4:02:27 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\08 SM C&SW\_WLO (Block 4).sip9

Site: WLO03 [WLO03 Botany Rd / Wellington St / Buckland St (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TCS 137

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase Times)

| Vehic  | le M                      | ovemen     | t Perfc       | orma         | nce             |              |        |       |          |          |          |       |              |                  |       |
|--------|---------------------------|------------|---------------|--------------|-----------------|--------------|--------|-------|----------|----------|----------|-------|--------------|------------------|-------|
| Mov    | Turn                      | Mov        | Dem           | nand         | Ar              | rival        | Deg.   | Aver. | Level of | 95% Back | Of Queue | Prop. | Eff.         | Aver.            | Aver. |
| ID     |                           | Class      | FI<br>[ Total | lows<br>HV 1 | FI<br>[ Total ] | lows<br>HV/1 | Satn   | Delay | Service  | [ \/eh   | Dist 1   | Que   | Stop<br>Rate | No. of<br>Cycles | Speed |
|        |                           |            | veh/h         | %            | veh/h           | %            | v/c    | sec   |          | veh      | m        |       | i tato       | C y cicc         | km/h  |
| South  | : Bota                    | iny Rd (S  | )             |              |                 |              |        |       |          |          |          |       |              |                  |       |
| 2      | T1                        | All MCs    | 505           | 4.2          | 505             | 4.2          | 0.428  | 6.0   | LOS A    | 10.3     | 74.7     | 0.40  | 0.38         | 0.40             | 38.0  |
| 3      | R2                        | All MCs    | 56            | 0.0          | 56              | 0.0          | 0.428  | 18.6  | LOS B    | 10.3     | 74.7     | 0.44  | 0.43         | 0.44             | 36.8  |
| Appro  | ach                       |            | 561           | 3.8          | 561             | 3.8          | 0.428  | 7.3   | LOS A    | 10.3     | 74.7     | 0.40  | 0.39         | 0.40             | 37.9  |
| East:  | Wellir                    | igton St ( | E)            |              |                 |              |        |       |          |          |          |       |              |                  |       |
| 4      | L2                        | All MCs    | 46            | 0.0          | 46              | 0.0          | 0.214  | 59.6  | LOS E    | 2.5      | 17.6     | 0.94  | 0.74         | 0.94             | 15.7  |
| 6      | R2                        | All MCs    | 18            | 0.0          | 18              | 0.0          | 0.112  | 59.1  | LOS E    | 1.0      | 6.9      | 0.94  | 0.70         | 0.94             | 4.3   |
| Appro  | Approach                  |            | 64            | 0.0          | 64              | 0.0          | 0.214  | 59.4  | LOS E    | 2.5      | 17.6     | 0.94  | 0.73         | 0.94             | 13.1  |
| North: | Bota                      | ny Rd (N   | )             |              |                 |              |        |       |          |          |          |       |              |                  |       |
| 7      | L2                        | All MCs    | 11            | 0.0          | 11              | 0.0          | 0.112  | 12.0  | LOS A    | 1.4      | 10.2     | 0.18  | 0.18         | 0.18             | 42.9  |
| 8      | T1                        | All MCs    | 829           | 3.9          | 829             | 3.9          | *0.561 | 8.2   | LOS A    | 11.3     | 82.0     | 0.29  | 0.27         | 0.29             | 45.8  |
| Appro  | ach                       |            | 840           | 3.9          | 840             | 3.9          | 0.561  | 8.3   | LOS A    | 11.3     | 82.0     | 0.29  | 0.27         | 0.29             | 41.3  |
| West:  | Buck                      | land St (V | V)            |              |                 |              |        |       |          |          |          |       |              |                  |       |
| 10     | L2                        | All MCs    | 27            | 0.0          | 27              | 0.0          | 0.341  | 56.3  | LOS D    | 4.8      | 33.8     | 0.94  | 0.75         | 0.94             | 5.2   |
| 11     | T1                        | All MCs    | 62            | 0.0          | 62              | 0.0          | *0.341 | 50.5  | LOS D    | 4.8      | 33.8     | 0.94  | 0.75         | 0.94             | 5.2   |
| 12     | R2                        | All MCs    | 37            | 0.0          | 37              | 0.0          | 0.196  | 56.7  | LOS E    | 2.0      | 14.1     | 0.94  | 0.73         | 0.94             | 15.5  |
| Appro  | 12 R2 All MC:<br>Approach |            | 126           | 0.0          | 126             | 0.0          | 0.341  | 53.6  | LOS D    | 4.8      | 33.8     | 0.94  | 0.74         | 0.94             | 9.1   |
| All Ve | hicles                    |            | 1592          | 3.4          | 1592            | 3.4          | 0.561  | 13.6  | LOS A    | 11.3     | 82.0     | 0.41  | 0.37         | 0.41             | 34.3  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Peo | destrian Mov   | vement | Perforr | nance    |         |         |       |      |        |        |       |
|-----|----------------|--------|---------|----------|---------|---------|-------|------|--------|--------|-------|
| Mov |                | Dem.   | Aver.   | Level of | AVERAGE | BACK OF | Prop. | Eff. | Travel | Travel | Aver. |
| ID  | Crossing       | Flow   | Delay   | Service  | QUE     | UE      | Que   | Stop | Time   | Dist.  | Speed |
|     |                |        |         |          | [Ped    | Dist ]  |       | Rate |        |        |       |
|     |                | ped/h  | sec     |          | ped     | m       |       |      | sec    | m      | m/sec |
| Sou | ith: Botany Ro | l (S)  |         |          |         |         |       |      |        |        |       |
| P1  | Full           | 58     | 53.3    | LOS E    | 0.2     | 0.2     | 0.94  | 0.94 | 70.0   | 20.0   | 0.29  |
| Eas | t: Wellington  | St (E) |         |          |         |         |       |      |        |        |       |

| P2 Full            | 48  | 53.3 | LOS E | 0.2 | 0.2 | 0.94 | 0.94 | 70.0 | 20.0 | 0.29 |
|--------------------|-----|------|-------|-----|-----|------|------|------|------|------|
| North: Botany Rd ( | N)  |      |       |     |     |      |      |      |      |      |
| P3 Full            | 48  | 53.3 | LOS E | 0.2 | 0.2 | 0.94 | 0.94 | 70.0 | 20.0 | 0.29 |
| West: Buckland St  | (W) |      |       |     |     |      |      |      |      |      |
| P4 Full            | 69  | 53.4 | LOS E | 0.2 | 0.2 | 0.94 | 0.94 | 70.0 | 20.0 | 0.29 |
| All Pedestrians    | 224 | 53.3 | LOS E | 0.2 | 0.2 | 0.94 | 0.94 | 70.0 | 20.0 | 0.29 |

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 5 November 2024 4:02:27 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\08 SM C&SW\_WLO (Block 4).sip9

Site: WLO04 [WLO04 Cope St / Wellington St (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: WLO-N1 [WLO Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

NA Site Category: (None) Stop (Two-Way)

| Vehic                   | le M | ovemen  | t Perfo        | orma         | nce             |              |       |       |          |          |          |      |              |                  |       |
|-------------------------|------|---------|----------------|--------------|-----------------|--------------|-------|-------|----------|----------|----------|------|--------------|------------------|-------|
| Mov                     | Turn | Mov     | Demand         |              | Ar              | rival        | Deg.  | Aver. | Level of | 95% Back | Of Queue | Eff. | Aver.        | Aver.            |       |
| ID                      |      | Class   | ا-۲<br>Total آ | lows<br>HV 1 | ا⊦<br>  Total آ | lows<br>HV 1 | Satn  | Delay | Service  | [Veh.    | Dist 1   | Que  | Stop<br>Rate | No. of<br>Cvcles | Speed |
|                         |      |         | veh/h          | %            | veh/h           | %            | v/c   | sec   |          | veh      | m        |      |              |                  | km/h  |
| South: Cope St (S)      |      |         |                |              |                 |              |       |       |          |          |          |      |              |                  |       |
| 1                       | L2   | All MCs | 18             | 0.0          | 18              | 0.0          | 0.028 | 7.6   | LOS A    | 0.1      | 0.7      | 0.15 | 0.92         | 0.15             | 30.2  |
| 2                       | T1   | All MCs | 6              | 0.0          | 6               | 0.0          | 0.028 | 8.1   | LOS A    | 0.1      | 0.7      | 0.15 | 0.92         | 0.15             | 30.2  |
| 3                       | R2   | All MCs | 7              | 0.0          | 7               | 0.0          | 0.028 | 8.0   | LOS A    | 0.1      | 0.7      | 0.15 | 0.92         | 0.15             | 33.8  |
| Appro                   | ach  |         | 32             | 0.0          | 32              | 0.0          | 0.028 | 7.8   | LOS A    | 0.1      | 0.7      | 0.15 | 0.92         | 0.15             | 31.4  |
| East: Wellington St (E) |      |         |                |              |                 |              |       |       |          |          |          |      |              |                  |       |
| 4                       | L2   | All MCs | 8              | 0.0          | 8               | 0.0          | 0.040 | 4.7   | LOS A    | 0.2      | 1.3      | 0.16 | 0.18         | 0.16             | 42.0  |
| 5                       | T1   | All MCs | 35             | 0.0          | 35              | 0.0          | 0.040 | 0.3   | LOS A    | 0.2      | 1.3      | 0.16 | 0.18         | 0.16             | 41.5  |
| 6                       | R2   | All MCs | 5              | 0.0          | 5               | 0.0          | 0.040 | 5.2   | LOS A    | 0.2      | 1.3      | 0.16 | 0.18         | 0.16             | 41.5  |
| Appro                   | ach  |         | 48             | 0.0          | 48              | 0.0          | 0.040 | 1.6   | NA       | 0.2      | 1.3      | 0.16 | 0.18         | 0.16             | 41.6  |
| North: Cope St (N)      |      |         |                |              |                 |              |       |       |          |          |          |      |              |                  |       |
| 7                       | L2   | All MCs | 4              | 0.0          | 4               | 0.0          | 0.013 | 7.3   | LOS A    | 0.0      | 0.3      | 0.29 | 0.88         | 0.29             | 30.7  |
| 8                       | T1   | All MCs | 4              | 0.0          | 4               | 0.0          | 0.013 | 7.4   | LOS A    | 0.0      | 0.3      | 0.29 | 0.88         | 0.29             | 31.9  |
| 9                       | R2   | All MCs | 4              | 0.0          | 4               | 0.0          | 0.013 | 7.4   | LOS A    | 0.0      | 0.3      | 0.29 | 0.88         | 0.29             | 24.4  |
| Appro                   | ach  |         | 13             | 0.0          | 13              | 0.0          | 0.013 | 7.4   | LOS A    | 0.0      | 0.3      | 0.29 | 0.88         | 0.29             | 29.7  |
| West: Wellington St (W) |      |         |                |              |                 |              |       |       |          |          |          |      |              |                  |       |
| 10                      | L2   | All MCs | 9              | 0.0          | 9               | 0.0          | 0.102 | 4.7   | LOS A    | 0.4      | 2.9      | 0.12 | 0.15         | 0.12             | 39.3  |
| 11                      | T1   | All MCs | 97             | 0.0          | 97              | 0.0          | 0.102 | 0.3   | LOS A    | 0.4      | 2.9      | 0.12 | 0.15         | 0.12             | 45.2  |
| 12                      | R2   | All MCs | 17             | 0.0          | 17              | 0.0          | 0.102 | 4.7   | LOS A    | 0.4      | 2.9      | 0.12 | 0.15         | 0.12             | 40.6  |
| Approach                |      |         | 123            | 0.0          | 123             | 0.0          | 0.102 | 1.2   | NA       | 0.4      | 2.9      | 0.12 | 0.15         | 0.12             | 44.2  |
| All Vehicles            |      |         | 216            | 0.0          | 216             | 0.0          | 0.102 | 2.6   | NA       | 0.4      | 2.9      | 0.15 | 0.31         | 0.15             | 40.0  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 5 November 2024 4:02:27 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\08 SM C&SW\_WLO (Block 4).sip9
Site: WLO05 [WLO05 Wyndham St / Henderson Rd (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TCS 55

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfo                       | orma                      | nce                          |                            |                     |                       |                     |                           |                         |              |                      |                           |                        |
|-----------|--------|--------------|-------------------------------|---------------------------|------------------------------|----------------------------|---------------------|-----------------------|---------------------|---------------------------|-------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Derr<br>F<br>[ Total<br>veh/h | nand<br>lows<br>HV ]<br>% | Ar<br>Fl<br>[ Total<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Wyn  | dham St      | (S)                           |                           |                              |                            |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 1         | L2     | All MCs      | 9                             | 0.0                       | 9                            | 0.0                        | 0.584               | 61.7                  | LOS E               | 8.7                       | 61.8                    | 0.99         | 0.80                 | 0.99                      | 11.5                   |
| 2         | T1     | All MCs      | 297                           | 1.8                       | 297                          | 1.8                        | *0.584              | 53.1                  | LOS D               | 8.8                       | 62.9                    | 0.99         | 0.80                 | 0.99                      | 18.3                   |
| 3         | R2     | All MCs      | 4                             | 50.0                      | 4                            | 50.0                       | 0.584               | 60.1                  | LOS E               | 8.8                       | 62.9                    | 0.99         | 0.80                 | 0.99                      | 12.0                   |
| Appro     | ach    |              | 311                           | 2.4                       | 311                          | 2.4                        | 0.584               | 53.4                  | LOS D               | 8.8                       | 62.9                    | 0.99         | 0.80                 | 0.99                      | 18.0                   |
| East:     | Hende  | erson Rd     | (E)                           |                           |                              |                            |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 4         | L2     | All MCs      | 137                           | 3.1                       | 137                          | 3.1                        | 0.278               | 12.5                  | LOS A               | 9.2                       | 65.8                    | 0.45         | 0.42                 | 0.45                      | 33.5                   |
| 5         | T1     | All MCs      | 651                           | 2.3                       | 651                          | 2.3                        | 0.278               | 6.4                   | LOS A               | 9.5                       | 67.7                    | 0.45         | 0.35                 | 0.45                      | 28.8                   |
| 6         | R2     | All MCs      | 560                           | 5.8                       | 560                          | 5.8                        | *0.331              | 21.0                  | LOS B               | 7.7                       | 56.9                    | 0.68         | 0.79                 | 0.68                      | 22.9                   |
| Appro     | ach    |              | 1347                          | 3.8                       | 1347                         | 3.8                        | 0.331               | 13.1                  | LOS A               | 9.5                       | 67.7                    | 0.54         | 0.54                 | 0.54                      | 25.7                   |
| West:     | Hend   | lerson Rd    | (W)                           |                           |                              |                            |                     |                       |                     |                           |                         |              |                      |                           |                        |
| 10        | L2     | All MCs      | 304                           | 1.4                       | 304                          | 1.4                        | *0.667              | 73.2                  | LOS F               | 8.6                       | 60.9                    | 0.98         | 0.83                 | 1.03                      | 12.5                   |
| 11        | T1     | All MCs      | 248                           | 0.8                       | 248                          | 0.8                        | 0.617               | 47.0                  | LOS D               | 13.4                      | 94.2                    | 0.96         | 0.81                 | 0.96                      | 4.9                    |
| Appro     | ach    |              | 553                           | 1.1                       | 553                          | 1.1                        | 0.667               | 61.4                  | LOS E               | 13.4                      | 94.2                    | 0.97         | 0.82                 | 1.00                      | 8.5                    |
| All Ve    | hicles |              | 2211                          | 3.0                       | 2211                         | 3.0                        | 0.667               | 30.8                  | LOS C               | 13.4                      | 94.2                    | 0.71         | 0.65                 | 0.72                      | 17.2                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pec | lestrian Mov  | vement | Perform | nance    |              |              |       |              |        |        |       |
|-----|---------------|--------|---------|----------|--------------|--------------|-------|--------------|--------|--------|-------|
| Mo  |               | Dem.   | Aver.   | Level of | AVERAGE      | BACK OF      | Prop. | Eff.         | Travel | Travel | Aver. |
| ID  | Crossing      | Flow   | Delay   | Service  | QUE<br>[ Ped | UE<br>Dist ] | Que   | Stop<br>Rate | Time   | Dist.  | Speed |
|     |               | ped/h  | sec     |          | ped          | m            |       |              | sec    | m      | m/sec |
| Sou | th: Wyndham   | St (S) |         |          |              |              |       |              |        |        |       |
| P1  | Full          | 109    | 53.4    | LOS E    | 0.4          | 0.4          | 0.95  | 0.95         | 70.1   | 20.0   | 0.29  |
| Eas | t: Henderson  | Rd (E) |         |          |              |              |       |              |        |        |       |
| P2  | Full          | 48     | 53.3    | LOS E    | 0.2          | 0.2          | 0.94  | 0.94         | 70.0   | 20.0   | 0.29  |
| Nor | th: Wyndham   | St (N) |         |          |              |              |       |              |        |        |       |
| P3  | Full          | 68     | 53.4    | LOS E    | 0.2          | 0.2          | 0.94  | 0.94         | 70.0   | 20.0   | 0.29  |
| Wes | st: Henderson | Rd (W) |         |          |              |              |       |              |        |        |       |

| P4 Full         | 59  | 53.3 | LOS E | 0.2 | 0.2 | 0.94 | 0.94 | 70.0 | 20.0 | 0.29 |
|-----------------|-----|------|-------|-----|-----|------|------|------|------|------|
| All Pedestrians | 285 | 53.4 | LOS E | 0.4 | 0.4 | 0.94 | 0.94 | 70.0 | 20.0 | 0.29 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 5 November 2024 4:02:27 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\08 SM C&SW\_WLO (Block 4).sip9

Site: WLO06 [WLO06 Pedestrian Mid-block Crossing at Cope St (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA Site Category: (None) Pedestrian Crossing (Unsignalised)

#### Vehicle Movement Performance

|           |        |              |                  | /iniu        |                  |               |              |                |                     |               |            |                |              |                 |                |
|-----------|--------|--------------|------------------|--------------|------------------|---------------|--------------|----------------|---------------------|---------------|------------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Derr<br>Fl       | nand<br>Iows | Ar<br>F          | rival<br>Iows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back      | Of Queue   | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total<br>veh/h | HV ]<br>%    | [ Total<br>veh/h | HV ]<br>%     | v/c          | sec            |                     | [ Veh.<br>veh | Dist]<br>m |                | Rate         | Cycles          | km/h           |
| South     | : Cop  | e St (S)     |                  |              |                  |               |              |                |                     |               |            |                |              |                 |                |
| 2         | T1     | All MCs      | 21               | 0.0          | 21               | 0.0           | 0.013        | 2.1            | LOS A               | 0.0           | 0.3        | 0.09           | 0.35         | 0.09            | 32.5           |
| Appro     | ach    |              | 21               | 0.0          | 21               | 0.0           | 0.013        | 2.1            | LOS A               | 0.0           | 0.3        | 0.09           | 0.35         | 0.09            | 32.5           |
| North     | Cope   | e St (N)     |                  |              |                  |               |              |                |                     |               |            |                |              |                 |                |
| 8         | T1     | All MCs      | 11               | 0.0          | 11               | 0.0           | 0.006        | 2.1            | LOS A               | 0.0           | 0.2        | 0.09           | 0.35         | 0.09            | 31.6           |
| Appro     | ach    |              | 11               | 0.0          | 11               | 0.0           | 0.006        | 2.1            | LOS A               | 0.0           | 0.2        | 0.09           | 0.35         | 0.09            | 31.6           |
| All Ve    | hicles |              | 32               | 0.0          | 32               | 0.0           | 0.013        | 2.1            | NA                  | 0.0           | 0.3        | 0.09           | 0.35         | 0.09            | 32.2           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Akçelik M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 5 November 2024 4:02:27 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\08 SM C&SW\_WLO (Block 4).sip9

Site: SYD01 [SYD01 Railway Pde / Gleeson Ave (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: SYD-N1 [SYD Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

TCS 3320 Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 75 seconds (Site User-Given Phase Times)

| Vehic     | le M   | ovement      | t Perfo          | orma         | nce              |               |              |                |                     |               |             |              |              |                 |                |
|-----------|--------|--------------|------------------|--------------|------------------|---------------|--------------|----------------|---------------------|---------------|-------------|--------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Derr<br>F        | nand<br>lows | Ar<br>Fl         | rival<br>lows | Deg.<br>Satn | Aver.<br>Delav | Level of<br>Service | 95% Back      | Of Queue    | Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total<br>veh/h | HV ]<br>%    | [ Total<br>veh/h | HV ]<br>%     | v/c          | sec            |                     | [ Veh.<br>veh | Dist ]<br>m |              | Rate         | Cycles          | '<br>km/h      |
| South     | East:  | Gleeson      | Ave (SI          | Ξ)           |                  |               |              |                |                     |               |             |              |              |                 |                |
| 1         | L2     | All MCs      | 483              | 7.2          | 483              | 7.2           | 0.211        | 4.5            | LOS A               | 0.0           | 0.0         | 0.00         | 0.51         | 0.00            | 42.3           |
| Appro     | ach    |              | 483              | 7.2          | 483              | 7.2           | 0.211        | 4.5            | LOS A               | 0.0           | 0.0         | 0.00         | 0.51         | 0.00            | 42.3           |
| North     | East:  | Railway F    | Pde (NE          | )            |                  |               |              |                |                     |               |             |              |              |                 |                |
| 4         | L2     | All MCs      | 1009             | 5.6          | 1009             | 5.6           | *0.505       | 14.4           | LOS A               | 7.4           | 54.6        | 0.57         | 0.75         | 0.57            | 31.9           |
| 5         | T1     | All MCs      | 107              | 12.7         | 107              | 12.7          | 0.082        | 9.5            | LOS A               | 1.0           | 7.7         | 0.27         | 0.22         | 0.27            | 54.4           |
| Appro     | ach    |              | 1117             | 6.3          | 1117             | 6.3           | 0.505        | 14.0           | LOS A               | 7.4           | 54.6        | 0.54         | 0.70         | 0.54            | 30.5           |
| All Ve    | hicles |              | 1600             | 6.6          | 1600             | 6.6           | 0.505        | 11.1           | LOS A               | 7.4           | 54.6        | 0.38         | 0.64         | 0.38            | 33.7           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov    | vement    | Perform | nance    |              |              |       |              |        |        |       |
|-------------------|-----------|---------|----------|--------------|--------------|-------|--------------|--------|--------|-------|
| Mov               | Dem.      | Aver.   | Level of | AVERAGE      | BACK OF      | Prop. | Eff.         | Travel | Travel | Aver. |
| ID Crossing       | Flow      | Delay   | Service  | QUE<br>[ Ped | UE<br>Diet 1 | Que   | Stop<br>Rate | lime   | Dist.  | Speed |
|                   | ped/h     | sec     |          | ped          | m            |       | Tate         | sec    | m      | m/sec |
| NorthEast: Railwa | ay Pde (l | NE)     |          |              |              |       |              |        |        |       |
| P2 Full           | 144       | 31.0    | LOS D    | 0.3          | 0.3          | 0.91  | 0.91         | 47.7   | 20.0   | 0.42  |
| P2S Slip/         | 257       | 18.2    | LOS B    | 0.4          | 0.4          | 0.82  | 0.82         | 34.9   | 20.0   | 0.57  |
| Bypass            |           |         |          |              |              |       |              |        |        |       |
| All Pedestrians   | 401       | 22.8    | LOS C    | 0.4          | 0.4          | 0.85  | 0.85         | 39.5   | 20.0   | 0.51  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 12:19:39 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\09 SM C&SW\_SYD (Block 4).sip9

Site: SYD02 [SYD02 Burrows Ave / Gleeson Ave (Site Folder: Block 4 Model - 2024 AM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: SYD-N1 [SYD Network 1 (Network Folder: Block 4 Network - 2024 AM Peak)]

TCS 1152

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 110 seconds (Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfo             | orma                 | nce                 |                       |              |                |                     |                    |                    |                |                      |                           |                |
|-----------|--------|--------------|---------------------|----------------------|---------------------|-----------------------|--------------|----------------|---------------------|--------------------|--------------------|----------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F<br>[ Total | nand<br>Iows<br>HV ] | Ar<br>Fl<br>[ Total | rival<br>lows<br>HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh. | Of Queue<br>Dist ] | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
|           |        |              | veh/h               | %                    | veh/h               | %                     | v/c          | sec            |                     | veh                | m                  |                |                      |                           | km/h           |
| South     | East:  | Gleeson      | Ave (Sl             | E)                   |                     |                       |              |                |                     |                    |                    |                |                      |                           |                |
| 2         | T1     | All MCs      | 682                 | 4.5                  | 682                 | 4.5                   | 0.341        | 15.3           | LOS B               | 10.2               | 74.4               | 0.61           | 0.53                 | 0.61                      | 20.9           |
| Appro     | ach    |              | 682                 | 4.5                  | 682                 | 4.5                   | 0.341        | 15.3           | LOS B               | 10.2               | 74.4               | 0.61           | 0.53                 | 0.61                      | 20.9           |
| North     | East:  | Burrows A    | Ave (NE             | E)                   |                     |                       |              |                |                     |                    |                    |                |                      |                           |                |
| 4         | L2     | All MCs      | 57                  | 3.7                  | 57                  | 3.7                   | 0.292        | 54.9           | LOS D               | 2.9                | 21.0               | 0.96           | 0.75                 | 0.96                      | 13.7           |
| 6         | R2     | All MCs      | 181                 | 3.5                  | 181                 | 3.5                   | *0.371       | 52.5           | LOS D               | 4.6                | 32.8               | 0.95           | 0.77                 | 0.95                      | 9.6            |
| Appro     | ach    |              | 238                 | 3.5                  | 238                 | 3.5                   | 0.371        | 53.1           | LOS D               | 4.6                | 32.8               | 0.95           | 0.77                 | 0.95                      | 10.7           |
| North     | West:  | Gleeson      | Ave (N              | W)                   |                     |                       |              |                |                     |                    |                    |                |                      |                           |                |
| 7         | L2     | All MCs      | 200                 | 7.4                  | 200                 | 7.4                   | 0.533        | 7.1            | LOS A               | 7.4                | 54.6               | 0.30           | 0.43                 | 0.30                      | 34.2           |
| 8         | T1     | All MCs      | 823                 | 6.3                  | 823                 | 6.3                   | *0.533       | 5.4            | LOS A               | 7.8                | 57.5               | 0.30           | 0.33                 | 0.30                      | 40.5           |
| Appro     | ach    |              | 1023                | 6.5                  | 1023                | 6.5                   | 0.533        | 5.7            | LOS A               | 7.8                | 57.5               | 0.30           | 0.35                 | 0.30                      | 38.9           |
| South     | West   | Burrows      | Ave (S              | W)                   |                     |                       |              |                |                     |                    |                    |                |                      |                           |                |
| 10        | L2     | All MCs      | 25                  | 45.8                 | 25                  | 45.8                  | 0.148        | 59.2           | LOS E               | 1.3                | 10.6               | 0.95           | 0.70                 | 0.95                      | 10.8           |
| 11        | T1     | All MCs      | 16                  | 0.0                  | 16                  | 0.0                   | 0.148        | 45.7           | LOS D               | 1.3                | 10.6               | 0.94           | 0.69                 | 0.94                      | 17.3           |
| 12        | R2     | All MCs      | 12                  | 18.2                 | 12                  | 18.2                  | 0.046        | 46.9           | LOS D               | 0.5                | 4.3                | 0.87           | 0.68                 | 0.87                      | 16.2           |
| Appro     | ach    |              | 53                  | 26.0                 | 53                  | 26.0                  | 0.148        | 52.5           | LOS D               | 1.3                | 10.6               | 0.93           | 0.69                 | 0.93                      | 14.0           |
| All Ve    | hicles |              | 1996                | 6.0                  | 1996                | 6.0                   | 0.533        | 15.9           | LOS B               | 10.2               | 74.4               | 0.50           | 0.47                 | 0.50                      | 23.6           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov    | /ement    | Perform | nance    |              |               |       |              |        |        |       |
|-------------------|-----------|---------|----------|--------------|---------------|-------|--------------|--------|--------|-------|
| Mov               | Dem.      | Aver.   | Level of | AVERAGE      | BACK OF       | Prop. | Eff.         | Travel | Travel | Aver. |
| ID Crossing       | FIOW      | Delay   | Service  | QUE<br>[ Ped | :UE<br>Dist 1 | Que   | Stop<br>Rate | Time   | Dist.  | Speed |
|                   | ped/h     | sec     |          | ped          | m             |       |              | sec    | m      | m/sec |
| SouthEast: Glees  | on Ave (  | SE)     |          |              |               |       |              |        |        |       |
| P1 Full           | 46        | 46.5    | LOS E    | 0.1          | 0.1           | 0.92  | 0.92         | 63.1   | 20.0   | 0.32  |
| NorthEast: Burrow | vs Ave (I | NE)     |          |              |               |       |              |        |        |       |
| P2 Full           | 186       | 48.6    | LOS E    | 0.5          | 0.5           | 0.94  | 0.94         | 65.3   | 20.0   | 0.31  |
| NorthWest: Glees  | on Ave (  | (NW)    |          |              |               |       |              |        |        |       |

| P3 Full          | 398      | 45.3 | LOS E | 1.1 | 1.1 | 0.92 | 0.92 | 62.0 | 20.0 | 0.32 |
|------------------|----------|------|-------|-----|-----|------|------|------|------|------|
| SouthWest: Burro | ws Ave ( | SW)  |       |     |     |      |      |      |      |      |
| P4 Full          | 262      | 48.8 | LOS E | 0.8 | 0.8 | 0.95 | 0.95 | 65.4 | 20.0 | 0.31 |
| All Pedestrians  | 893      | 47.1 | LOS E | 1.1 | 1.1 | 0.93 | 0.93 | 63.7 | 20.0 | 0.31 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 12:19:39 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\09 SM C&SW\_SYD (Block 4).sip9

### V Site: SYD03 [SYD03 Burrows Ave / George St (Site Folder: Block 4 Model - 2024 AM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA Site Category: (None) Give-Way (Two-Way)

| Vehic     | le Mo  | ovemen       | t Perfo                      | rma                       | nce                          |                            |                     |                       |                     |                            |                                |              |                      |                           |                        |
|-----------|--------|--------------|------------------------------|---------------------------|------------------------------|----------------------------|---------------------|-----------------------|---------------------|----------------------------|--------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F<br>[ Total<br>veh/h | nand<br>Iows<br>HV ]<br>% | Ar<br>Fl<br>[ Total<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95%<br>Qi<br>[ Veh.<br>veh | Back Of<br>Jeue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | East:  | George S     | St (SE)                      |                           |                              |                            |                     |                       |                     |                            |                                |              |                      |                           |                        |
| 4         | L2     | All MCs      | 17                           | 0.0                       | 17                           | 0.0                        | 0.024               | 8.1                   | LOS A               | 0.1                        | 0.5                            | 0.25         | 0.88                 | 0.25                      | 30.6                   |
| 6         | R2     | All MCs      | 7                            | 0.0                       | 7                            | 0.0                        | 0.024               | 9.4                   | LOS A               | 0.1                        | 0.5                            | 0.25         | 0.88                 | 0.25                      | 26.6                   |
| Approa    | ach    |              | 24                           | 0.0                       | 24                           | 0.0                        | 0.024               | 8.5                   | LOS A               | 0.1                        | 0.5                            | 0.25         | 0.88                 | 0.25                      | 29.5                   |
| NorthE    | ast: I | Burrows A    | Ave (NE                      | )                         |                              |                            |                     |                       |                     |                            |                                |              |                      |                           |                        |
| 7         | L2     | All MCs      | 12                           | 0.0                       | 12                           | 0.0                        | 0.176               | 4.1                   | LOS A               | 0.9                        | 6.4                            | 0.31         | 0.19                 | 0.31                      | 39.2                   |
| 8         | T1     | All MCs      | 167                          | 4.4                       | 167                          | 4.4                        | 0.176               | 1.0                   | LOS A               | 0.9                        | 6.4                            | 0.31         | 0.19                 | 0.31                      | 45.0                   |
| Approa    | ach    |              | 179                          | 4.1                       | 179                          | 4.1                        | 0.176               | 1.2                   | NA                  | 0.9                        | 6.4                            | 0.31         | 0.19                 | 0.31                      | 44.6                   |
| South     | Nest:  | Burrows      | Ave (S                       | N)                        |                              |                            |                     |                       |                     |                            |                                |              |                      |                           |                        |
| 2         | T1     | All MCs      | 192                          | 7.1                       | 192                          | 7.1                        | 0.200               | 1.0                   | LOS A               | 0.9                        | 6.5                            | 0.26         | 0.16                 | 0.26                      | 44.7                   |
| 3         | R2     | All MCs      | 9                            | 0.0                       | 9                            | 0.0                        | 0.200               | 5.2                   | LOS A               | 0.9                        | 6.5                            | 0.26         | 0.16                 | 0.26                      | 40.6                   |
| Approa    | ach    |              | 201                          | 6.8                       | 201                          | 6.8                        | 0.200               | 1.2                   | NA                  | 0.9                        | 6.5                            | 0.26         | 0.16                 | 0.26                      | 44.4                   |
| All Veh   | nicles |              | 404                          | 5.2                       | 404                          | 5.2                        | 0.200               | 1.6                   | NA                  | 0.9                        | 6.5                            | 0.28         | 0.22                 | 0.28                      | 42.9                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 28 October 2024 6:33:50 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\09 SM C&SW\_SYD (Block 4).sip9

# Site: SYD04 [SYD04 Railway Pde / Sydenham Rd (Site Folder: Block 4 Model - 2024 AM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

#### TCS 4946

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 101 seconds (Site User-Given Phase Times)

| Vehic     | le Mo  | ovement      | t Perfo                      | rma                       | nce                            |                            |                |                |                     |                              |                               |              |                      |                           |                        |
|-----------|--------|--------------|------------------------------|---------------------------|--------------------------------|----------------------------|----------------|----------------|---------------------|------------------------------|-------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F<br>[ Total<br>veb/b | nand<br>lows<br>HV ]<br>% | Ar<br>Fl<br>[ Total ]<br>veb/b | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn   | Aver.<br>Delay | Level of<br>Service | 95% E<br>Qu<br>[ Veh.<br>veh | Back Of<br>eue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| North\    | Nest:  | Sydenha      | m Rd (N                      | NW)                       | VOII/II                        | 70                         | v/0            |                |                     | Ven                          |                               |              |                      |                           | KIT/T                  |
| 28        | T1     | All MCs      | 1119                         | 6.4                       | 1119                           | 6.4                        | <b>*</b> 0.450 | 6.4            | LOS A               | 9.1                          | 68.0                          | 0.51         | 0.48                 | 0.51                      | 44.6                   |
| 29        | R2     | All MCs      | 1                            | 0.0                       | 1                              | 0.0                        | 0.450          | 12.1           | LOS A               | 8.9                          | 65.3                          | 0.51         | 0.48                 | 0.51                      | 39.6                   |
| Appro     | ach    |              | 1120                         | 6.4                       | 1120                           | 6.4                        | 0.450          | 6.4            | LOS A               | 9.1                          | 68.0                          | 0.51         | 0.48                 | 0.51                      | 44.6                   |
| South     | West:  | Railway      | Pde (S\                      | N)                        |                                |                            |                |                |                     |                              |                               |              |                      |                           |                        |
| 32        | R2     | All MCs      | 7                            | 0.0                       | 7                              | 0.0                        | 0.022          | 30.0           | LOS C               | 0.2                          | 1.7                           | 0.85         | 0.66                 | 0.85                      | 26.5                   |
| Appro     | ach    |              | 7                            | 0.0                       | 7                              | 0.0                        | 0.022          | 30.0           | LOS C               | 0.2                          | 1.7                           | 0.85         | 0.66                 | 0.85                      | 26.5                   |
| All Vel   | nicles |              | 1127                         | 6.3                       | 1127                           | 6.3                        | 0.450          | 6.6            | LOS A               | 9.1                          | 68.0                          | 0.52         | 0.48                 | 0.52                      | 44.3                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian M       | loveme        | nt Perf      | ormand         | e:               |              |             |              |              |                |                 |                |
|--------------------|---------------|--------------|----------------|------------------|--------------|-------------|--------------|--------------|----------------|-----------------|----------------|
| Mov<br>ID Crossing | Input<br>Vol. | Dem.<br>Flow | Aver.<br>Delay | Level of Service |              | BACK OF     | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|                    | ped/h         | ped/h        | sec            |                  | [ Ped<br>ped | Dist J<br>m |              | Rate         | sec            | m               | m/sec          |
| NorthWest: Sy      | denham        | Rd (NW       | /)             |                  |              |             |              |              |                |                 |                |
| P7 Full            | 71            | 75           | 25.2           | LOS C            | 0.1          | 0.1         | 0.82         | 0.82         | 191.8          | 200.0           | 1.04           |
| All<br>Pedestrians | 71            | 75           | 25.2           | LOS C            | 0.1          | 0.1         | 0.82         | 0.82         | 191.8          | 200.0           | 1.04           |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 29 October 2024 11:53:09 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\09 SM C&SW\_SYD (Block 4).sip9

# V Site: SYD05 [SYD05 Marrickville Rd / Buckley St (Site Folder: Block 4 Model - 2024 AM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA Site Category: (None) Give-Way (Two-Way)

| Vehic   | le Mo  | ovement   | t Perfo     | rma      | nce         |          |       |       |          |      |         |       |      |        |       |
|---------|--------|-----------|-------------|----------|-------------|----------|-------|-------|----------|------|---------|-------|------|--------|-------|
| Mov     | Turn   | Mov       | Dem         | nand     | Ar          | rival    | Deg.  | Aver. | Level of | 95%  | Back Of | Prop. | Eff. | Aver.  | Aver. |
| ID      |        | Class     | FI<br>Total | lows     | FI<br>Total | lows     | Satn  | Delay | Service  | Q    | ueue    | Que   | Stop | No. of | Speed |
|         |        |           | veh/h       | пvј<br>% | veh/h       | ⊓vj<br>% | v/c   | sec   |          | ven. | m Dist  |       | Rale | Cycles | km/h  |
| South   | East:  | Marrickvi | lle Rd (    | SE)      |             |          |       |       |          |      |         |       |      |        |       |
| 2       | T1     | All MCs   | 511         | 6.8      | 511         | 6.8      | 0.280 | 0.0   | LOS A    | 0.0  | 0.0     | 0.00  | 0.00 | 0.00   | 59.8  |
| 3       | R2     | All MCs   | 533         | 5.3      | 533         | 5.3      | 0.739 | 8.7   | LOS A    | 4.9  | 35.6    | 0.58  | 0.72 | 0.76   | 42.3  |
| Appro   | ach    |           | 1043        | 6.1      | 1043        | 6.1      | 0.739 | 4.4   | NA       | 4.9  | 35.6    | 0.29  | 0.37 | 0.39   | 50.4  |
| North\  | Nest:  | Marrickvi | lle Rd (    | NW)      |             |          |       |       |          |      |         |       |      |        |       |
| 7       | L2     | All MCs   | 501         | 5.9      | 501         | 5.9      | 0.887 | 12.4  | LOS A    | 8.9  | 65.6    | 0.91  | 0.95 | 1.47   | 44.3  |
| Appro   | ach    |           | 501         | 5.9      | 501         | 5.9      | 0.887 | 12.4  | NA       | 8.9  | 65.6    | 0.91  | 0.95 | 1.47   | 44.3  |
| All Vel | hicles |           | 1544        | 6.0      | 1544        | 6.0      | 0.887 | 7.0   | NA       | 8.9  | 65.6    | 0.49  | 0.56 | 0.74   | 47.9  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 28 October 2024 6:34:13 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\09 SM C&SW\_SYD (Block 4).sip9

### V Site: SYD06 [SYD06 Sydenham Rd / Buckley St (Site Folder: Block 4 Model - 2024 AM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA Site Category: (None) Give-Way (Two-Way)

| Vehic  | le Mo   | ovement | t Perfo   | rma          | nce     |           |       |       |          |       |         |       |      |        |         |
|--------|---------|---------|-----------|--------------|---------|-----------|-------|-------|----------|-------|---------|-------|------|--------|---------|
| Mov    | Turn    | Mov     | Den       | nand         | Ar      | rival     | Deg.  | Aver. | Level of | 95% E | Back Of | Prop. | Eff. | Aver.  | Aver.   |
| ID     |         | Class   | FI        | lows         | FI      | ows       | Satn  | Delay | Service  | Qu    | eue     | Que   | Stop | No. of | Speed   |
|        |         |         | [ Total   | HV]          | [ Total | HV ]<br>% | vic   | 800   |          | [Veh. | Dist ]  |       | Rate | Cycles | km/h    |
| North  | Nost.   | Sydenha | m Rd (N   |              | Ven/m   | /0        |       | 360   |          | Ven   | - 111   |       |      |        | K(1)/11 |
| NOTUN  | 110051. | Syuenna | in ixu (i | <b>NVV</b> ) |         |           |       |       |          |       |         |       |      |        |         |
| 2      | T1      | All MCs | 769       | 6.2          | 769     | 6.2       | 0.418 | 0.1   | LOS A    | 0.0   | 0.0     | 0.00  | 0.00 | 0.00   | 59.7    |
| Appro  | ach     |         | 769       | 6.2          | 769     | 6.2       | 0.418 | 0.1   | NA       | 0.0   | 0.0     | 0.00  | 0.00 | 0.00   | 59.7    |
| South  | West:   | Buckley | St (SW)   | )            |         |           |       |       |          |       |         |       |      |        |         |
| 4      | L2      | All MCs | 549       | 5.2          | 549     | 5.2       | 0.312 | 5.7   | LOS A    | 0.0   | 0.0     | 0.00  | 0.53 | 0.00   | 51.0    |
| 6      | R2      | All MCs | 452       | 7.0          | 452     | 7.0       | 0.261 | 5.8   | LOS A    | 0.0   | 0.0     | 0.00  | 0.63 | 0.00   | 43.4    |
| Appro  | ach     |         | 1001      | 6.0          | 1001    | 6.0       | 0.312 | 5.8   | NA       | 0.0   | 0.0     | 0.00  | 0.57 | 0.00   | 48.4    |
| All Ve | hicles  |         | 1771      | 6.1          | 1771    | 6.1       | 0.418 | 3.3   | NA       | 0.0   | 0.0     | 0.00  | 0.32 | 0.00   | 52.5    |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 29 October 2024 12:20:55 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\09 SM C&SW\_SYD (Block 4).sip9

Site: SYD01 [SYD01 Railway Pde / Gleeson Ave (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: SYD-N1 [SYD Network 1 (Network Folder: Block 4 Network - 2024 PM Peak)]

TCS 3320 Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site User-Given Phase Times)

| Vehio     | cle M  | ovemen       | t Perfo            | orma         | nce                |               |              |                |                     |               |            |              |              |                 |                |
|-----------|--------|--------------|--------------------|--------------|--------------------|---------------|--------------|----------------|---------------------|---------------|------------|--------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl          | nand<br>lows | Ar<br>Fl           | rival<br>lows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back      | Of Queue   | Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total  <br>veh/h | HV ]<br>%    | [ Total  <br>veh/h | HV ]<br>%     | v/c          | sec            |                     | [ Veh.<br>veh | Dist]<br>m |              | Rate         | Cycles          | km/h           |
| South     | East:  | Gleeson      | Ave (SE            | Ξ)           |                    |               |              |                |                     |               |            |              |              |                 |                |
| 1         | L2     | All MCs      | 580                | 3.8          | 580                | 3.8           | 0.245        | 4.6            | LOS A               | 0.0           | 0.0        | 0.00         | 0.52         | 0.00            | 42.9           |
| Appro     | ach    |              | 580                | 3.8          | 580                | 3.8           | 0.245        | 4.6            | LOS A               | 0.0           | 0.0        | 0.00         | 0.52         | 0.00            | 42.9           |
| North     | East:  | Railway F    | Pde (NE            | )            |                    |               |              |                |                     |               |            |              |              |                 |                |
| 4         | L2     | All MCs      | 979                | 3.1          | 979                | 3.1           | *0.442       | 13.2           | LOS A               | 6.5           | 47.0       | 0.55         | 0.73         | 0.55            | 33.4           |
| 5         | T1     | All MCs      | 64                 | 0.0          | 64                 | 0.0           | 0.044        | 9.0            | LOS A               | 0.6           | 4.0        | 0.28         | 0.22         | 0.28            | 54.3           |
| Appro     | ach    |              | 1043               | 2.9          | 1043               | 2.9           | 0.442        | 12.9           | LOS A               | 6.5           | 47.0       | 0.53         | 0.69         | 0.53            | 31.3           |
| All Ve    | hicles |              | 1623               | 3.2          | 1623               | 3.2           | 0.442        | 9.9            | LOS A               | 6.5           | 47.0       | 0.34         | 0.63         | 0.34            | 35.0           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov    | /ement    | Perform | nance    |              |               |       |              |        |        |       |
|-------------------|-----------|---------|----------|--------------|---------------|-------|--------------|--------|--------|-------|
| Mov               | Dem.      | Aver.   | Level of | AVERAGE      | BACK OF       | Prop. | Eff.         | Travel | Travel | Aver. |
| ID Crossing       | Flow      | Delay   | Service  | QUE<br>[ Ped | :UE<br>Dist 1 | Que   | Stop<br>Rate | lime   | Dist.  | Speed |
|                   | ped/h     | sec     |          | ped          | m             |       | Tuto         | sec    | m      | m/sec |
| NorthEast: Railwa | ay Pde (l | NE)     |          |              |               |       |              |        |        |       |
| P2 Full           | 176       | 28.6    | LOS C    | 0.3          | 0.3           | 0.91  | 0.91         | 45.2   | 20.0   | 0.44  |
| P2S Slip/         | 240       | 16.0    | LOS B    | 0.3          | 0.3           | 0.81  | 0.81         | 32.7   | 20.0   | 0.61  |
| Bypass            |           |         |          |              |               |       |              |        |        |       |
| All Pedestrians   | 416       | 21.3    | LOS C    | 0.3          | 0.3           | 0.85  | 0.85         | 38.0   | 20.0   | 0.53  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 12:19:41 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\09 SM C&SW\_SYD (Block 4).sip9

Site: SYD02 [SYD02 Burrows Ave / Gleeson Ave (Site Folder: Block 4 Model - 2024 PM Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TCS 1152

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 105 seconds (Site User-Given Phase Times)

| Vehic     | le M   | ovemen       | t Perfo            | orma         | nce                |              |              |                |                     |               |            |                |              |                 |                |
|-----------|--------|--------------|--------------------|--------------|--------------------|--------------|--------------|----------------|---------------------|---------------|------------|----------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl          | nand<br>Iows | Ar<br>Fl           | rival<br>ows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Bacl      | < Of Queue | e Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total  <br>veh/h | HV ]<br>%    | [ Total  <br>veh/h | HV ]<br>%    | v/c          | sec            |                     | [ Veh.<br>veh | Dist]<br>m |                | Rate         | Cycles          | km/h           |
| South     | East:  | Gleeson      | Ave (SE            | Ξ)           |                    |              |              |                |                     |               |            |                |              |                 |                |
| 2         | T1     | All MCs      | 829                | 2.0          | 829                | 2.0          | 0.430        | 17.5           | LOS B               | 13.3          | 94.7       | 0.68           | 0.60         | 0.68            | 19.1           |
| Appro     | ach    |              | 829                | 2.0          | 829                | 2.0          | 0.430        | 17.5           | LOS B               | 13.3          | 94.7       | 0.68           | 0.60         | 0.68            | 19.1           |
| North     | East:  | Burrows /    | Ave (NE            | =)           |                    |              |              |                |                     |               |            |                |              |                 |                |
| 4         | L2     | All MCs      | 52                 | 0.0          | 52                 | 0.0          | 0.208        | 63.4           | LOS E               | 2.4           | 16.9       | 0.93           | 0.74         | 0.93            | 14.8           |
| 6         | R2     | All MCs      | 329                | 2.6          | 329                | 2.6          | *0.629       | 57.9           | LOS E               | 8.6           | 61.8       | 0.99           | 0.82         | 1.01            | 9.8            |
| Appro     | ach    |              | 381                | 2.2          | 381                | 2.2          | 0.629        | 58.6           | LOS E               | 8.6           | 61.8       | 0.98           | 0.81         | 1.00            | 9.4            |
| North     | Nest:  | Gleeson      | Ave (N             | W)           |                    |              |              |                |                     |               |            |                |              |                 |                |
| 7         | L2     | All MCs      | 142                | 0.7          | 142                | 0.7          | 0.520        | 6.8            | LOS A               | 6.6           | 47.6       | 0.29           | 0.38         | 0.29            | 34.9           |
| 8         | T1     | All MCs      | 831                | 3.5          | 831                | 3.5          | *0.520       | 5.4            | LOS A               | 6.9           | 49.8       | 0.29           | 0.31         | 0.29            | 40.6           |
| Appro     | ach    |              | 973                | 3.1          | 973                | 3.1          | 0.520        | 5.6            | LOS A               | 6.9           | 49.8       | 0.29           | 0.32         | 0.29            | 39.5           |
| South     | West:  | Burrows      | Ave (S             | W)           |                    |              |              |                |                     |               |            |                |              |                 |                |
| 10        | L2     | All MCs      | 25                 | 41.7         | 25                 | 41.7         | 0.100        | 53.1           | LOS D               | 0.8           | 6.8        | 0.93           | 0.69         | 0.93            | 11.5           |
| 11        | T1     | All MCs      | 4                  | 0.0          | 4                  | 0.0          | 0.100        | 41.5           | LOS C               | 0.8           | 6.8        | 0.93           | 0.69         | 0.93            | 17.5           |
| 12        | R2     | All MCs      | 23                 | 18.2         | 23                 | 18.2         | 0.087        | 44.8           | LOS D               | 1.0           | 8.2        | 0.87           | 0.71         | 0.87            | 16.7           |
| Appro     | ach    |              | 53                 | 28.0         | 53                 | 28.0         | 0.100        | 48.5           | LOS D               | 1.0           | 8.2        | 0.90           | 0.70         | 0.90            | 14.4           |
| All Ve    | hicles |              | 2236               | 3.2          | 2236               | 3.2          | 0.629        | 20.1           | LOS B               | 13.3          | 94.7       | 0.57           | 0.51         | 0.57            | 20.1           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Mov    | vement   | Perform | nance    |         |         |       |      |        |        |       |
|-------------------|----------|---------|----------|---------|---------|-------|------|--------|--------|-------|
| Mov<br>Crossing   | Dem.     | Aver.   | Level of | AVERAGE | BACK OF | Prop. | Eff. | Travel | Travel | Aver. |
|                   | FIUW     | Delay   | Service  | [ Ped   | Dist ]  | Que   | Rate | Time   | Dist.  | Speed |
|                   | ped/h    | sec     |          | ped     | m       |       |      | sec    | m      | m/sec |
| SouthEast: Glees  | on Ave ( | (SE)    |          |         |         |       |      |        |        |       |
| P1 Full           | 37       | 44.0    | LOS E    | 0.1     | 0.1     | 0.92  | 0.92 | 60.6   | 20.0   | 0.33  |
| NorthEast: Burrow | ws Ave ( | NE)     |          |         |         |       |      |        |        |       |
| P2 Full           | 240      | 46.2    | LOS E    | 0.7     | 0.7     | 0.94  | 0.94 | 62.9   | 20.0   | 0.32  |
| NorthWest: Glees  | son Ave  | (NW)    |          |         |         |       |      |        |        |       |

| P3 Full          | 238      | 42.5 | LOS E | 0.6 | 0.6 | 0.90 | 0.90 | 59.2 | 20.0 | 0.34 |
|------------------|----------|------|-------|-----|-----|------|------|------|------|------|
| SouthWest: Burro | ws Ave ( | SW)  |       |     |     |      |      |      |      |      |
| P4 Full          | 149      | 46.0 | LOS E | 0.4 | 0.4 | 0.94 | 0.94 | 62.7 | 20.0 | 0.32 |
| All Pedestrians  | 664      | 44.7 | LOS E | 0.7 | 0.7 | 0.93 | 0.93 | 61.4 | 20.0 | 0.33 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 12:19:41 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\09 SM C&SW\_SYD (Block 4).sip9

### V Site: SYD03 [SYD03 Burrows Ave / George St (Site Folder: Block 4 Model - 2024 PM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA Site Category: (None) Give-Way (Two-Way)

| Vehic     | le Mo  | ovemen       | t Perfo                              | rma                             | nce                                  |                            |                             |                               |                     |                            |                                |              |                      |                           |                                |
|-----------|--------|--------------|--------------------------------------|---------------------------------|--------------------------------------|----------------------------|-----------------------------|-------------------------------|---------------------|----------------------------|--------------------------------|--------------|----------------------|---------------------------|--------------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F<br>[ Total<br>veh/ <u>h</u> | nand<br>Iows<br>HV]<br><u>%</u> | Ar<br>Fl<br>[ Total<br>veh/ <u>h</u> | rival<br>lows<br>HV]<br>%_ | Deg.<br>Satn<br>v/ <u>c</u> | Aver.<br>Delay<br>se <u>c</u> | Level of<br>Service | 95%<br>Qi<br>[ Veh.<br>veh | Back Of<br>Jeue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/ <u>h</u> |
| South     | East:  | George S     | St (SE)                              |                                 |                                      |                            |                             |                               |                     |                            |                                |              |                      |                           |                                |
| 4         | L2     | All MCs      | 21                                   | 0.0                             | 21                                   | 0.0                        | 0.028                       | 8.7                           | LOS A               | 0.1                        | 0.6                            | 0.32         | 0.89                 | 0.32                      | 30.1                           |
| 6         | R2     | All MCs      | 5                                    | 0.0                             | 5                                    | 0.0                        | 0.028                       | 10.3                          | LOS A               | 0.1                        | 0.6                            | 0.32         | 0.89                 | 0.32                      | 26.2                           |
| Appro     | ach    |              | 26                                   | 0.0                             | 26                                   | 0.0                        | 0.028                       | 9.0                           | LOS A               | 0.1                        | 0.6                            | 0.32         | 0.89                 | 0.32                      | 29.4                           |
| NorthE    | ast: I | Burrows A    | Ave (NE                              | )                               |                                      |                            |                             |                               |                     |                            |                                |              |                      |                           |                                |
| 7         | L2     | All MCs      | 12                                   | 0.0                             | 12                                   | 0.0                        | 0.306                       | 4.3                           | LOS A               | 1.8                        | 12.4                           | 0.36         | 0.21                 | 0.36                      | 39.0                           |
| 8         | T1     | All MCs      | 302                                  | 0.7                             | 302                                  | 0.7                        | 0.306                       | 1.2                           | LOS A               | 1.8                        | 12.4                           | 0.36         | 0.21                 | 0.36                      | 44.8                           |
| Appro     | ach    |              | 314                                  | 0.7                             | 314                                  | 0.7                        | 0.306                       | 1.3                           | NA                  | 1.8                        | 12.4                           | 0.36         | 0.21                 | 0.36                      | 44.6                           |
| South     | Nest:  | Burrows      | Ave (S                               | N)                              |                                      |                            |                             |                               |                     |                            |                                |              |                      |                           |                                |
| 2         | T1     | All MCs      | 149                                  | 1.4                             | 149                                  | 1.4                        | 0.157                       | 1.0                           | LOS A               | 0.7                        | 4.7                            | 0.26         | 0.18                 | 0.26                      | 44.3                           |
| 3         | R2     | All MCs      | 13                                   | 0.0                             | 13                                   | 0.0                        | 0.157                       | 5.8                           | LOS A               | 0.7                        | 4.7                            | 0.26         | 0.18                 | 0.26                      | 40.3                           |
| Appro     | ach    |              | 162                                  | 1.3                             | 162                                  | 1.3                        | 0.157                       | 1.3                           | NA                  | 0.7                        | 4.7                            | 0.26         | 0.18                 | 0.26                      | 43.8                           |
| All Vel   | nicles |              | 502                                  | 0.8                             | 502                                  | 0.8                        | 0.306                       | 1.7                           | NA                  | 1.8                        | 12.4                           | 0.33         | 0.24                 | 0.33                      | 42.9                           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 28 October 2024 6:34:59 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\09 SM C&SW\_SYD (Block 4).sip9

# Site: SYD04 [SYD04 Railway Pde / Sydenham Rd (Site Folder: Block 4 Model - 2024 PM Peak)]

#### Output produced by SIDRA INTERSECTION Version: 9.1.6.228

#### TCS 4946

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 106 seconds (Site User-Given Phase Times)

| Vehic     | le Mo  | ovement      | t Perfo                      | rma                       | nce                            |                            |              |                |                     |                           |                                |              |                      |                           |                        |
|-----------|--------|--------------|------------------------------|---------------------------|--------------------------------|----------------------------|--------------|----------------|---------------------|---------------------------|--------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>F<br>[ Total<br>veb/b | nand<br>lows<br>HV ]<br>% | Ar<br>Fl<br>[ Total ]<br>veb/b | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95%<br>Q<br>[ Veh.<br>veh | Back Of<br>ueue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| North\    | Nest:  | Sydenha      | m Rd (N                      | WV)                       | VOII/II                        |                            | 110          |                |                     | Vort                      |                                |              |                      |                           | TXTT // TT             |
| 28        | T1     | All MCs      | 1076                         | 3.2                       | 1076                           | 3.2                        | *0.420       | 5.6            | LOS A               | 8.9                       | 65.2                           | 0.50         | 0.45                 | 0.50                      | 46.1                   |
| 29        | R2     | All MCs      | 1                            | 0.0                       | 1                              | 0.0                        | 0.420        | 11.3           | LOS A               | 8.8                       | 62.1                           | 0.50         | 0.45                 | 0.50                      | 40.5                   |
| Appro     | ach    |              | 1077                         | 3.2                       | 1077                           | 3.2                        | 0.420        | 5.6            | LOS A               | 8.9                       | 65.2                           | 0.50         | 0.45                 | 0.50                      | 46.1                   |
| South     | West:  | Railway      | Pde (S\                      | N)                        |                                |                            |              |                |                     |                           |                                |              |                      |                           |                        |
| 32        | R2     | All MCs      | 17                           | 12.5                      | 17                             | 12.5                       | *0.057       | 31.8           | LOS C               | 0.6                       | 4.6                            | 0.86         | 0.69                 | 0.86                      | 25.3                   |
| Appro     | ach    |              | 17                           | 12.5                      | 17                             | 12.5                       | 0.057        | 31.8           | LOS C               | 0.6                       | 4.6                            | 0.86         | 0.69                 | 0.86                      | 25.3                   |
| All Vel   | nicles |              | 1094                         | 3.4                       | 1094                           | 3.4                        | 0.420        | 6.0            | LOS A               | 8.9                       | 65.2                           | 0.51         | 0.45                 | 0.51                      | 45.2                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian M       | loveme        | nt Perf      | ormand         | ;e                  |                         |                           |              |                      |                |                 |                |
|--------------------|---------------|--------------|----------------|---------------------|-------------------------|---------------------------|--------------|----------------------|----------------|-----------------|----------------|
| Mov<br>ID Crossing | Input<br>Vol. | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service | AVERAGE<br>QUI<br>[ Ped | EBACK OF<br>EUE<br>Dist ] | Prop.<br>Que | Eff.<br>Stop<br>Rate | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |
|                    | ped/h         | ped/h        | sec            |                     | ped                     | m                         |              |                      | sec            | m               | m/sec          |
| NorthWest: Sy      | denham        | Rd (NW       | /)             |                     |                         |                           |              |                      |                |                 |                |
| P7 Full            | 72            | 76           | 26.3           | LOS C               | 0.2                     | 0.2                       | 0.83         | 0.83                 | 192.9          | 200.0           | 1.04           |
| All<br>Pedestrians | 72            | 76           | 26.3           | LOS C               | 0.2                     | 0.2                       | 0.83         | 0.83                 | 192.9          | 200.0           | 1.04           |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 29 October 2024 11:53:11 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\09 SM C&SW\_SYD (Block 4).sip9

### V Site: SYD05 [SYD05 Marrickville Rd / Buckley St (Site Folder: Block 4 Model - 2024 PM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA Site Category: (None) Give-Way (Two-Way)

| Vehic     | le Mo  | ovemen       | t Perfo                       | rma                       | nce                          |                            |                     |                       |                     |                           |                                |              |                      |                           |                        |
|-----------|--------|--------------|-------------------------------|---------------------------|------------------------------|----------------------------|---------------------|-----------------------|---------------------|---------------------------|--------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl<br>[ Total<br>veh/h | iand<br>lows<br>HV ]<br>% | Ar<br>Fl<br>[ Total<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95%<br>Q<br>[ Veh.<br>veh | Back Of<br>ueue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | East:  | Marrickvi    | lle Rd (                      | SE)                       |                              |                            |                     |                       |                     |                           |                                |              |                      |                           |                        |
| 2         | T1     | All MCs      | 747                           | 2.1                       | 747                          | 2.1                        | 0.391               | 0.1                   | LOS A               | 0.0                       | 0.0                            | 0.00         | 0.00                 | 0.00                      | 59.7                   |
| 3         | R2     | All MCs      | 554                           | 1.9                       | 554                          | 1.9                        | 0.706               | 7.7                   | LOS A               | 4.7                       | 33.4                           | 0.47         | 0.64                 | 0.57                      | 43.6                   |
| Appro     | ach    |              | 1301                          | 2.0                       | 1301                         | 2.0                        | 0.706               | 3.3                   | NA                  | 4.7                       | 33.4                           | 0.20         | 0.27                 | 0.24                      | 52.5                   |
| North\    | Nest:  | Marrickvi    | lle Rd (                      | NW)                       |                              |                            |                     |                       |                     |                           |                                |              |                      |                           |                        |
| 7         | L2     | All MCs      | 338                           | 4.7                       | 338                          | 4.7                        | 0.692               | 7.8                   | LOS A               | 3.0                       | 22.1                           | 0.53         | 0.64                 | 0.63                      | 48.2                   |
| Appro     | ach    |              | 338                           | 4.7                       | 338                          | 4.7                        | 0.692               | 7.8                   | NA                  | 3.0                       | 22.1                           | 0.53         | 0.64                 | 0.63                      | 48.2                   |
| All Vel   | hicles |              | 1639                          | 2.6                       | 1639                         | 2.6                        | 0.706               | 4.2                   | NA                  | 4.7                       | 33.4                           | 0.27         | 0.35                 | 0.32                      | 51.4                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 28 October 2024 6:35:22 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\09 SM C&SW\_SYD (Block 4).sip9

### V Site: SYD06 [SYD06 Sydenham Rd / Buckley St (Site Folder: Block 4 Model - 2024 PM Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA Site Category: (None) Give-Way (Two-Way)

| Vehic  | le M   | ovemen  | t Perfo          | rma  | nce              |               |              |                |                     |               |         |       |              |        |       |
|--------|--------|---------|------------------|------|------------------|---------------|--------------|----------------|---------------------|---------------|---------|-------|--------------|--------|-------|
| Mov    | Turn   | Mov     | Dem              | nand | Ar               | rival<br>lows | Deg.<br>Satn | Aver.<br>Delav | Level of<br>Service | 95% I         | Back Of | Prop. | Eff.<br>Stop | Aver.  | Aver. |
|        |        | 01033   | [ Total<br>veh/h | HV ] | [ Total<br>veh/h | HV ]          | v/c          | sec            | Cervice             | [ Veh.<br>veh | Dist ]  | Que   | Rate         | Cycles | km/h  |
| North  | West:  | Sydenha | m Rd (I          | WV)  | Voli/II          | ,,,           | 110          | 000            |                     | Voli          |         |       |              |        |       |
| 2      | T1     | All MCs | 761              | 1.5  | 761              | 1.5           | 0.396        | 0.1            | LOS A               | 0.0           | 0.0     | 0.00  | 0.00         | 0.00   | 59.7  |
| Appro  | ach    |         | 761              | 1.5  | 761              | 1.5           | 0.396        | 0.1            | NA                  | 0.0           | 0.0     | 0.00  | 0.00         | 0.00   | 59.7  |
| South  | West:  | Buckley | St (SW)          | )    |                  |               |              |                |                     |               |         |       |              |        |       |
| 4      | L2     | All MCs | 544              | 2.1  | 544              | 2.1           | 0.300        | 5.7            | LOS A               | 0.0           | 0.0     | 0.00  | 0.53         | 0.00   | 51.1  |
| 6      | R2     | All MCs | 343              | 5.5  | 343              | 5.5           | 0.196        | 5.8            | LOS A               | 0.0           | 0.0     | 0.00  | 0.63         | 0.00   | 43.6  |
| Appro  | ach    |         | 887              | 3.4  | 887              | 3.4           | 0.300        | 5.7            | NA                  | 0.0           | 0.0     | 0.00  | 0.57         | 0.00   | 49.0  |
| All Ve | hicles |         | 1648             | 2.6  | 1648             | 2.6           | 0.396        | 3.1            | NA                  | 0.0           | 0.0     | 0.00  | 0.31         | 0.00   | 53.1  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 29 October 2024 12:20:54 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\09 SM C&SW\_SYD (Block 4).sip9

### Site: SYD01 [SYD01 Railway Pde / Gleeson Ave (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: SYD-N1 [SYD Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

#### TCS 3320 Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 95 seconds (Site User-Given Phase Times)

| Vehic                       | Vehicle Movement Performance |              |                    |              |                    |               |                |                |                     |               |            |              |              |                 |                |
|-----------------------------|------------------------------|--------------|--------------------|--------------|--------------------|---------------|----------------|----------------|---------------------|---------------|------------|--------------|--------------|-----------------|----------------|
| Mov<br>ID                   | Turn                         | Mov<br>Class | Dem<br>Fl          | nand<br>lows | Ar<br>Fl           | rival<br>lows | Deg.<br>Satn   | Aver.<br>Delay | Level of<br>Service | 95% Back      | Of Queue   | Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|                             |                              |              | [ Total  <br>veh/h | HV ]<br>%    | [ Total  <br>veh/h | HV ]<br>%     | v/c            | sec            |                     | [ Veh.<br>veh | Dist]<br>m |              | Rate         | Cycles          | km/h           |
| SouthEast: Gleeson Ave (SE) |                              |              |                    |              |                    |               |                |                |                     |               |            |              |              |                 |                |
| 1                           | L2                           | All MCs      | 479                | 3.3          | 479                | 3.3           | 0.201          | 4.5            | LOS A               | 0.0           | 0.0        | 0.00         | 0.52         | 0.00            | 43.0           |
| Appro                       | ach                          |              | 479                | 3.3          | 479                | 3.3           | 0.201          | 4.5            | LOS A               | 0.0           | 0.0        | 0.00         | 0.52         | 0.00            | 43.0           |
| North                       | East:                        | Railway F    | Pde (NE            | )            |                    |               |                |                |                     |               |            |              |              |                 |                |
| 4                           | L2                           | All MCs      | 1054               | 2.6          | 1054               | 2.6           | <b>*</b> 0.434 | 10.2           | LOS A               | 9.3           | 66.5       | 0.36         | 0.66         | 0.36            | 35.2           |
| 5                           | T1                           | All MCs      | 94                 | 1.1          | 94                 | 1.1           | *0.066         | 5.0            | LOS A               | 0.8           | 5.4        | 0.29         | 0.23         | 0.29            | 55.3           |
| Appro                       | ach                          |              | 1147               | 2.5          | 1147               | 2.5           | 0.434          | 9.8            | LOS A               | 9.3           | 66.5       | 0.35         | 0.63         | 0.35            | 35.6           |
| All Ve                      | hicles                       |              | 1626               | 2.7          | 1626               | 2.7           | 0.434          | 8.2            | LOS A               | 9.3           | 66.5       | 0.25         | 0.59         | 0.25            | 37.7           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Movement Performance |           |       |          |              |               |       |              |        |        |       |  |  |  |
|---------------------------------|-----------|-------|----------|--------------|---------------|-------|--------------|--------|--------|-------|--|--|--|
| Mov                             | Dem.      | Aver. | Level of | AVERAGE      | BACK OF       | Prop. | Eff.         | Travel | Travel | Aver. |  |  |  |
| ID Crossing                     | Flow      | Delay | Service  | QUE<br>[ Ped | :UE<br>Dist 1 | Que   | Stop<br>Rate | lime   | Dist.  | Speed |  |  |  |
|                                 | ped/h     | sec   |          | ped          | m             |       | Tuto         | sec    | m      | m/sec |  |  |  |
| NorthEast: Railwa               | ay Pde (l | NE)   |          |              |               |       |              |        |        |       |  |  |  |
| P2 Full                         | 147       | 25.4  | LOS C    | 0.3          | 0.3           | 0.86  | 0.86         | 42.0   | 20.0   | 0.48  |  |  |  |
| P2S Slip/                       | 155       | 41.0  | LOS E    | 0.4          | 0.4           | 0.93  | 0.93         | 57.7   | 20.0   | 0.35  |  |  |  |
| Bypass                          |           |       |          |              |               |       |              |        |        |       |  |  |  |
| All Pedestrians                 | 302       | 33.4  | LOS D    | 0.4          | 0.4           | 0.90  | 0.90         | 50.1   | 20.0   | 0.40  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 12:19:42 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\09 SM C&SW\_SYD (Block 4).sip9

Site: SYD02 [SYD02 Burrows Ave / Gleeson Ave (Site Folder: Block 4 Model - 2024 Weekend Peak)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: SYD-N1 [SYD Network 1 (Network Folder: Block 4 Network - 2024 Weekend Peak)]

TCS 1152

Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 115 seconds (Site User-Given Phase Times)

| Vehic     | <b>Vehicle Movement Performance</b><br>Mov Turn Mov Demand Arrival Deg. Aver. Level of 95% Back Of Queue Prop. Eff. Aver. Aver. |              |                                 |                         |                                |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
|-----------|---------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------|-------------------------|--------------------------------|----------------------------|---------------------|-----------------------|---------------------|---------------------------|-------------------------|----------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn                                                                                                                            | Mov<br>Class | Dem<br>Fl<br>[ Total ]<br>veh/h | and<br>ows<br>HV ]<br>% | Ar<br>Fl<br>[ Total ]<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist ]<br>m | e Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | East:                                                                                                                           | Gleeson      | Ave (SE                         | E)                      |                                |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 2         | T1                                                                                                                              | All MCs      | 785                             | 2.0                     | 785                            | 2.0                        | 0.347               | 12.8                  | LOS A               | 11.1                      | 79.2                    | 0.55           | 0.49                 | 0.55                      | 23.4                   |
| Appro     | ach                                                                                                                             |              | 785                             | 2.0                     | 785                            | 2.0                        | 0.347               | 12.8                  | LOS A               | 11.1                      | 79.2                    | 0.55           | 0.49                 | 0.55                      | 23.4                   |
| North     | East:                                                                                                                           | Burrows /    | Ave (NE                         | )                       |                                |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 4         | L2                                                                                                                              | All MCs      | 39                              | 0.0                     | 39                             | 0.0                        | 0.186               | 57.3                  | LOS E               | 2.0                       | 14.2                    | 0.94           | 0.73                 | 0.94                      | 13.6                   |
| 6         | R2                                                                                                                              | All MCs      | 174                             | 2.4                     | 174                            | 2.4                        | *0.464              | 56.5                  | LOS D               | 5.5                       | 39.4                    | 0.97           | 0.77                 | 0.97                      | 9.0                    |
| Appro     | ach                                                                                                                             |              | 213                             | 2.0                     | 213                            | 2.0                        | 0.464               | 56.6                  | LOS E               | 5.5                       | 39.4                    | 0.96           | 0.76                 | 0.96                      | 10.0                   |
| North     | West:                                                                                                                           | Gleeson      | Ave (N                          | W)                      |                                |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 7         | L2                                                                                                                              | All MCs      | 220                             | 2.4                     | 220                            | 2.4                        | 0.424               | 6.9                   | LOS A               | 5.9                       | 42.4                    | 0.25           | 0.43                 | 0.25                      | 34.6                   |
| 8         | T1                                                                                                                              | All MCs      | 826                             | 3.3                     | 826                            | 3.3                        | *0.531              | 5.4                   | LOS A               | 9.0                       | 64.8                    | 0.28           | 0.31                 | 0.28                      | 41.6                   |
| Appro     | ach                                                                                                                             |              | 1046                            | 3.1                     | 1046                           | 3.1                        | 0.531               | 5.7                   | LOS A               | 9.0                       | 64.8                    | 0.28           | 0.34                 | 0.28                      | 39.6                   |
| South     | West:                                                                                                                           | Burrows      | Ave (S                          | W)                      |                                |                            |                     |                       |                     |                           |                         |                |                      |                           |                        |
| 10        | L2                                                                                                                              | All MCs      | 25                              | 29.2                    | 25                             | 29.2                       | *0.181              | 58.7                  | LOS E               | 1.3                       | 11.6                    | 0.95           | 0.71                 | 0.95                      | 10.3                   |
| 11        | T1                                                                                                                              | All MCs      | 9                               | 11.1                    | 9                              | 11.1                       | 0.042               | 45.2                  | LOS D               | 0.5                       | 3.8                     | 0.88           | 0.62                 | 0.88                      | 18.4                   |
| 12        | R2                                                                                                                              | All MCs      | 8                               | 0.0                     | 8                              | 0.0                        | 0.031               | 49.8                  | LOS D               | 0.4                       | 2.8                     | 0.88           | 0.66                 | 0.88                      | 15.7                   |
| Appro     | ach                                                                                                                             |              | 43                              | 19.5                    | 43                             | 19.5                       | 0.181               | 54.0                  | LOS D               | 1.3                       | 11.6                    | 0.92           | 0.68                 | 0.92                      | 13.2                   |
| All Ve    | hicles                                                                                                                          |              | 2087                            | 2.9                     | 2087                           | 2.9                        | 0.531               | 14.6                  | LOS B               | 11.1                      | 79.2                    | 0.46           | 0.44                 | 0.46                      | 24.8                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Movement Performance                         |          |       |          |                       |         |       |      |        |        |       |  |  |  |
|---------------------------------------------------------|----------|-------|----------|-----------------------|---------|-------|------|--------|--------|-------|--|--|--|
| Mov<br>LD Crossing                                      | Dem.     | Aver. | Level of | AVERAGE               | BACK OF | Prop. | Eff. | Travel | Travel | Aver. |  |  |  |
|                                                         | FIOW     | Delay | Service  | QUEUE<br>[ Ped Dist ] |         | Que   | Rate | Time   | Dist.  | Speed |  |  |  |
| ped/h sec ped m sec m m/s                               |          |       |          |                       |         |       |      |        |        |       |  |  |  |
| SouthEast: Gleeson Ave (SE)                             |          |       |          |                       |         |       |      |        |        |       |  |  |  |
| P1 Full                                                 | 14       | 48.9  | LOS E    | 0.0                   | 0.0     | 0.92  | 0.92 | 65.5   | 20.0   | 0.31  |  |  |  |
| NorthEast: Burrow                                       | ws Ave ( | NE)   |          |                       |         |       |      |        |        |       |  |  |  |
| P2 Full 213 51.2 LOS E 0.7 0.7 0.95 0.95 67.8 20.0 0.29 |          |       |          |                       |         |       |      |        |        |       |  |  |  |
| NorthWest: Glees                                        | son Ave  | (NW)  |          |                       |         |       |      |        |        |       |  |  |  |

| P3 Full          | 144      | 47.3 | LOS E | 0.4 | 0.4 | 0.91 | 0.91 | 64.0 | 20.0 | 0.31 |
|------------------|----------|------|-------|-----|-----|------|------|------|------|------|
| SouthWest: Burro | ws Ave ( | SW)  |       |     |     |      |      |      |      |      |
| P4 Full          | 101      | 50.9 | LOS E | 0.3 | 0.3 | 0.94 | 0.94 | 67.6 | 20.0 | 0.30 |
| All Pedestrians  | 472      | 49.9 | LOS E | 0.7 | 0.7 | 0.93 | 0.93 | 66.5 | 20.0 | 0.30 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Friday, 8 November 2024 12:19:42 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\09 SM C&SW\_SYD (Block 4).sip9

### V Site: SYD03 [SYD03 Burrows Ave / George St (Site Folder: Block 4 Model - 2024 Weekend Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA Site Category: (None) Give-Way (Two-Way)

| Vehic     | Vehicle Movement Performance |              |                               |                           |                                |                            |                     |                       |                     |                              |                                |              |                      |                           |                        |
|-----------|------------------------------|--------------|-------------------------------|---------------------------|--------------------------------|----------------------------|---------------------|-----------------------|---------------------|------------------------------|--------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn                         | Mov<br>Class | Derr<br>F<br>[ Total<br>veh/h | nand<br>Iows<br>HV ]<br>% | Ar<br>Fl<br>[ Total ]<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95%  <br>Qı<br>[ Veh.<br>veh | Back Of<br>Jeue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | East:                        | George S     | St (SE)                       |                           |                                |                            |                     |                       |                     |                              |                                |              |                      |                           |                        |
| 4         | L2                           | All MCs      | 24                            | 0.0                       | 24                             | 0.0                        | 0.036               | 8.2                   | LOS A               | 0.1                          | 0.8                            | 0.28         | 0.89                 | 0.28                      | 30.3                   |
| 6         | R2                           | All MCs      | 11                            | 0.0                       | 11                             | 0.0                        | 0.036               | 10.0                  | LOS A               | 0.1                          | 0.8                            | 0.28         | 0.89                 | 0.28                      | 26.4                   |
| Appro     | ach                          |              | 35                            | 0.0                       | 35                             | 0.0                        | 0.036               | 8.7                   | LOS A               | 0.1                          | 0.8                            | 0.28         | 0.89                 | 0.28                      | 29.2                   |
| NorthE    | Burrows A                    | Ave (NE      | )                             |                           |                                |                            |                     |                       |                     |                              |                                |              |                      |                           |                        |
| 7         | L2                           | All MCs      | 16                            | 0.0                       | 16                             | 0.0                        | 0.205               | 4.2                   | LOS A               | 1.1                          | 7.5                            | 0.33         | 0.21                 | 0.33                      | 38.9                   |
| 8         | T1                           | All MCs      | 193                           | 2.2                       | 193                            | 2.2                        | 0.205               | 1.1                   | LOS A               | 1.1                          | 7.5                            | 0.33         | 0.21                 | 0.33                      | 44.6                   |
| Appro     | ach                          |              | 208                           | 2.0                       | 208                            | 2.0                        | 0.205               | 1.3                   | NA                  | 1.1                          | 7.5                            | 0.33         | 0.21                 | 0.33                      | 44.1                   |
| South     | West:                        | Burrows      | Ave (S                        | N)                        |                                |                            |                     |                       |                     |                              |                                |              |                      |                           |                        |
| 2         | T1                           | All MCs      | 213                           | 2.5                       | 213                            | 2.5                        | 0.232               | 1.1                   | LOS A               | 1.0                          | 7.5                            | 0.28         | 0.21                 | 0.28                      | 43.4                   |
| 3         | R2                           | All MCs      | 28                            | 0.0                       | 28                             | 0.0                        | 0.232               | 5.4                   | LOS A               | 1.0                          | 7.5                            | 0.28         | 0.21                 | 0.28                      | 39.7                   |
| Appro     | ach                          |              | 241                           | 2.2                       | 241                            | 2.2                        | 0.232               | 1.6                   | NA                  | 1.0                          | 7.5                            | 0.28         | 0.21                 | 0.28                      | 42.8                   |
| All Vel   | nicles                       |              | 484                           | 2.0                       | 484                            | 2.0                        | 0.232               | 2.0                   | NA                  | 1.1                          | 7.5                            | 0.30         | 0.26                 | 0.30                      | 41.6                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 28 October 2024 6:36:07 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\09 SM C&SW\_SYD (Block 4).sip9

### Site: SYD04 [SYD04 Railway Pde / Sydenham Rd (Site Folder: Block 4 Model - 2024 Weekend Peak)]

#### Output produced by SIDRA INTERSECTION Version: 9.1.6.228

#### TCS 4946

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 116 seconds (Site User-Given Phase Times)

| Vehic     | le Mo  | ovement      | l Perfo                       | rma                       | nce                            |                            |                     |                       |                     |                              |                               |              |                      |                           |                        |
|-----------|--------|--------------|-------------------------------|---------------------------|--------------------------------|----------------------------|---------------------|-----------------------|---------------------|------------------------------|-------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl<br>[ Total<br>veh/h | nand<br>Iows<br>HV ]<br>% | Ar<br>Fl<br>[ Total ]<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% E<br>Qu<br>[ Veh.<br>veh | Back Of<br>eue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| North     | Vest:  | Sydenha      | m Rd (N                       | W)                        |                                |                            |                     |                       |                     |                              |                               |              |                      |                           |                        |
| 28        | T1     | All MCs      | 1119                          | 2.5                       | 1119                           | 2.5                        | *0.446              | 5.4                   | LOS A               | 10.0                         | 71.7                          | 0.48         | 0.45                 | 0.48                      | 45.9                   |
| 29        | R2     | All MCs      | 60                            | 0.0                       | 60                             | 0.0                        | 0.446               | 11.1                  | LOS A               | 9.9                          | 70.3                          | 0.48         | 0.47                 | 0.48                      | 40.1                   |
| Appro     | ach    |              | 1179                          | 2.4                       | 1179                           | 2.4                        | 0.446               | 5.7                   | LOS A               | 10.0                         | 71.7                          | 0.48         | 0.45                 | 0.48                      | 45.5                   |
| South     | West:  | Railway      | Pde (S\                       | N)                        |                                |                            |                     |                       |                     |                              |                               |              |                      |                           |                        |
| 32        | R2     | All MCs      | 28                            | 0.0                       | 28                             | 0.0                        | *0.093              | 36.0                  | LOS C               | 1.1                          | 7.9                           | 0.88         | 0.71                 | 0.88                      | 24.3                   |
| Appro     | ach    |              | 28                            | 0.0                       | 28                             | 0.0                        | 0.093               | 36.0                  | LOS C               | 1.1                          | 7.9                           | 0.88         | 0.71                 | 0.88                      | 24.3                   |
| All Vel   | nicles |              | 1207                          | 2.4                       | 1207                           | 2.4                        | 0.446               | 6.4                   | LOS A               | 10.0                         | 71.7                          | 0.49         | 0.46                 | 0.49                      | 44.1                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

\* Critical Movement (Signal Timing)

| Pedestrian Movement Performance |               |              |                |                     |              |             |              |              |                |                 |                |  |  |
|---------------------------------|---------------|--------------|----------------|---------------------|--------------|-------------|--------------|--------------|----------------|-----------------|----------------|--|--|
| Mov<br>ID Crossing              | Input<br>Vol. | Dem.<br>Flow | Aver.<br>Delay | Level of<br>Service |              | BACK OF     | Prop.<br>Que | Eff.<br>Stop | Travel<br>Time | Travel<br>Dist. | Aver.<br>Speed |  |  |
|                                 | ped/h         | ped/h        | sec            |                     | [ Ped<br>ped | Dist ]<br>m |              | Rate         | sec            | m               | m/sec          |  |  |
| NorthWest: Sy                   | denham        | Rd (NW       | /)             |                     |              |             |              |              |                |                 |                |  |  |
| P7 Full                         | 82            | 86           | 30.2           | LOS D               | 0.2          | 0.2         | 0.85         | 0.85         | 196.9          | 200.0           | 1.02           |  |  |
| All<br>Pedestrians              | 82            | 86           | 30.2           | LOS D               | 0.2          | 0.2         | 0.85         | 0.85         | 196.9          | 200.0           | 1.02           |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 29 October 2024 11:53:13 AM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\09 SM C&SW\_SYD (Block 4).sip9

### V Site: SYD05 [SYD05 Marrickville Rd / Buckley St (Site Folder: Block 4 Model - 2024 Weekend Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA Site Category: (None) Give-Way (Two-Way)

| Vehic     | /ehicle Movement Performance |              |                              |                           |                              |                           |                     |                       |                     |                           |                                |              |                      |                           |                        |
|-----------|------------------------------|--------------|------------------------------|---------------------------|------------------------------|---------------------------|---------------------|-----------------------|---------------------|---------------------------|--------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn                         | Mov<br>Class | Dem<br>F<br>[ Total<br>veh/h | nand<br>lows<br>HV ]<br>% | Ar<br>Fl<br>[ Total<br>veh/h | rival<br>ows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95%<br>Q<br>[ Veh.<br>veh | Back Of<br>ueue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | East:                        | Marrickvi    | lle Rd (                     | SE)                       |                              |                           |                     |                       |                     |                           |                                |              |                      |                           |                        |
| 2         | T1                           | All MCs      | 602                          | 2.3                       | 602                          | 2.3                       | 0.316               | 0.0                   | LOS A               | 0.0                       | 0.0                            | 0.00         | 0.00                 | 0.00                      | 59.8                   |
| 3         | R2                           | All MCs      | 561                          | 0.9                       | 561                          | 0.9                       | 0.341               | 6.2                   | LOS A               | 1.8                       | 12.9                           | 0.21         | 0.60                 | 0.21                      | 44.9                   |
| Appro     | ach                          |              | 1163                         | 1.6                       | 1163                         | 1.6                       | 0.341               | 3.0                   | NA                  | 1.8                       | 12.9                           | 0.10         | 0.29                 | 0.10                      | 52.4                   |
| North     | West:                        | Marrickv     | ille Rd (                    | NW)                       |                              |                           |                     |                       |                     |                           |                                |              |                      |                           |                        |
| 7         | L2                           | All MCs      | 384                          | 3.6                       | 384                          | 3.6                       | 0.298               | 6.1                   | LOS A               | 1.4                       | 10.0                           | 0.23         | 0.56                 | 0.23                      | 49.3                   |
| Appro     | ach                          |              | 384                          | 3.6                       | 384                          | 3.6                       | 0.298               | 6.1                   | NA                  | 1.4                       | 10.0                           | 0.23         | 0.56                 | 0.23                      | 49.3                   |
| All Ve    | hicles                       |              | 1547                         | 2.1                       | 1547                         | 2.1                       | 0.341               | 3.8                   | NA                  | 1.8                       | 12.9                           | 0.13         | 0.36                 | 0.13                      | 51.4                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Monday, 28 October 2024 6:36:31 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\09 SM C&SW\_SYD (Block 4).sip9

### V Site: SYD06 [SYD06 Sydenham Rd / Buckley St (Site Folder: Block 4 Model - 2024 Weekend Peak)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA Site Category: (None) Give-Way (Two-Way)

| Vehic                       | Vehicle Movement Performance |              |                               |                           |                              |                            |                     |                       |                     |                              |                                |              |                      |                           |                        |
|-----------------------------|------------------------------|--------------|-------------------------------|---------------------------|------------------------------|----------------------------|---------------------|-----------------------|---------------------|------------------------------|--------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID                   | Turn                         | Mov<br>Class | Dem<br>Fl<br>[ Total<br>veh/h | iand<br>lows<br>HV ]<br>% | Ar<br>Fl<br>[ Total<br>veh/h | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% I<br>Qı<br>[ Veh.<br>veh | Back Of<br>Jeue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| NorthWest: Sydenham Rd (NW) |                              |              |                               |                           |                              |                            |                     |                       |                     |                              |                                |              |                      |                           |                        |
| 2                           | T1                           | All MCs      | 746                           | 1.6                       | 746                          | 1.6                        | 0.388               | 0.1                   | LOS A               | 0.0                          | 0.0                            | 0.00         | 0.00                 | 0.00                      | 59.7                   |
| Appro                       | ach                          |              | 746                           | 1.6                       | 746                          | 1.6                        | 0.388               | 0.1                   | NA                  | 0.0                          | 0.0                            | 0.00         | 0.00                 | 0.00                      | 59.7                   |
| South                       | West:                        | Buckley      | St (SW)                       | )                         |                              |                            |                     |                       |                     |                              |                                |              |                      |                           |                        |
| 4                           | L2                           | All MCs      | 489                           | 2.2                       | 489                          | 2.2                        | 0.270               | 5.7                   | LOS A               | 0.0                          | 0.0                            | 0.00         | 0.53                 | 0.00                      | 51.1                   |
| 6                           | R2                           | All MCs      | 443                           | 2.4                       | 443                          | 2.4                        | 0.245               | 5.8                   | LOS A               | 0.0                          | 0.0                            | 0.00         | 0.63                 | 0.00                      | 43.7                   |
| Appro                       | ach                          |              | 933                           | 2.3                       | 933                          | 2.3                        | 0.270               | 5.7                   | NA                  | 0.0                          | 0.0                            | 0.00         | 0.58                 | 0.00                      | 48.4                   |
| All Ve                      | hicles                       |              | 1679                          | 1.9                       | 1679                         | 1.9                        | 0.388               | 3.2                   | NA                  | 0.0                          | 0.0                            | 0.00         | 0.32                 | 0.00                      | 52.7                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Licence: NETWORK / Enterprise Level 1 | Processed: Tuesday, 29 October 2024 12:20:52 PM Project: C:\Users\WanJ2\OneDrive - AECOM\General - ANZ-NAC-Sydney Metro-Sydney Metro C&SW Operational Monitoring\400\_Technical \432\_Traffic Analysis\SIDRA Modelling\04 Block 4\02 SIDRA Models with volumes\09 SM C&SW\_SYD (Block 4).sip9